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Abstract—Emotions play a crucial role in decision-making,
brain activity, human cognition, and social intercourse. This
paper proposes a hierarchical network structure with subnetwork
nodes to discriminate three human emotions: 1) positive; 2) neu-
tral; and 3) negative. Each subnetwork node embedded in the
network that are formed by hundreds of hidden nodes, could be
functional as an independent hidden layer for feature representa-
tion. The top layer of the hierarchical network, like the mammal
cortex in the brain, combine such features generated from sub-
network nodes, but simultaneously, recast these features into a
mapping space so that the network can be performed to produce
more reliable cognition. The proposed method is compared with
other state-of-the-art methods. The experimental results from two
different EEG datasets show that a promising result is obtained
when using the proposed method with both single and multiple
modality.

Index Terms—Electroencephalography (EEG), emotion recog-
nition, feedforward neural network, subnetwork nodes.

I. INTRODUCTION

BRAIN activity for recognition and control has been
well-established for several decades. Recently, extraction

of additional brain information regarding the psychological
states from neurophysiological signals has earned an increased
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amount of attention in the human–machine-interaction
field. To make human–machine-interaction more natural,
comprehend about human emotional state is considered as an
important factor. Most of the measures utilized to observe
physiological states are “noninvasive,” based on collecting
signals from different modalities (e.g., face, motion, eye,
brain, posture, and skin). Among the various methods to emo-
tion recognition, electroencephalography (EEG)-signals-based
algorithms are being increasingly used due to its high accuracy
and stabilization [1], [2]. Early work on EEG-based emotion
recognition dates back as far as 1985 [3]–[7]. Intelligence
computational approaches from the field of machine learning
are widely used to boost recognition performance, which has
gained more and more attentions [8]–[13].

First comes the most prominent methods that utilize
statistical-based, wavelet-based, and fusion-based algorithms
for EEG-based feature processing. After this, classification
methods are provided, such as support vector machine (SVM),
fuzzy k-means, and single layer feedforward network (SLFN),
which resulted in moderate emotion recognition percent-
ages for up to two [14], three [15], four [16], and five
emotion states. For example, Lin et al. [16] adopted the
F-score index which is based on the ratio of between-class
and within-class emotion recognition. They gained an aver-
age of 82.29% classification accuracy for four emotions
across 26 subjects/participants. Chanel et al. [17] reported
an accuracy of 63% for three emotion states using EEG
time-frequency feature. Furthermore, by fusion of the dif-
ferent features and rejection of nonconfident samples, they
finally obtained an average of 80% classification accuracy.
Zheng and Lu [18] proposed selecting 12 channel electrodes
features in SVM where these features were preprocessed by
a differential entropy (DE) method [19], and then, an SVM
was utilized for classification. They showed that exactly 12
electrodes orders with SVM could provide a relative stabil-
ity with the best accuracy of 86.65%, which outperformed
the result of full 62 electrodes. Furthermore, for multimodal
emotional recognition, researchers adopted both the feature
level [2], [20], [21] and the decision level fusion [22], [23].
Takahashi and Tsukaguchi [24] indicated an emotion recog-
nition method using multiple modality signals [EEG, pulse,
electromyogram (EMG), electrocardiogram, and skin resis-
tance]. Zheng et al. [25] indicated a fusion-based emotion
recognition method by using the multiple modality signals
(eye movement and EEG), which showed the recognition rate
increased from 76% to 87%.
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Another leading trend for deep learning (DL)-based emo-
tion recognition. DL has been around for many years,
dating back to the works in the 1980s [26]–[31]. The
Neocognitron [28] could be the first artificial neural
network (NN) that deserved the attribute “deep,” and was
the first to incorporate neurophysiological insights. In 2006,
Hinton and Salakhutdinov [32] initiated a breakthrough in fea-
ture extraction, which was quickly followed up in successive
years [33]–[36]. Various studies [32], [34], [37]–[39] showed
that multilayer NNs with iteration methods or noniteration
methods can be used for representation learning. Powered by
the novel method, DL-based learning methods penetrated into
EEG emotional recognition field. Zheng et al. [40] trained a
deep belief network (DBN) with DE features and achieved
87.62% classification accuracy.

However, some problems still remain. In fact, the human
emotion generation involved in understanding the situation
can be a complicated and subjective process. Emotions reflect
the biological cognitive processes associated with biological
understanding and psychophysiological phenomena, and thus,
it is difficult to propose a recognition method which is purely
based on traditional machine learning methods. For exam-
ple, according to recent studies, the thalamus, basal ganglia,
insular cortex, amygdala, and frontal cortex are all involved
in emotion recognition [41]. Furthermore, accumulated direct
biological evidence [42], [43] supports the theory that neu-
ron activity in a mammal’s prefrontal cortex is heterogeneous,
partially random, and disordered. Crucially, the combined
features extracted from mixed selectivity neurons may be
central to complex cognition. Motivated by these biologi-
cal evidences, this paper proposes novel hierarchical network
methods for EEG-based emotion recognition. In particular, this
paper makes the following contributions.

