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Abstract. Affective models based on EEG signals have been proposed
in recent years. However, most of these models require subject-specific
training and generalize worse when they are applied to new subjects. This
is mainly caused by the individual differences across subjects. While, on
the other hand, it is time-consuming and high cost to collect subject-
specific training data for every new user. How to eliminate the individ-
ual differences in EEG signals for implementation of affective models is
one of the challenges. In this paper, we apply Deep adaptation network
(DAN) to solve this problem. The performance is evaluated on two pub-
licly available EEG emotion recognition datasets, SEED and SEED-IV,
in comparison with two baseline methods without domain adaptation
and several other domain adaptation methods. The experimental results
indicate that the performance of DAN is significantly superior to the
existing methods.
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1 Introduction

Emotion plays a critical role in human lives, which affects our behavior and
thought almost anytime and anywhere. As a result, the technology of emotion
recognition has various applications in many fields, including assistance for peo-
ple everyday life, improvement of working performance, and even implementa-
tion of emotional intelligence. On the other hand, EEG singals are considered
to reflect the internal temporal states of human brains and has been studied in
the field of Brain-computer interface (BCI). In recent years, BCIs have also seen
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progressive growth in affective Brain-computer interface (aBCI) that aims at
recognizing emotions from brain signals [13,18]. Many studies have been made
in detecting human emotion states with EEG signals [4,8,12].

Though existing studies have achieved many successes in emotion recognition,
most of them only focus on training specific models for particular subjects. These
subject-specific models suffer from degraded performance when they are applied
to new subjects. The phenomenon is caused by the large domain shift introduced
by individual differences across subjects. The naive solution for the problem is
to train subject-specific models for every subject, which takes a lot of effort to
collect labeled dataset. Another path to solve the problem is to apply domain
adaptation methods. As the matter of fact, domain adaptation methods have
been applied in various fields to solve the domain shift problem.

There are already several studies on the application of domain adaptation
methods to EEG-based emotion recognition. In our previous work [21], Zheng
and Lu adopted Transfer component analysis (TCA) [14], Kernel principle anal-
ysis (KPCA) [17], and Transductive parameter transfer (TPT) [16] for emotion
recognition. Lan et al. explored various domain adaptation methods applied on
two EEG emition recognition datasets [9]. Jin et al. proposed to use Domain-
adversarial neural network (DANN) [6] to eliminate the subject differences and
achieved appreciable improvement in recognition performance [7]. Lin et al. pro-
posed a conditional transfer learning method for emotion recognition task to
avoid negative transfer [10].

In this paper, we introduce Deep adaptation network (DAN) to EEG-based
emotion recognition and compare DAN with two baseline methods without
domain adaptation and several other domain adaptation methods. As far as
we know, this is the first work to apply DAN to deal with the subject transfer
problem in EEG-based emotion recognition on two publicly available datasets:
SEED and SEED-IV. From experimental results we find that DAN achieves
the best performance and improves the accuracy of recognition significantly in
comparison with the baseline methods.

2 Materials and Methods

2.1 Dataset Description

Two publicly available emotion recognition datasets, SEED [21] and SEED-IV!
[20], are used in this paper to evaluate the proposed methods.

The SEED dataset contains EEG signals of 15 subjects recorded while they
were watching Chinese film clips. A total number of 15 film clips were selected
by a preliminary study and labeled as being negative, positive, or neutral. For
each of the subjects, three experiments were performed at an interval of no less
than one week. During the experiments, the 15 film clips were played in 15 trials
and the subjects were required to watch the clips patiently. The EEG signals

! The SEED and SEED-IV datasets are available at http://bemi.sjtu.edu.cn/~seed/
index.html.
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were recorded with a 62-channel cap according to the 10-20 system using ESI
Neuroscan system.

The SEED-IV dataset also contains EEG signals of 15 subjects while they
were watching Chinese film clips. The main difference between SEED-IV and
SEED is there are film clips of four emotion categories: happy, sad, fear, and
neutral. A total number 72 film clips were selected by a preliminary study (18
clips for each emotion category). Each experiment contains 24 trials so that the
subjects watched all of the 72 film clips. The EEG signals were recorded with
62-channel cap according to the 10-20 system using ESI Neuroscan system.

