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a b s t r a c t 

Different from the common approaches that use either hypothesis test or classifier for biomarker dis- 

covery, we applied the integrative hypothesis test (IHT) that combined both to identifying miRNAs for 

differentiation between lung cancer and Chronic Obstructive Pulmonary Disease (shortly L-C differen- 

tiation) on GEO data set GSE24709, and further extended IHT implementation by bootstrapping aided 

ranking and mean-variance based reliability check, which outputs a list of the top-15 differentially ex- 

pressed miRNAs that confirmed the previously reported 14 miRNAs for L-C differentiation from a very 

different perspective plus an additional one. Moreover, we conducted a literature survey for a further 

explanation via dividing the 15 miRNAs into subclasses based on known relevances to the two diseases. 

Also, every pair of 15 miRNAs is exhaustively examined on their joint effect via p -value, misclassification, 

and correlation, which identifies core pairs and linked cliques as joint miRNAs biomarkers. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Lung cancer is closely related to Chronic Obstructive Pulmonary

Disease (COPD), a common pulmonary affliction encompassing

chronic obstructive bronchitis and lung emphysema [1] . COPD is a

global burden affecting 10.15% of adults older than 40 years [2] and

precedes lung cancer in 50.90% of cases [3] . Based on the differen-

tial expression of miRNAs in tumors, effort s have been made on

finding miRNA expression signatures of lung cancer and subtypes

via not only tumor cells [4,5] but also sera and peripheral blood

cells from cancer patients [6,7,8,9] . 

Differentiation analyses on miRNA expression and gene expres-

sion are made in one of two typical methods that are generally

used in various tasks of case-control studies or binary classifi-

cation. Under the name of two sample test or model compari-

son in general, the first method evaluates the overall difference

between two populations of samples with each population de-

scribed by a parametric model, usually a normal distribution. One
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idely used example on gene expression differentiation is t-test

nd Welch test. Under the name of classification or model pre-

iction, the second method evaluates the performance of discrimi-

ative boundary that classifies each sample into its corresponding

opulation. Each of the two methods has been extensively studied

ndividually. 

Previous studies tend to merely use one of the two methods

o identify biomarkers, though some study may also compute the

easure of the other for a reference or a double check. According

o our knowledge, there lack efforts on systematically integrating

oth of them to jointly identify biomarkers. Integrative Hypoth-

sis Test (IHT) has been recently proposed to suit this purpose

10] , [11] . The data were downloaded from Gene Expression Om-

ibus data set GSE24709 (GEO, http://www.ncbi.nlm.nih.gov/geo/ ,

SE24709) [3,12] , which contained the expression data in blood

ells of 863 miRNAs for lung cancer patients and patients suf-

ering from COPD. We further extended IHT implementation by

ootstrapping aided ranking (shortly called bootstrapping-IHT)

nd mean-variance based reliability check, resulting in a so-called

HT rank of miRNA biomarkers for distinguishing lung cancer

nd COPD. We obtained a list of top-15 miRNAs (See Table 2 )

hat covered all the 14 differentially expressed ones identified

http://dx.doi.org/10.1016/j.neucom.2016.10.092
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.10.092&domain=pdf
mailto:lxu@cse.cuhk.edu.hk
http://www.ncbi.nlm.nih.gov/geo/
http://dx.doi.org/10.1016/j.neucom.2016.10.092


K.-M. Jiang et al. / Neurocomputing 269 (2017) 40–46 41 

Table 1 

A list of top-15 obtained by IHT. 

Rank Gene id p -value Accuracy (%) 

1 hsa-miR-369-5p 1.24E −05 81.32 

2 hsa-miR-675 2E-05 77.78 

3 hsa-miR-662 9.25E −06 76.88 

4 hsa-miR-641 4.86E −05 76.77 

5 hsa-miR-767-3p 4.55E −06 76.46 

6 hsa-miR-888 ∗ 0.0 0 076 78.47 

7 hsa-miR-26a 1.55E −06 75.59 

8 hsa-miR-1299 0.0 0 0567 75.45 

9 hsa-miR-95 7.46E −05 74.20 

10 hsa-miR-636 0.0 0 0192 73.68 

11 hsa-miR-1308 0.0 0 0196 72.95 

12 hsa-miR-513b 0.0 0 0366 72.15 

13 hsa-miR-668 0.0 0 0934 72.92 

14 hsa-miR-130b 0.0 0 0349 71.18 

15 hsa-miR-875-3p 0.001364 74.41 

Table 2 

A list of top-15 obtained with rank bootstrapping. 