1) We propose an NN-based emotion recognition with
subnetwork nodes. The subnetwork node itself can be
formed by several hidden nodes with various capabili-
ties including feature learning, dimension reduction, etc.
The subnetwork, alike neural representations in mammal
cortex, can be functional as a local features extrac-
tor. The top layer of a hierarchical network, like brain,
needs such subspace features produced by the subnet-
work neuron to discard factors that are not relevant but,
but simultaneously, recast these features into a map-
ping space so that the network can be performed to
produce more reliable cognition. Compared with other
EEG-based emotion recognition methods, the experi-
mental results show that this subnetwork structure boosts
nearly 5%–10% accuracy of the EEG-based emotion
recognition.

2) Similar to biological learning, our hierarchical learn-
ing method could use any type of features and provide
a parallel and unified learning mode for multimodal
psychophysiological signals. Experimental results show
that our method, with multimodal signals, could pro-
vide about 91.3% accuracy, which are superior to the
state-of-the-art approaches.

3) Effect of 12 channel DE features. Previous stud-
ies [2], [18], [19] indicate that 12 channel DE features

TABLE I
NOTATIONS TO BE USED IN THE PROPOSED METHOD

may obtain a promising result on EEG-based emotion
recognition. The experimental results of this paper are
consistent with the conclusion. Furthermore, we found
the DE features of eye movement also provide a better
performance than other features.

II. PRELIMINARIES AND SUBNETWORK NODES

A. Notations

All the notations are defined in Table I.

B. Subnetwork Nodes

Accumulated direct biological evidence supports the the-
ory that neuron activity in the mammal’s prefrontal cortex
is highly heterogeneous, and the combined features extracted
from mixed selectivity neurons may be central to complex
behavior and cognition. Motivated by this biological evidence
and the recent research developments [42]–[44], we believe
that a hidden node itself can be a subnetwork formed by
several nodes. In this sense, a single mapping layer can con-
tain multiple networks. In [45], we have prove that an SLFN
with subnetwork nodes are universal approximators, especially
when all the parameters of the networks are adjusted based on
invertible activation functions. For M arbitrary distinct samples
(x, y), where x ∈ Rn×M and y ∈ Rm×M . The outputs of an
SLFNs is

fn(x) =
L∑

i=1

βig(x,aaai, bi) =
L∑

i=1

βi · H. (1)
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Fig. 1. Difference and relationship among standard SLFN and our structure. (a) Standard SLFN structure. (b) SLFN with subnetwork nodes.

If g is invertible function, by the replacement of subnetwork
nodes into the SLFNs, the mathematically model of SLFNs
with subnetwork nodes is [45]

fL(x) =
L∑

i=1

βββ iu
−1· Hi

f

=
L∑

i=1

βββ iu
−1

(
g
(

âi
f · xj + b̂i

f

))
, âi

f ∈ Rn×m, b̂i
f ∈ R

=
L∑

i=1

βββ iu
−1

(
g
([

ai
f 1, . . . , ai

fd

]
· xj + b̂i

f

))

ai
f 1, . . . , ai

fd ∈ Rn. (2)

As seen from (1) and (2), we found that a subnetwork node âi
f ,

which can be formed by several hidden nodes [ai
f 1, . . . , ai

fd],
could be functional as a hidden layer in a standard SLFNs. In a
standard SLFNs, the dimensionality of H equals the number of
hidden node L. But in Fig. 1(b), the dimensionality of feature
data Hi

f follow the dimension of a subnetwork node, i.e., Hi
f ∈

Rd×n. Fig. 1 shows the architecture of the network.

III. HIERARCHICAL NETWORK WITH SUBNETWORK

NODES FOR EMOTION RECOGNITION

As mentioned before, EEG signals have low signal-to-noise
ratio, and are often mixed with much noise when collected.
The more challenging problem is that, unlike image or speech
signals, EEG signals are temporal asymmetry and nonstation-
ary. Different from other single-classifier-based identification
methods, here we study a more complex learning system for
EEG signals analysis. The proposed method is composed of
two parts: 1) local features extracted from mid-level layers and
2) feature level fusion and classification. The following section
elaborates the architecture and its learning stages. First, a two-
layer network with subnetwork nodes is carried out to extract
the local features from the input data. Then these extracted
features are fused together for the final classification. The
structure of the proposed method is shown in Fig. 2.