2.2 Data Preprocessing

The EEG signals are firstly downsampled to 200 Hz and processed with a 1-75 Hz
bandpass filter. The filtered signals are then segmented into 1-s and 4-s segments
for SEED and SEED-IV datasets, respectively. The segments are attached with
the label of the corresponding film clips. Differencial entropy (DE) features are
extracted from the segment at the frequency band of delta (1-4 Hz), theta (4—
8 Hz), alpha (8-14 Hz), beta (14-31 Hz), and gamma (31-50Hz) [5,19]. The DE
feature is a robust EEG feature that has been applied in our previous studies
[7,21]. The definition of the DE feature on a one-dimensional signal X drawn
from a Gaussian distribution N (u,d?) is

hMX)= —/OO P(z)log(P(x)) = %log 2med?. (1)

— 00

For SEED, because there are three duplicate experiment for each subject,
we select one of them to reduce the scale of the data. After the preprocessing,
there are 3394 and 2505 data samples for each subject in the SEED and SEED-
IV datasets, respectively. The feature dimension is 310 (62 EEG channels by 5
frequency bands).

2.3 Domain Adaptation Methods

According to Pan et al. [15], a domain D = {X, P(X)} consists of a feature
space X and the corresponding marginal probability distribution P(X), where
X € X. Given a domain D, a task 7 = {J, f(-)} consists of a label space } and
the corresponding objective predictive function f(-), where y = f(z),z € X, and
ye .

Traditional machine learning approaches focus on solving the task with data
samples and the corresponding labels from the same domain. However, in the
field of transfer learning, the goal is to solve tasks in a domain when there is no
or little observation of data sample while some data samples are available from
related domains.

The objective domain where the task lies is called the target domain
Dr = {Xp,P(Xr)} and the related domain is called source domains Dg =
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{Xs, P(Xs)}. Additionally, when source and target domains share the same fea-
ture space and task, the problem is a subset of transfer learning, and is called
domain adaptation. In this paper, we study the domain adaptation problem with
the target domains being the data from the target subjects, the source domains
being the data from the other subjects.

Label Emotion
Predictor Prediction

Feature Extractor
Network

Ga(Gy(x))

Target Domain Domain
N Discriminator Prediction

Fig. 1. Structure of DANN. The arrows in solid lines indicate the forward propagation
path, while the arrows in dotted lines indicate the backpropagation path.

Domain-Adversarial Neural Network. Domain-adversarial neural network
(DANN) is a domain adapation method based on deep adversarial network. It is
composed of three sub-networks as shown in Fig. 1: a feature extractor, a label
predictor, and a domain discriminator whose network functions are denoted by
Gy(-), Gy(-), and G4(-) parameterized by 6y, 6,,, and 04, respectively. The method
aims to train a feature extractor that eliminates domain discrepancies as well as
keep objective task related component of the input features.

In the forward propagation phase, the feature extractor projects the input
features into a new feature space. The output is directed to the label predic-
tor and the domain discriminator, simultaneously. The label predictor produces
predictions of the labels according to the input, while the domain discrimintor
produces predictions of the corresponging domain. The loss of the whole network
is

> GGy ) i) + @Gl Gy ). ), ©)

where Jy(Gy(G(x;)),y:) denotes the loss for the label prediction G, (G¢(z;))
when the true label is y;, Jo(Ga(Gf(x;)), d;) denotes the loss for the domain pre-
diction G4(G¢(z;)) when the true domain is d;, « is a tradeoff hyperparameter,
and n is the data sample number.
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During the backpropagation phase, the label prediction and domain discrim-
ination losses (J, and J;) are propagated along the network as in ordinary net-
works. However, the derivatives are inverted when it is passed from the domain
discriminator to the feature extractor: the feature extractor is updated in the
direction of maximizing the domain discrimination losses (i.e., deceiving the
domain discriminator). In this way, the feature extractor finally discards the
domain-specific component of the input (i.e., eliminates the domain discrepan-
cies) in order to keep the domain discrimination losses Jy high. In the test phase,
the prediction is made by the feature extractor and the label predictor.
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Fig. 2. Structure of DAN. The first 3 layers are ordinary layers. The MK-MMD values
between source and target domains are calculated in the forth and fifth layers.

Domain Adaptation Network. According to the recent findings, neural net-
works extract features that transition from general to domain and task specific
with the growth of their depths. Basing on this idea, Long et al. proposed to use
multi-kernel Maximum mean discrepancies (MK-MMDs) as a measurement for
domain discrepancies of hidden features extracted by deep layers in neural net-
works [11]. By jointly minimizing the MK-MMDs and the task related loss, the
proposed Deep adaptation network (DAN) can eliminate domain discrepancies
across domains as well as maintaining task related features.