Rank Gene ID Avg. rank Std. rank 

1 hsa-miR-662 2.8 1.30384 

2 hsa-miR-636 3 1.224745 

3 hsa-miR-675 3.4 1.516575 

4 hsa-miR-369-5p 4.2 4.494 4 41 

5 hsa-miR-940 7.6 3.361547 

6 hsa-miR-92a 8.4 5.029911 

7 hsa-miR-1224-3p 8.6 4.505552 

8 hsa-miR-26a 10.6 4.615192 

9 hsa-miR-328 11.2 5.80517 

10 hsa-miR-641 14.2 3.701351 

11 hsa-miR-383 17 5.43139 

12 hsa-let-7d ∗ 21.2 4.086563 

13 hsa-miR-93 ∗ 24 10.90871 

14 hsa-miR-323-3p 24.8 6.220932 

15 hsa-miR-513b 26.6 4.27785 

Excluded genes due to large rank std. 

hsa-miR-875-3p 20.2 17.32628 

hsa-miR-30e ∗ 22 13.32291 

hsa-miR-139-5p 22.6 13.01153 

hsa-miR-1911 23.8 12.43785 

hsa-miR-130b 24 15.23155 
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n [12] (See Table 3 ) plus an additional one. Further literature

urvey divided the list into a subclass of 5 miRNAs that were

alidated by qRT-PCR for the separation between lung cancer and

OPD, a subclass of 3 miRNAs that were reported to be related to

ung diseases, while the roles of the rest 7 ones in lung diseases

emained unclear. The subclass containing the 7 miRNAs were

urther divided into two subgroups by whether they were relevant

o other cancers. (See Table 4 ) 

Additionally, we performed pathway analysis by TarBase [13] on

he target mRNAs of the top-15 miRNAs listed in Table 2 . The tar-

et genes of hsa-miR-26a-5p (previously, hsa-miR-26a) and hsa-

iR-92a-3p (previously, hsa-miR-92a) were identified to be asso-

iated with pathways closely related to cancer. 

Moreover, we enumerated every pair of miRNAs to compute

he corresponding p-values, misclassification rates and correlation

oefficients, and obtained a list of top-20 pairs of miRNAs (See

able 7 ). Interestingly, 19 out of them contained one miRNA that

anked top-10 in Table 2 . But the top-ranking pairs did not neces-

arily include both top-ranking miRNAs. 

Within the top-20 pairs shown in Table 7 , 16 pairs were uncor-

elated, with correlation coefficients | r | < 0.3; 3 pairs were weakly

orrelated, with correlation coefficients 0.3 ≤ | r | < 0.5; 1 pair was

oderately correlated, with correlation coefficient | r | ≥ 0.5. We can

ee that most of the top-20 pairs were weakly correlated or even

ncorrelated. Moreover, these pairs displayed high differentiation

erformance with high classification accuracies (89–95%) and low
 -values (around 10 −7 − 10 −10 ). Three distinct joint miRNA signa-

ures were generated, the core miRNAs of which were hsa-miR-

75, hsa-miR-369-5p and hsa-miR-92a, respectively. These three

ignatures were further linked by the pair of hsa-miR-369-5p and

sa-miR-92a, and the pair of hsa-miR-369-5p and hsa-miR-675. 

. Methods 

.1. Integrative hypothesis tests 

Integrative hypothesis tests (IHT) was previously advocated

n [10,11] for an integrative study of case-control problems. It

s featured with two perspectives (namely, model-based ver-

us boundary-based), and four different tasks (namely, mod-

lling, comparison, classification and assurance [11,14] ). To facili-

ate the explanation, we define the case and control samples as

 ω = { x t,ω , t = 1 , . . . , N ω } , ω = 0 , 1 with ω = 0 for control and ω =
 for case , where N ω is the number of samples. We assume that

he case samples were generated by a parametric model q ( x | θ1 ),

hile the control samples were generated by q ( x | θ0 ). 