Note that each hidden layer is an independent module
that functions as a separated feature extractor. The proposed
network structure is shown in Fig. 2. Crucially, accumulated
biological evidence indicates that neuron activity in the cortex
is highly heterogeneous and disordered, and that the combined
features extracted from mixed selectivity neurons may be cen-
tral to complex behavior and cognition. Motivated by this
biological evidence, we believe the following. First, an artifi-
cial neuron, which we shall call subnetwork node [38], [44],
itself can be formed by several hidden nodes. Each subnetwork
neuron is able to increase or decrease the dimensionality from
the input data independently. Second, the outputs of each neu-
ron, like neural representations in the mammal cortex, should
be partial (not fully) connected with other neurons. Third,
the outputs from each subnetwork node can be considered
as specific subspace features. Useful features can be pro-
duced by recombining these subspace features with different
distributions. In detail, there are several differences between
our method and other multilayer network feature selection
methods.

1) Unlike current multilayer network architectures,
Fig. 2(a) shows that a subnetwork hidden node a1

f
and a1

n itself can be formed by hundreds of hidden
nodes [a1

f = (af 1, . . . , afd)]. Based on this architecture,
the outputs of each subnetwork can be considered
as subspace features. Furthermore, some multilayer
methods [46], [47] require subnetwork nodes in the
entrance feature layer but do not need them in the
output layer in order to let all the hidden nodes fully
connect. But we think that this unnaturally asymmetric
architecture actually limits the learning capability. Thus,
in the proposed method, subnetwork nodes are entirely
instead of traditional hidden nodes.

2) Different from the current network connection prin-
ciple, which states that all the hidden nodes should
be fully connected [see Fig. 1(b)], in our proposed
architecture, each subnetwork node is only connected
with its “tightly following” subnetwork. For example, in
Fig. 2(a), subnetwork node a1

f is only connected with a1
n.
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Fig. 2. Difference and relationship among a standard two-layer network and our method. (a) Two-layer network with subnetwork nodes. (b) Our EEG-based
learning framework.

In other words, subnetwork nodes with different subnet-
work index c cannot be connected together, i.e., ai

f and

aj
n cannot be connected together when i �= j.

3) Accumulated biological evidences show that “high-
dimensional representations of a neuron with mixed
selectivity allow a simple linear readout to generate a
huge number of potential responses. In contrast, neu-
ral representations based on highly specialized neurons
are low-dimensional.” This evidence is highly consistent
with the domain assumption in machine learning area
that useful feature data intrinsically exists in several sub-
spaces. Unlike current multilayer/auto-encoder methods
in which features extracted from the entire mid-layer,
we belief the neural representations (outputs from each
subnetwork node) should be mixed with diverse distribu-
tions/manners based on the above biological evidences.
In Fig. 2(b), we show that how are the subspace features
extracted and combined.

4) Unlike other hierarchical networks which include hun-
dreds of layer to generate deep features, the generic
features are obtained from two general layers, which
greatly reduce the network depth and computational
workloads. It should be note that there are several mil-
lion parameters in the first general layers, which is not a
small network. As seen in Fig. 2, the first general layers
include several two-layer networks (Part I). And each
subnetwork node [Fig. 1(b)] in the two-layer network
includes hundreds of hidden nodes.

5) The iterative methods used in DL suffer from con-
verging slowly, getting trapped in a local minimum,
and being sensitive to the learning rate setting. Unlike
backpropagation-based iterative methods, in this paper,
the Moore–Penrose generalized inverse is used for
parameter calculation. By doing so, each subnetwork
node in the system does not need to retrain iteratively
(see step 1–7), which also boost the learning speed.

A. Data Preprocessing

According to the feedback of the subjects, only the experi-
ments when the targeted emotions were evoked were selected
for further examination. Similar to [18], the raw EEG data
signals were visually checked by removing EMG and elec-
trooculography signals manually. To filter noises and artifacts,
the EEG signals are dealt with a bandpass filter between 0.3 to
50 Hz. After this, an EEG segment is extracted from the dura-
tion of each movie correspondingly. Each channel data (totally
62 channels) is then divided into the same-length epochs of 1 s.

According to the previous studies, DE has a promising
capability of recognition EEG patterns between low and high
frequency energy [19]. The DE calculation formula is

h(X) = −
∫

X
f (x) log( f (x))dx. (3)

If the time series X obeys the Gauss distribution N(μ, δ), the
DE features can be obtained by

h(X) = −
∫ +∞

−∞
1√(

2πδ2
)e

− (x−μ)2

2δ2 log

⎛

⎝ 1√(
2πδ2

)e
− (x−μ)2

2δ2

⎞

⎠dx

= 1

2
log

(
2πeδ2

)
. (4)

According to [18], DE features can be obtained in five
frequency bands (1–3 Hz, 4–7 Hz, 8–13 Hz, 14–30 Hz, and
31–50 Hz).