The structure of DAN is shown in Fig. 2. The first several layers are ordinary
ones that behave the same as in traditional networks in forward-propagation
and back-propagation phases. Because the feature representation transition to
be task and domain specific as the layers become deeper, the deep layers must
be treated differently to eliminate domain discrpancies. MK-MMD is applied
to achieve this goal in DAN. MK-MMD is multiple kernel variation of MMD
that is used for distribution discrepancy measurement. The MK-MMD distance
between two probability distributions p and ¢ is defined as the distance between
their mean embeddings in a reproducing kernel Hilbert space (RKHS) endowed
with a characteristic kernel k:

di(p,q) = || Eplok ()] — Eqlor (@)]][34, . 3)
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where ¢y (-) is the corresponding projection function associated with the kernel.
If the probability distributions p and ¢ are the ones of the source and tar-
get domains, respectively, the MK-MMD value can then measure the domain
discrepany. In order to eliminate the domain discrepancies in the deep layers,
the MK-MMDs between the distributions of source and target domain feature
expressions in the deep layers should be minimized. As a result, the final objec-
tive for DAN is
'1nJ0 >\5d2DlDl 4
I%HE; (0(zi), y:) + ; »(Ds, D), (4)
where J(6(x;),y;) indicates the loss when the network predicts 0(x;) for a data
sample x; with the true label y;, di(Dg,DlT) indicates the MK-MMDs between
the distributions of source and target domain feature expressions in the [th layer,
O is the set of all of the parameters, n is the size of the training set, and A is a
tradeoff hyperparameter that balance the objective loss and the MK-MMD loss.
However, as (3) indicates, the calculation of MK-MMDs between two domains
requires computation complexity of O(n?), which is not feasible during training
of neural network. Here we propose to use an unbiasd estimate of MK-MMD
within a batch which can be computed with O(n) cost.

3 Evaluation Experiments

3.1 Experiment Settings

We applied leave-one-subject-out cross validation to evaluate the domain adap-
tation methods on SEED and SEED-IV datasets: for each subject, an emotion
recognition model is trained with the subject as target domain, and other sub-
jects as source domain. The deep learning based methods are compared with
several traditional methods and two baseline methods to show their adavan-
tages. Both DAN and DANN contain convolutional layers to extract features
from images in there original papers [6,11]. In this paper, general features are
used instead of images, so the network structures are modified to adapt our prob-
lem. For DANN, the feature extractor consists of two fully connected layers, and
the label predictor and the domain discriminator consist of three fully connected
layers. For DAN, there are three ordinary fully connected layers, two specialized
fully connected layers attached with MK-MMD losses, and one output layer for
the label prediction. The specific structure of the two networks are described in
Table 1. Other methods are described as follows:

(1) KPCA projects the original features into a reproduce Hilbert kernel space
(RHKS) with a projection function ¢(-) [17]. A low dimensional subspace of
the RHKS is then found by maintaining the variance of the data distribution.

(2) TCA is similar to KPCA in projecting the original features into a RHKS
and find a low dimensional subspace [14]. The difference lies in that the
subspace is found by minimizing the MMD distance between the source and
target domain distributions as well as preserving data properties that are
useful for the target supervised learning task.
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(3) TPT is a parameter based domain adaptation method on multiple source
domains [16]. The method consists of three steps. First, domain-specific mod-
els are learnt on each domain. Then, a regression algorithm is applied to
project the source domain distributions to the domain-specific model param-
eters. Finally, the domain-specific model for the target domain is constructed
with the target domain distribution and the regression algorithm.

(4) Baseline methods consist of training Support vector machine (SVM) and
Multi-layer perceptron (MLP) models on the source domain and applying
the trained models directly on the target domain.

Table 1. Structure description of DANN and DAN

Method | Description

DANN | The feature extractor has 2 layers, both with node number of
128. The label predictor and domain discriminator have 3
layers with node numbers of 64, 64, and C, repectively. C'
indicates the number of emotion classes to be recognized

DAN There are 5 layers in total, each of them with node numbers of
128, 128, 64, 64, and C from the input end to the output end,
respectively. The last two layers are attached with MK-MMD
losses

3.2 Results and Discussion

The mean accuracies and standard deviations of each method for the two
datasets are shown in Tables2 and 3, respectively. The specific statistics when
each subject is trained as target domain are shown in Figs.3 and 4.