From the model-based perspective, the main focus is to test the

ull hypothesis H 0 (i.e., no difference between q ( x | θ0 ) and q ( x | θ1 )).

irst, we need to find two parameters θ0 and θ1 that fit the

wo populations well, i.e., performing the task of modelling. Then,

tatistics should be proposed to measure the difference between

he two models, i.e., performing the task of comparison. From

he boundary-based perspective, we consider whether samples are

ell separated by a separating boundary of two populations. Con-

idering a linear separation on two populations, the performance is

eatured with either the distances of samples to the linear separat-

ng boundary or the differences between the projection values of

wo populations along the normal direction w of the linear bound-

ry. First, we need to find the best boundary to separate samples

f two populations, namely, performing the task of classification.

hen, statistics should be proposed to test whether samples are

ell separated or whether the resulted boundary breaks the null

ypothesis H 0 : w = 0 significantly, namely, performing the task of

ssurance. 

Each of four tasks has been studied separately in the existing

ffort s, having it s strengths and limitations. However, the perfor-

ances of these tasks are coupled, and also the best set of features

or one task are not necessarily be the best for the others. It natu-

ally motivates that better results might be generated if the perfor-

ance of all the four tasks can be jointly optimized. The necessity

nd feasibility of the joint consideration have been addressed in

etails in [11] . 

In this paper, we focus on combining the two commonly en-

ountered ones for biomarker discoveries, i.e., model compari-

on testing and sample classification. For making comparison, we

imed at testing whether the difference between lung cancer and

OPD populations were significant. We evaluated each miRNA by

elch’s t-test and each miRNA pair by the Hotelling T-squared test,

ith the expressions of every miRNA pair modelled by bivariate

ormal distributions, where θ consists of its mean μ and covari-

nce matrix �, i.e., θ = { μ, �} . The testing result is featured by

he corresponding p -value. 

For classification, we first used Fisher’s discriminant analysis

FDA) to find the best direction w and projected the expressions of

very miRNA pair onto w to get a scalar expression. This best di-

ection w was obtained by maximising the between-class variance
2 
between 

and minimising the within-class variance σ 2 
between 

, i.e., 

 = 

σ 2 
between 

σ 2 
within 

= 

(w 

T μ1 − w 

T μ0 ) 
2 

w 

T �1 w + w 

T �0 w 

, (1) 

here μ1 and �1 are the mean and covariance matrix for lung

ancer samples, μ and � are the mean and covariance matrix
0 0 
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Table 3 

Significant markers identified in [12] for differentiation of lung cancer versus COPD ( p -value < 0.01). 

miRNA Control COPD Lung cancer Control vs. COPD Control vs. lung cancer Lung cancer vs. COPD 

hsa-miR-641 76.68 143.15 59.58 0.0 0 013 0.90088 0.0 0 075 

hsa-miR-662 90.65 23.1 95.46 0.0 0 03 0.5175 0.0 0 01 

hsa-miR-369-5p 33.46 97.1 33.25 0.0 0 041 0.60298 0.0 0 01 

hsa-miR-383 74.96 142.06 73.83 0.00122 0.87052 0.00316 

hsa-miR-636 246.59 106.39 222.87 0.00186 0.72712 0.0 0 016 

hsa-miR-940 225.92 152.89 247.83 0.00583 0.94678 0.00683 

hsa-miR-26a 7269.84 7975.44 5568.45 0.00931 0.21746 0.0 0 047 

hsa-miR-92a 13651.44 9554.17 13651.44 0.00957 0.80809 0.00156 

hsa-miR-328 59.92 76.93 208.31 0.96379 0.00428 0.00126 

hsa-let-7d ∗ 70.76 102.75 250.42 0.05763 0.0 0 0 06 0.00278 

hsa-miR-1224-3p 137.63 109.61 233.37 0.08731 0.86406 0.00316 

hsa-miR-513b 66.76 80.41 39.04 0.03264 0.12765 0.00411 

hsa-miR-93 ∗ 893.5 1303.7 2321.35 0.99299 0.01562 0.0068 

hsa-miR-675 254.2 149.11 287.83 0.04421 0.04842 0.00156 

Table 4 

Literature survey results for top-15 miRNAs. 