B. Local Features Extraction With Subnetwork Nodes

In this section, we train the two-layer network architecture
shown in Fig. 2(a) and (b) (Part I) to obtain subspace local
features.

Step 1: Given M arbitrary distinct training samples
{(xk, yk}M

k=1, xk ∈ Rn are sampled from a con-
tinuous system. The initial subnetwork node of
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the entrance layer are obtained using orthogonal
random

Hc
f = g

(
âc

f , b̂c
f , x

)
,
(

âc
f

)T · âc
f = I,

(
b̂c

f

)T · b̂c
f = 1

(5)

where âf ∈ Rd×n and b̂f ∈ R is the orthogonal
random weight and bias of the entrance mapping
layer. Hc

f is the cth subspace features. c represents
subnetwork node index and initial index c = 1.

Step 2: Given an invertible activation function g, obtain the
subnetwork node of the exit feature layer (âc

h, b̂c
h)

by

âc
h = g−1(un(y)) ·

(
Hc

f

)−1
, âc

h ∈ Rd×m

b̂c
h =

√
mse

(
âh ·Hc

f − g−1(un(y))
)

, b̂c
n ∈ R (6)

where H−1 = HT((C1/I) + HHT)−1; C1 > 0 is
a regularization value; un is a normalized function
un(y) : R → (0, 1]; g−1 and u−1

n represent their
reverse function.

Step 3: Update the output error ec as

ec = y − u−1
n g

(
Hc

f , âc
h, b̂c

h

)
. (7)

We can get error feedback data Pc = g−1(un(ec)) ·
(âc

h)
−1.

Step 4: Update the subnetwork node âc
f , b̂c

f in the entrance
layer

âc
f = g−1(uj(Pc−1)

) · x−1 , âc
f ∈ Rn×d

b̂c
f =

√
mse

(
âc

f · x − Pc−1

)
, b̂c

f ∈ R. (8)

Step 5: Obtain the cth subspace feature data

Hc
f = g

(
x, âc

f , b̂c
f

)
. (9)

Step 6: Set c = c+1, add a new subnetwork node âc
f , b̂c

f in
the feature mapping layer with orthogonal random
initialization (5).

Step 7: Repeat steps 2 to 6 L − 1 times, then obtain the L
subspace features {H1

f , . . . , HL
f }.

C. Features Fusion

To make synergistic use of the emotion recognition, fea-
tures extract from multiple modality (e.g., eye, EEG, skin,
etc.) are combined through early fusion. Schuller [48] and
Dong et al. [49] indicated that if the data contain corrected
information, early fusion is beneficial over later fusion by
a simple union of different features into one super-vector.
For example, there are two sets of subspace features which
have been extracted from two different networks. Here, we
redefine the features coming from network #1 as H1 =
{H1

1, H1
2, . . . , H1

c}, and those from network #2 as H2 =
{H2

1, H2
2, . . . , H2

c}. The combination features can be obtained
by early fusion

H1⊕2 =
[
H1

1, H1
2, . . . , H1

c, H2
1, H2

2, . . . , H2
c

]T
. (10)

Furthermore, motivated by anonymous reviewer, we intro-
ducemaxpooling into the proposed method. The past few
years have witnessed the bloom of convolutional NN
(CNN) [26]–[28]. In many well-known CNN models like
GoogLeNet [50], AlexNet [51], etc., maxpooling is widely
used for feature combination and dimension reduction.
Inspired by anonymous reviewer, here we introduce maxpool-
ing into our proposed method for feature fusion

H1⊕2 = max
(

H1, H2
)
. (11)

Furthermore, motivated by anoymous reviewer, we intro-
duce maxpooling into the proposed method. The past few
years have witnessed the bloom of CNN [26]–[28]. In many
well-known CNN models like GoogLeNet [50], AlexNet [51],
etc., maxpooling is widely used for feature combination and
dimension reduction. Inspired by anonymous reviewer, here
we introduce maxpooling into our proposed method for feature
fusion

H1⊕2 = max
(

H1, H2
)
. (12)

Given several features H1, . . . , Hc, K represents a combi-
nation operator, the combined features can be expressed as

H1⊕2 = K
(

H1, H2
)

H1⊕2⊕3 = K
(

K
(

H1, H2
)
, H3

)

...

H1⊕2⊕...⊕c = K
(
· · · K

(
K

(
H1, H2

)
, H3

)
. . .