Table 2. Means and standard deviations of the accuracies for each method applied to
the SEED dataset

Method | SVM |MLP |TCA |KPCA |TPT |DANN | DAN
Mean |0.5818 0.6101 | 0.6400 | 0.6902 | 0.7517 | 0.7919 | 0.8381
SD 0.1385 | 0.1238 | 0.1466 | 0.0925 | 0.1283 | 0.1314 | 0.0856

For SEED, we compare our previous results in [7] with the results of DAN.
As Table2 shows, DAN achieves the mean accuracy of 0.8381, which outper-
forms any other methods. DAN also achieves the smallest standard deviation
value of 0.0856. It outperforms DANN, which was the best method in [7], by
4.62% in terms of mean recognition accuracy (but with no statistical signifi-
cance with p = 0.2645 in ANOVA test). To show the advantages of DAN, we
further compare it with results on the SEED dataset from other papers. Chai
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Fig. 3. The specific accuracies of each method for all the subjects and the averages in
the SEED dataset.

and colleagues applied several novel domain adaptaiton methods to cross-subject
emotion recognition from EEG data and evaluated those methods on the SEED
dataset. They reported that the mean accuracies of 77.88%, 80.46%, and 79.61%
were obtained in their studies [1-3]. Though the evaluation strategies are slightly
different (mostly on the selection of the data), DAN outperforms all of the exist-
ing methods, which confirms it to be the state-of-the-art approach on the dataset
for the cross-subject problem.

Table 3. Means and standard deviations of the accuracies for each method applied to
the SEED-IV dataset

Method | SVM | MLP |TCA |KPCA|TPT |DANN |DAN
Mean | 0.5178{0.4935|0.5397 | 0.5176 | 0.5243 | 0.5463 | 0.5887
SD 0.128510.0974 | 0.0805 | 0.1289 | 0.1443 | 0.0803 | 0.0813

As for SEED-IV, DAN still achieves the best performance, followed with
DANN, TCA, TPT, SVM, KPCA, and MLP (in order of declining performance).
The method outperforms the baseline SVM and DANN with 6.09% and 4.24%
in terms of mean accuracy, respectively. The other deep learning based method,
DANN, achieves the second best mean accuracy and the smallest standard devia-
tion. TCA achieves the best performance among the three tranditional methods,
but still falls behind DAN with 4.90% of the mean accuracy. In the original paper
of SEED-IV [20], Zheng and colleagues achieved a mean accuracy of 70.58% in a
within-subject and within-experiment evaluation experiment (training and test
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Fig. 4. The specific accuracies of each method for all the subjects and the averages in
the SEED-IV dataset.

data are from the same subject, in the same experiment), compared with 58.87%
in our results. There is an 11.72% gap of accuracy between the two mean accu-
racies. However, considering the great difference in the evaluation settings, our
results should be a desirable one.

For both of the datasets, DAN outperforms DANN and achieves the best
performance in terms of mean accuracy. It outperforms the baseline method
significantly for SEED (with p < 0.01 in ANOVA test). For SEED-IV, it outper-
forms the baseline method with weaker statistical significance (with p < 0.1 in
ANOVA test). Besides, it also has the smallest and the second smallest standard
deviation of the reconition accuracies for the two dataset, respectively. These
clues demonstrate that DAN is suitable for the EEG-based cross-subject emo-
tion recognition, and can achieve more stable performance in comparison with
the other domain adaptation methods.

By observing the accuracies on the two datasets, we find that the overall
performance of the methods is worse in SEED-IV compared with those in SEED.
There might be two reasons for this phenomenon. The first one is that SEED-
IV contains four emotional states for recognition, which makes its task a harder
one. The second one lies in that each subject has 2505 data samples in SEED-1V,
compared with 3394 data samples in SEED, which adds to the difficulty for the
methods to capture and eliminate the domain discrepancies.

4 Conclusion

In this paper, we have adopted Deep adaptation network (DAN) for dealing with
the cross-subject problem in EEG-based emotion recognition. Two publicly avail-
able datasets SEED and SEED-IV have been used for performance evaluation.
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The proposed method, DAN, was compared with several other domain adapta-
tion approaches. The experimental results demonstrate that DAN achieves 4.62%
and 4.24% accuracy improvements on three and four classes emotion recognition
problems, respectively, and is suitable for the cross-subject emotion recognition
from EEG data.
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