Subclass miRNA Description 

I hsa-miR-26a Validated by qRT-PCR for the separation between COPD and NSCLC [15] 

hsa-miR-328 Validated by qRT-PCR for the separation between COPD and NSCLC [15] 

hsa-miR-93 ∗ Validated by qRT-PCR for the separation between COPD and NSCLC [15] 

hsa-miR-1224-3p Validated by qRT-PCR for the separation between COPD and NSCLC [15] 

hsa-miR-383 Validated by qRT-PCR for the separation between COPD and NSCLC [15] 

II hsa-miR-675 Down-regulation leads to tumor progression in non-small cell lung cancer [16] 

Significantly dysregulation in the small airway epithelium despite smoking cessation [17] 

hsa-miR-636 Variant miRNAs in control vs. COPD [18] 

hsa-miR-940 Associated with regulation of ASM actin cytoskeleton [19] 

IIIa hsa-miR-92a Increased expression in ALL patients [20] 

hsa-let-7d ∗ Contribute to cross-targeting of cancer-related factors [21] 

hsa-miR-323-3p Play a role in the transformation from oral leukoplakia to cancer [22] 

hsa-miR-662 Part of signature for predicting prognosis for neural GBM [23] 

IIIb hsa-miR-369-5p 

hsa-miR-641 

hsa-miR-513b 

Table 5 

Significant pathways of the target genes of miR-26a-5p. 

Pathway p -values Bonferroni 

hsa04110:cell cycle 3.90E −07 6.94E −05 

hsa05200:pathways in cancer 2.93E −06 5.22E −04 

hsa05210:colorectal cancer 3.97E −05 0.007042 

hsa04115:p53 signaling pathway 7.82E −05 0.013817 

hsa04114:oocyte meiosis 9.56E −05 0.01688 

hsa04310:Wnt signaling pathway 1.60E −04 0.028087 

hsa04350:TGF-beta signaling pathway 2.12E −04 0.037095 

hsa05220:chronic myeloid leukemia 2.84E −04 0.049303 

Table 6 

Significant pathways of the target genes of miR-92a-3p. 

Pathway p -values Bonferroni 

hsa04110:cell cycle 1.17E −09 2.12E −07 

hsa05200:pathways in cancer 7.38E −07 1.34E −04 

hsa03010:ribosome 9.71E −06 0.001756 

hsa05215:prostate cancer 1.44E −05 0.002601 

hsa05220:chronic myeloid leukemia 1.31E −04 0.023382 

hsa04510:focal adhesion 1.81E −04 0.032187 

hsa04520:adherens junction 1.87E −04 0.033332 

hsa05222:small cell lung cancer 5.87E −04 0.100802 
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a  
for COPD samples. In the case of testing one miRNA, no projec-

tion was needed because we already dealt with a scalar expression.

Next, the misclassification rates were computed on scalar expres-

sions according to the separating boundary point that is simply the

middle of the mean values of the lung cancer and COPD patients. 

We may further observe the joint performances of p -values and

misclassification rates with help of the scatterplot called the IHT
lot (See Fig. 1 ), where each point represents one miRNA. The x-

xis denotes the p -value while the y -axis the misclassification rate.

 small p -value indicated significant difference between two pop-

lations and a small misclassification rate indicated a good classi-

cation of samples by its separating boundary. Thus, we prefer the

andidate points that were closest to the origin of the coordinate

pace. However, as addressed in [11] , this IHT plot is limited to

erely integrating two measures and also encounters a challenge

f how to appropriately scaling each measure. 

.2. Bootstrapping-IHT 

We further turned the IHT plot shown in Fig. 1 into a list

f miRNAs sorted according to their distances to the origin of

he coordinate space. Table 1 showed the resulted top-15 miR-

As, with the p-values and accuracies obtained by the Welch’s t -

est and Fisher’s discriminant analysis respectively. Because of the

mall sample size ( N 1 = 28 for lung cancer patients and N 0 = 24

or COPD), the resulted p -values and accuracies are actually ran-

om variables, namely, each point in Fig. 1 is actually random dot,

hich makes the IHT ranks in Table 1 unreliable. 

To tackle the small sample size, we applied the bootstrapping

trategy. Bootstrapping is a common practice to estimate proper-

ies when the sample size is insufficient. It measures the properties

ia sampling with replacement, which makes the estimation of al-

ost any statistics possible. Also, bootstrapping provides a way to

ccount for the distortions caused by specific samples that may not

e fully representative of the population. 

In each bootstrapping implementation, we obtained the corre-

ponding initial IHT ranks for all miRNAs by integrating p -values

nd classification accuracies, after which the specific values of
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Table 7 

A list of top-20 pairs obtained by IHT (Pearson Correlation did not join the sorting). 