)
. (13)

Fig. 3 indicates the framework map representations from
input EEG data to c low-dimensional subspace features, and
to a high-level image combined features, used for categoriza-
tion. The image representation begins with EEG features from
which local descriptors, such as DE or other EEG features, are
extracted to create a powerful representation. Current accu-
mulated biological evidence [43] shows that the investigations
of mixed neurons have started to point out their importance,
both for the implementation of brain functions and for coding.
The brain needs subspace features produced by a neuron to
remove relevant factors, but, meanwhile, to recast the subspace
features into a mapping space in order to generate complex
and stable behavior. Fig. 3 shows that the learning structure
and dimensionality correspond with to the major principals of
the biological evidence mentioned previously. In the hierarchi-
cal architecture, the subspace feature dimensionality extracted
from a neuron decreases progressively. At the combination
level, the training samples are put through an early fusion
method for a final classifier. The graph (Fig. 3) illustrates the
trends of the dimensionality of the representation through the
various processes in the framework.

Powered by our subnetwork nodes, any type of features
can be directly extracted and combined. Our method, with its
multiple features, can be summarized in Fig. 5 in the following
section.
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Fig. 3. Proposed learning system from EEG data to low-dimensional features, subspace low-dimensional features, and to a mid-level dimensional features,
which is used for emotion recognition.

D. Classification for Emotion Recognition

The feature extraction and fusion steps descried above
contain optimized features which wait for classification.
In this section, we focus on classifying the subspace fea-
tures extracted from the mid-layer NN. As shown in Fig. 2(b)
(Part II), a classifier with subnetwork nodes [45] is used for
the final classification.

Theorem 1 [45]: Given N arbitrary distinct samples
{(xi, ti)

N
i=1}, xi ∈ Rn, ti ∈ Rm, a sigmoid or sine activation

function g, and then for any continuous desired outputs t, we
have limc→+∞ ‖t − (u−1(g(â1

p · x + b̂1
p)) ·βββ1

p +· · ·+ u−1(g(âc
p ·

x + b̂c
p)) · βββc

p)‖ = 0 holds with probability one if

âc
p = g−1(u(en−1)) · xT

(
C2

I
+ xxT

)−1

, âc
p ∈ Rn×m

b̂c
p = sum

(
âc

n · x − g−1(u(en−1))
)
/N, b̂c

p ∈ R (14)

g−1(·)
{

arcsin(·) if g(·) = sin(·)
− log

(
1
(·) − 1

)
if g(·) = 1/

(
1 + e−(·))

βββc
p =

〈
en−1, u−1

(
h
(

âc
n · x + b̂c

n

))〉

∥∥∥u−1
(

h
(

âc
n · x + b̂c

n

))∥∥∥
2

(15)

where xT((C2/I) + xxT)−1 = x−1 is the Moore–Penrose gen-
eralization inverse of the training samples; g−1 represents its
inverse function; u is a normalized function u(x) : R → (0, 1]
which processes input x and target data by mapping it from
its original range to the range (0, 1]; u−1 is a inverse function
of u, which processes target data and input x by mapping it
from the range (0, 1] to its original range.1

Furthermore, other classifiers, such as SVM, can be used
in the method as well. The proposed algorithm could be
summarized in the following Algorithms 1 and 2.

IV. PERFORMANCE VERIFICATION

In this section, we test our method on two different EEG
datasets.2 The experiments are conducted in MATLAB 2014
with 32 GB of memory. In the following section, we conduct

1In MATLAB environment, we can use MATLAB commend mapminmax
to utilize u and u−1.

2http://bcmi.sjtu.edu.cn/~seed

Algorithm 1 Proposed Method for Single Modality

Given a large training dataset {(xk, yk}M
k=1, xk ∈ Rn, an

invertible activation function g, number of hidden nodes
in each subnetwork node d (d equals number of targeted
dimensionality of the subspace features), regularization
coefficient C, and the number of subnetwork nodes L:
Part I: Subspace feature extraction:
Step 1: Set c = 1, randomly generate the subnetwork node
for entrance feature layer by equation (5).
while c < L do

Step 2: Calculate the subnetwork node for exit feature
layer by equation (6)
Step 3: Calculate the output error and error feedback data
by equation (7)
Step 4: Update the subnetwork node âc

f , b̂c
f in the entrance

layer by equation (8)
Step 5: obtain the cth subspace feature data by
equation (9)
Step 6: Set c = c + 1, add a new subnetwork node âc

f , b̂c
f

in the feature mapping layer with orthogonal random
initialization [equation (5)].
Step 7: Repeat steps 2 to 6 L − 1 times, obtain the L
subspace features {H1

f , . . . , HL
f }.

end while
Obtain c subspace features H = {H1

f , . . . , HL
f }.

Part II: Pattern learning: Given fusion feature H and
corresponding desire output t, set c = 1, e1 = t.
while c < L do

Step 1: Calculate the cth subnetwork hidden node
(âc

p, b̂c
p), and output weights βββc

p by equation (14) and (15).

Step 2: Calculate ec = ec−1 − βββc
p · u−1g(âc

p, b̂c
p, x).

end while

comparative experiments of our method with six methods
for EEG-based emotion recognition. The six classification
methods are as follows.

1) DBN [32].
2) Extreme learning machine (ELM) [52].
3) SVM [53].
4) Hierarchical ELM (H-ELM) [47].
5) k nearest neighbor (KNN).
6) Linear regression (LR).

http://bcmi.sjtu.edu.cn/~seed
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Algorithm 2 Proposed Method for Multiple Modality
Given N single features groups (Q1, . . . , QN) extracted from
the same dataset Q1 = {(x1

k, y1
k)}M

k=1, x1
k ∈ Rn1 , . . . , QN =

{(xN
k , yN

k )}M
k=1, xN

k ∈ RnN (the dimensionality of each
features group do not need to be equal, which means
n1, . . . , nN do not need to be equal), an invertible activa-
tion function g, number of hidden nodes in each subnetwork
node d, regularization coefficient C, and the number of
subnetwork nodes c. Set c = 1.
Layer 1: Subspace features extraction
for c < N do

Obtain the L subspace features based on Algorithm 1.Part
I by using group data Qc.

end for
obtain N × L subspace features {H1

f , . . . , HN×L
f }.

Layer 2: Subspace features combination
Obtain combination features H as:

H = H1⊕2⊕···⊕(N) (16)

Layer 3: Obtain simulated outputs based on Algorithm 1
Part II.

Fig. 4. Details of the experiment. (a) Details of film clips used in the
experiment. (b) Experiment scene.

Furthermore, in order to compare the performance for mul-
tisource fusion, some fusion methods are set as the rival
methods.

1) Decision Level Fusion: Maximal rule and sum rule [2].
2) Feature Level Fusion: Fuzzy integral fusion [54].
The codes used for DBN and H-ELM are downloaded from

the Internet. The parameters in any learning method can be
tuned for each experiment.

A. Data Processing and Experimental Environment Setting

Previous studies [19], [40] have already tested the reliability
of film clips [see Fig. 4] to elicit emotions. In this paper, we

use the same datasets released by [2] and [18]. There are in
total 15 clips in one experiment, and each of them lasts for
about 4 min. There are three categories of emotion (positive,
neutral, and negative) evaluated, where each emotion has five
corresponding emotional clips.

The first EEG dataset (SEED) is released by [18].
Fourteen subjects (seven males and seven females), with self-
reported normal or corrected-to-normal vision and normal
hearing, participated in the experiments. Fig. 6 shows the
experiment scene. Each subject participated in the exper-
iment three times at an interval of one week or longer.
There is total of three sessions (3 × 14 experiments) evalu-
ated here. To further compare the generalization performance,
we compute differential asymmetry (DASM) and ratio-
nal asymmetry (RASM) features [18] as differences and
ratios between the DE features. DASM, RASM, and
DCAU features are, respectively, shown in the following
Table II.

Different from the first EEG dataset, the second one has
EEG data with eye movement information [2]. Fifteen video
clips, same in SEED dataset, are used for each experiment.
Nine healthy, right-handed subjects (five females and four
males) participated in the experiment. Each of them took part
in the experiment three times at an interval of about one week,
and there is a total of 27 experiments evaluated here. All the
subjects are undergraduate or graduate students, aged between
20 and 24 years, with normal or corrected-to-normal vision,
and none of them have any history of mental disease or drug
use. Eye movement signals are recorded using sensoMotoric
instruments eye tracking glasses. EEG signals are recorded
with a 1000 Hz sampling rate using ESI neuroscan system. In
the experiment, we use DE eye movement features which are
shown in the following Table III.

In this section, we systematically estimate the generaliza-
tion performance of six classifiers: 1) LR; 2) kNN; 3) SVM;
4) ELM; 5) H-ELM DBNs; and 6) the proposed method.
These classifiers utilize the five aforementioned features as
inputs. Similar to [18], we use the same range of parame-
ters: For kNN, we use k = 5 for baseline. For LR, we use
L2-regularized LR and adjust the regularization parameter in
[1.5 : 0.5 : 10]. For SVM and ELM, optimal parameters are
selected from the space [2−10, 2−9, . . . , 210] in each experi-
ment. For H-ELM, 300, 300, and 1000 hidden neurons (N1 =
N2 = 300, N3 = 1000) are used in the first, second, and third
layer. For DBN, we use two hidden layers with epoch 1000,
the parameter batch size equals 201, the parameter momentum,
unsupervised, and supervised learning rate equals to 0.1, 0.5,
and 0.6, respectively. For each experiment, the optimal number
of neurons at the first and the second layer of DBN is selected
from the ranges of [200 : 500] and [150 : 500], respectively.
For our method, regularization parameter C2 is selected from
the space [2−10, 2−9, . . . , 210] for each experiment, in order to
be consistent with ELM/SVM, while parameter C1 is selected
from the same space [2−10, 2−9, . . . , 210] for each session
(i.e., value of C1 should be the same among all fifteen experi-
ments). The fusion strategy in our method include early fusion
and maxpooling. Table IV shows the detailed experimental
setting.
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TABLE II
DETAILED INFORMATION OF SEED DATASET