Fig. 1. IHT plot(a) overall view, (b) zoom in view. 
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 -values and classification accuracies were no longer important.

hat we focus on are these initial IHT ranks that randomly vary

very time we perform bootstrapping. Then, we reorder all miR-

As according to the means of random initial IHT ranks and check

he corresponding variances for reliability. One miRNA with a small

ean and variance in its IHT ranks is regarded as stably significant

or differentiation. As a result, we obtain a list of final IHT ranks af-

er discarding those miRNAs with the corresponding variances big-

er than a pre-specified threshold. 
Empirically, illustrated in Fig. 2 is the relationship between the

ean and standard deviation of IHT ranks. As the mean ranks in-

rease, we observed that the standard deviation displays an over-

ll growing tendency though this tendency is not monotonic. We

re thus motivated to choose the threshold at the point where the

tandard deviation suddenly changed to a great amount so that a

pike appeared in Fig. 2 . 

Similarly, we may further extend such a bootstrapping-IHT to

xamine every pair of miRNAs. 
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Fig. 2. Selection of a threshold for standard deviation. 
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3. Empirical studies 

3.1. Top-15 miRNAs identified 

The Microarray data used in this paper were downloaded from

the Gene Expression Omnibus profile GSE24709 (GEO, http://www.

ncbi.nlm.nih.gov/geo/ , GSE24709). It includes 863 human miRNAs

annotated in miRBase version 12.0. The data were the miRNA ex-

pression values in blood cells for 71 individuals, including 28 lung

cancer patients, 24 COPD patients, and 19 healthy controls. In this

study, we only considered the COPD patients and lung cancer pa-

tients. 

Table 1 shows the results obtained by evaluating each miRNA

merely based on the original samples, while Table 2 shows the re-

sults obtained by bootstrapping. In each bootstrapping implemen-

tation, we resampled and obtained a set of 45 samples. We set the

number of bootstrapping implementation to be 100, as it reached a

balance of efficient computation and stable results. After 100 boot-

strapping implementations, we computed the mean and standard

deviation of the IHT ranks for each miRNA. We listed the top-15

miRNAs in Table 2 , sorting increasingly according to their mean

IHT ranks but discarding ones bigger than a threshold of 12 for

standard deviation that is chosen from Fig. 2 . Some discarded miR-

NAs with relatively smaller mean IHT ranks but big standard devi-

ation were also shown in Table 2 . 

Fourteen of the top-15 miRNAs listed in Table 2 were also in-

cluded in Table 3 that consists of the significant miRNAs for the

differentiation between lung cancer and COPD found in [12] . In

other words, the findings of [12] are confirmed here independently

by a very different method, which may enhance attentions to these

findings. 

To get a further understanding on the top-15 miRNAs shown

in Table 2 , we also conducted literature survey and divided the

15 miRNAs into 3 subclasses ( Table 4 ). Subclass I contains 5 miR-

NAs that were validated by qRT-PCR to be differentially expressed

between COPD and NSCLC. Subclass II contains 3 miRNAs that

were known to be related to lung diseases, including lung can-

cer, COPD, etc. The remaining 7 miRNAs were not reported to have

relevance to lung diseases, forming subclass III. But we could find

some cancer-related reports for 4 out of the 7 miRNAs, which were
urther classified into subclass III a, while the rest 3 with few re-

orts were classified into subclass III b. 

.2. Functional analysis 

We also performed the pathway analysis on the target genes of

he top-15 miRNAs listed in Table 2 . All the target genes were ob-

ained by TarBase [13] . A biological pathway is a series of molec-

lar actions that produce substances or cause changes in a cell.

nvestigating the relationship between target mRNAs and path-

ays provides knowledge about the potential biological functions

f these miRNAs. 

Tables 5 and 6 respectively demonstrated the pathway analysis

esults of hsa-miR-26a-5p (another name of hsa-miR-26a) and hsa-

iR-92a-3p (another name of hsa-miR-92a) obtained from DAVID

24,25] , where the relevant pathways were sorted increasingly ac-

ording to the p-values corrected by Bonferroni method. Smaller

-values means more significant relevant with the pathways. 