TABLE III
DETAILED INFORMATION OF EYE MOVEMENT DATA

TABLE IV
NETWORK CONFIGURATION

TABLE V
MEAN ACCURACY OF EEG FEATURES FROM FULL CHANNELS

B. Subject Dependent Test

Subject dependent is to predict the same person’s emotion
based on his/her previous responses from different stimulus.
The training and the testing samples come from different ses-
sions of the same experiment. In this experiment, the training
samples contains the first nine sessions, while the test data
includes the later six sessions (totally 15 sessions). In order
to be consistent with the previous studies, we only utilize the
first and the third session (2×14 experiments) from the SEED
dataset.

To show the profit of our method for emotion recognition
performance, comparison tests have been carried out about
the accuracy of the proposed method. Table V displays the
recognition accuracy comparison of DBN, ELM, KNN, LR,

TABLE VI
MEAN ACCURACY OF EEG FEATURES FROM 12 CHANNELS

(a)

(b)

Fig. 5. (a) Comparison experiment results with 62 selected channels.
(b) Profiles of full 62 selected channels.

SVM, and the proposed method. As seen from the tables, the
profit of our approach for recognition accuracy is obvious.
Furthermore, Figs. 5 and 6 show the comparison performance
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(a)

(b)

Fig. 6. (a) Comparison experiment results with 12 selected channels.
(b) Profiles of 12 selected channels: FT7, FT8, T7, T8, C5, C6, TP7, TP8,
CP5, CP6, P7, and P8.

by using different single features. The experimental results
indicate that the proposed algorithm consistently outperforms
all the compared algorithms on the EEG-based emotion recog-
nition. In addition, the experimental results are consistent with
the previous works [18] and [19], which show that the DE
feature almost provide the best performance of EEG-based
recognition.

Although [18] mentioned that with 12 selective chan-
nels, SVM obtains a little bit higher accuracy than that of
DBN/SVM with original full 62 channels, where the remain-
ing 50 channels are not “uninformative.” These statements
are consistent with our experimental results as well. As seen
from Tables V and VI, the performance of full 62 channels
obtained by our method is approaching nearly 93%, higher
than the performance of 12 channels profile (91.5%). As per
our knowledge, [18] is the current state-of-the-art results on
the dataset. From these figures, it can be deduced that our
approach outperforms the other current leading methods.

C. Cross Session Test

Cross session is to predict the same person’s emotion at
a different time when the same stimuli is received, i.e., sta-
bility of emotion recognition model over time. In this test,
the first two sessions (two different days) from the same sub-
jects are used as training data, and then, the remaining one
session is used for test data. For H-ELM, regularization param-
eter C2 is selected from the space [10−10, 2−9, . . . , 1010]
for each experiment, while parameter S is selected from the

Fig. 7. Comparison experiment results of subject dependent test.

TABLE VII
MEAN ACCURACY OF DIFFERENT KINDS OF FEATURES

TABLE VIII
PERFORMANCE COMPARISON OF ONE CLASSIFIER FOR ALL USERS TEST

[0.1, 0.2, . . . , 1] for a session. For ELM, SVM, DBN, and our
proposed method, the way of parameters selection is the same
as the subject dependent test.

To show the profit of our method on cross session test,
the results obtained by ELM, H-ELM, SVM, DBN, and ours
are showed in this section. Table VII shows the performance
evaluation of the proposed method and other classifiers. As
seen from Table VIII and Fig. 7, the profit of the proposed
method for testing accuracy is obvious. It should be noticed
that if ELM replaces our method in the top layer, the best
performance 82% will be achieved.

D. One Classifier for All Users Test

Different from above subject dependent and cross session
tests (one network per user), we try to predict emotions by
one network, i.e., one trained network for all users’ emo-
tion prediction. Different from subject dependent test, in this
test, all the training data from the first nine clips are used
for training a network, while the test data from the later six
clips are used for performance evaluation. In detail, we use
2 × 15 × 9 data groups for one network training, and utilize
1 × 15 × 6 data groups for testing purpose. Thus, the total
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Fig. 8. Comparison experiment results of one classifier for all users test.

Fig. 9. Comparison experiment results (one classifier for all users with
changed times, persons, and simulations.

sample-numbers of EEG features for the training and testing
data is 56 280 [2010 × 2(times) × 14(persons)], and 19 376
[1384 × 1 × 14(persons)].

Fig. 8 and Table V display the performance comparison
of H-ELM, ELM, and the proposed method. Based on the
pervious experimental results (Figs. 5–7), the generalization
performance of SVM and LR are obviously weaker than ELM-
based classifiers. Thus, SVM and LR are not included in this
challenge test. As seen from Table V and Fig. 8, the experi-
mental performance of our method consistently better than all
the compared algorithms on all the types of features.

E. One Classifier for Emotion Recognition With Changed
Times, Persons, and Simulations

Motivated by anonymous reviewers that the neuron activi-
ties are heterogeneous and nonstationary over time and space,
here we try to highlight advantages of our method over
other classifiers by a more tough test. Actually in SEED
dataset, three factors including persons, measurement times,
and stimulations are considered. We want to test the emo-
tion recognition capability under the condition that all the
three factors are changed. Thus, this test can be considered
as a combination of all the above-mentioned tests. As we
have total 14 persons, 15 clips/sessions, and three sessions
in SEED dataset, we select training data from the first nine
persons, the first nine clips/simulations, and the first two ses-
sions, i.e., we have 9 × 9 × 2 experiments. So the total
sample-numbers of EEG features for the training and test-
ing data is 36 180 [2010 × 2[times) × 9(persons)], and 6920
[1384 × 1(times) × 5(persons)].

TABLE IX
MEAN ACCURACY FOR DIFFERENT KINDS OF FEATURES

(MEAN: AVERAGE TESTING ACCURACY)

(a)

(b)

Fig. 10. Performance difference between single modality and multiple
modality. (a) Performance of each single modality with different methods.
(b) Comparison results with different fusion strategies.

Fig. 9 and Table IX display the performance comparison of
ELM, and the proposed method. Based on the pervious exper-
imental results (Figs. 5–8), the generalization performance
of SVM, H-ELM, and LR are obviously weaker than ELM
classifiers. Thus SVM, H-ELM, and LR are not included in
this challenge test. Different from the previous experiments
in which our method provides 2%–3% performance boost,
Fig. 9 and Table VI indicate that compared to the same type
of features, the accuracy could be boosted to 14%.

F. EEG Data With Eye Movements

Eye movement data contains heterogeneous information,
such as fixation details, dispersion information, etc. The
second dataset used in this paper contains both EEG and eye-
tracking data [2]. This dataset will be freely available to the
academic community as a subset of the SEED dataset. As men-
tioned before, we extract DE features from EEG and EYE
movements, respectively. For DE EEG features, all the five
frequency bands are used for each channel. For eye move-
ments, we also extract DE features from five kinds of eye
movement parameters: 1) pupil diameter; 2) dispersion; 3) fix-
ation duration; 4) blink duration; and 5) saccade. We use both
linear dynamic system and moving average with the window
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of 20s to filter out the unrelated features for emotion recogni-
tion. Based on Table III, the total dimension of eye movement
DE features for a sample is 64 [(4 + 8 + 4 + 8 + 8) × 2].

Then, we obtain the multiple modality DE features by com-
bining eye movement signals and EEG data. Thus, we have
two single modality DE features and one multiple modality
DE features. In other words, we have the 12 channel EEG-
based DE features, the 12 channel EYE-based DE features,
and the DE features combined from EYE and EEG data.
Fig. 10 shows the performance of single modality and multiple
modality. As seen from Fig. 10(a), our learning method could
provide a comparable or better performance than other classi-
fiers. More importantly, in Fig. 10(b) the results obtained by
multiple models with fusion methods outperforms the results
of single modality, which shows that our method can extract
more effective features from multiple modalities to enhance
the emotion recognition accuracy. According to Fig. 10, our
learning model with four subnetwork nodes achieves the best
performance with an average accuracy of 91.36%, which is
nearly 5%–10% boosted than single modality. Compared to the
same type of fusion strategy-feature level fusion, our model
could obtain nearly 8% boost.

V. CONCLUSION

This paper presents a hierarchical network scheme with
subnetwork nodes for EEG-based emotion recognition. The
problem is approached from two main directions: 1) features
extracted from hundreds of network layers, rather than a single
multilayer network and 2) multiple modality features com-
bined by early fusion. The experimental results show that our
method functions as a local feature extractor and a classifier,
and it performs competitively or better than other classification
methods.
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