Both the two strongly correlate to two cancer-related factors,

amely cell cycle and pathways in cancer. Moreover, Hsa-miR-26a-

p were related to p53 signaling, Wnt signaling and TGF-beta sig-

aling. p53 signaling is important for the pathogenesis of cancer

26] . Wnt signalling influences the growth of tumor, and thus can

erve as a therapeutic target [27] . TGF-beta signalling can deter-

ine the behaviour of cancer cell and have an effect on cancer

rogression [28] . Hsa-miR-92a-3p were relevant to focal adhesion

nd adherens junction. Focal adhesion plays a role in tumor for-

ation [29] . Adherens junctions have significant changes in cancer

ells compared to normal cells [30] . 

These results indicated that the miRNAs found by

ootstrapping-IHT were actively involved in the tumor devel-

pment process by regulating the expression of their target

enes. 

.3. Joint miRNA analysis 

We further proceeded to study two or more miRNAs jointly.

irst, we applied hierarchical clustering on the expression data

f the miRNAs listed in Table 2 . The clustering result was visu-

lised in a heat map shown in Fig. 3 . We can see that the miR-

As are clustered into two groups, including the one that contains

sa-miR-641, hsa-miR-26a, hsa-miR-369-5p, hsa-miR-875-3p, hsa-

iR-383, and the other that contains hsa-miR-139-5p, hsa-miR-

62, hsa-miR-30e ∗, hsa-let-7d 

∗, hsa-miR-328, hsa-miR-636, hsa-

iR-675, hsa-miR-940, hsa-miR-1224-3p and hsa-miR-92a. The

wo groups show different expression patterns: miRNAs in the first

roup up-regulate in COPD (red) and down-regulate in lung cancer

green), while miRNAs in the second group show an opposite pat-

ern. 

Also, we examined every pair of miRNAs by Pearson correlation,

nd evaluated them by boostrapping-IHT which generated the IHT

anks that reflected the integrated performance of the p-value and

lassification accuracy. Table 7 gives a list of top-20 pairs of miR-

As sorted by IHT ranks. The Pearson correlation coefficients be-

ween the two miRNAs are listed in the last column, but they did

ot join the sorting process. We see that the top-ranking miRNA

airs did not necessarily contain both of the top-ranking individ-

al miRNAs. 

Interestingly, 19 out of the 20 pairs contained one miRNA

hat ranked top-10 in Table 2 . Especially, hsa-miR-675 and hsa-

iR-92a each appeared in 6 pairs; hsa-miR-369-5p appeared in

 pairs; hsa-miR-641 and hsa-miR-662 appeared in 2 pairs. Be-

ides, hsa-miR-26a, hsa-let-7d 

∗, hsa-miR-636, hsa-miR-93 ∗ also ap-

eared in both Tables 2 and 7 . As these 9 miRNAs appeared in both

ables 2 and 7 , they drew our particular attention for further in-

estigation. 

http://www.ncbi.nlm.nih.gov/geo/
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Fig. 3. Hierarchical clustering result of top-15 miRNAs. Red color represents up-regulation, while green color represents down-regulation. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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Within the top-20 pairs shown in Table 7 , 16 pairs were uncor-

elated, with correlation coefficients | r | < 0.3; 3 pairs were weakly

orrelated, with correlation coefficients 0.3 ≤ | r | < 0.5; 1 pair was

oderately correlated, with correlation coefficient | r | ≥ 0.5. We can

ee that most of the top-20 pairs were weakly correlated or even

ncorrelated. Moreover, these pairs displayed high differentiation

erformance with high classification accuracies (89–95%) and low

 -values (around 10 −7 − 10 −10 ). Three distinct joint miRNA signa-

ures were generated (marked by blue, green and yellow), the core

iRNAs of which were hsa-miR-675, hsa-miR-369-5p and hsa-miR-

2a, respectively. These three signatures were further linked by the

air of hsa-miR-369-5p and hsa-miR-92a, and the pair of hsa-miR-

69-5p and hsa-miR-675. 

.4. Some remarks 

Machine learning and statistical methods have been widely

sed in medicine and biology related fields [3,4,5,12,31] . We used

 bootstrapping integrative hypothesis test to study the data set

SE24709 of miRNA expressions in blood cells. We may further

xtend this bootstrapping-IHT study to analysing data set that

ontain both tumour and adjacent normal expression data, with

he help of bilinear matrix-variate analysis [11] . Also, the S-space

oundary-based test developed in [14] may be adopted for joint

iRNA analysis. Besides, most of the existing studies, including

his one, do not consider conditions or environment. The E-GPS

heory may also be applied to carry out analysis conditioned on

ertain environments [32] . 
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