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Abstract— People generally agree that emotion processing
differs between male and female. However, current hypothesis
of sex differences needs more objective evidence and quantita-
tive assessment. In this paper, we investigate the sex difference
in classifying five emotions from eletroencephalograph and eye
movement signals. We adopt two neural-network-based clas-
sifiers to objectively investigate sex differences from different
perspectives. From experimental results, we find the following
three observations: (1) a general higher accuracy of same-sex
strategy suggests sex-specific factors have influence on emotion
classification; (2) both blink duration and frequency differ
from female to male and they are negatively correlated under
different emotional states; and (3) there are larger differences
of brain activities in the Theta, Alpha, and Beta bands between
male and female for disgust, sad, and neutral emotions.

I. INTRODUCTION

Sex differences in emotion have long been well noted.
Taking major depressive disorder as an example, as a preva-
lent malady closely related to emotions, there are well-
documented sex differences in the reports of both frequency
and pervasiveness of depression [1] [2]. However, current
theories of sex differences in emotion are lack of quantitative
assessment and largely based on subjective measures such
as interviewing and self report [3]. While the advance in
machine learning leads to great progresses in developing
emotion recognition systems, we know very little yet about
the sex difference in emotion recognition.

Given that affective brain-computer interfaces develop
rapidly, the existing studies have conducted to examine sex
stereotypes. Ruben et al. used fMRI to study cognitive
processing differences in verbal and spatial tasks, reaching
the conclusion that female has an advantage in these tasks
[4]. Jausovec et al. measured EEG in resting activity and
found out men and women differ in coding of information
[5]. Yan et al. investigated key brain areas in recognition
of three emotions (happy, neutral, and sad) through EEG
and revealed that sex-based lateralization pertains in the
human brain [6]. Whittle et al. have used neuroimaging and
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figured out that the biggest difference between female and
male occurs in negative emotional states [7]. Nevertheless,
not many studies using neuroimaging or electrophysiological
monitoring method are concerned with specific negative
emotions such as fear and disgust, which depression is
closely related to. Therefore, we study five emotions in this
paper, including three negative emotions in addition to happy
and neutral. Our major goal is to examine sex differences
through the sex-based classification of five emotional states
as well as to compare brain regions and eye movement
features in a more interpretable and comprehensive way.

Our previous study has shown that the combination of
EEG and eye movement signals can achieve greater accuracy
in classifying three emotional states (happy, neutral, and sad)
compared to the single modality [8], which indicates that
multiple modalities could enhance the robustness of emotion
recognition. In this paper, we utilize both the EEG and eye
movement signals to investigate sex differences in classifying
five emotions: disgust, fear, sad, neutral, and happy. Deep
Canonical Correlation Analysis (DCCA) [9] and Bimodal-
Long Short-Term Memory (LSTM) [10] are introduced to
combine two modalities as classifiers.

II. EXPERIMENT DESIGN

A. Data Collection

There are totally 12 subjects (6 females and 6 males) in our
experiments. All subjects are volunteered college students
between the age of 18 and 28, and right-handed in order
to eliminate the handedness influence. All subjects are fully
informed of the procedures before taking the experiments
and required to sign a consent form after the instruction.
The study is approved by the local ethics and the dataset
utilized in this paper was developed in our previous study
[11].

B. Device Setups

The electrode cap from Neuroscan embedded 62 channels
as well as SMI EGT eye tracking glasses are utilized to
collect the EEG and eye movement signals, respectively. 30
minutes are taken to inject EEG recording gel into each
electrode of the cap and set up the tracking glasses. After
putting on the devices, recording system would be initialized
and starts to record EEG and eye movement data continually.

C. Stimuli

During the experiment, movie clips of 2 to 4 minutes
duration are randomly shown to evoke the five emotions.
Before each clip begins, information about which emotion
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the following clip intends to elicit is presented. Each subject
is required to participate in the experiment 3 times with
an interval of at least three days in order to mitigate the
individual disturbance and each experiment contains 15 clips.
The subject is given a rating form to report whether the
clip can evoke the required emotion. After evaluating the
feedbacks from the participants, we could indicate whether
these movie clips are provocative and rearrange the clips in
the following experiments.

III. METHODOLOGY

A. EEG and Eye Movement Features

For EEG signals, we extract the differential entropy (DE)
feature [12], which is proved to be more stable in distin-
guishing negative emotions from the positive ones [13]. The
EEG signals are firstly downsampled to 200 Hz, and then
transformed to frequency domain using STFT (short-time
Fourier transform), which is defined as:

STFT{x[n]}(m,ω) ≡ X(m,ω)

=

N−1∑
n=0

x[n]w[n−m]e−jωn,
(1)

where x[n] denotes the EEG signals, w[n] is the Hanning
window, X(m,ω) denotes the fast Fourier transform algo-
rithm, and n = 0, 1, 2, ..., N − 1 is the sampling number.
The squared value of STFT divided by bandwidth yields the
power spectral density (PSD) of the EEG signals. The EEG
data are then filtered into 5 frequency bands (Delta: 1-4 Hz,
Theta: 4-8 Hz, Alpha: 8-14 Hz, Beta: 14-31 Hz, and Gamma:
31-50 Hz). For each frequency band, we calculate the DE
feature as the logarithm of PSD [6].

For eye movement signals, we extract 12-dimension DE
features for pupil diameters in addition to the statistical fea-
tures of dispersion, fixation duration, blink duration, saccade,
and 9 event statistics [8].

We preprocessed the signal with baseline correction and a
bandpass filter of 1-50HZ. Both features are smoothed using
the linear dynamic system (LDS). The feature selection ap-
proach, minimum redundancy maximum relevance (mRMR),
is introduced to select emotion-related EEG features. Multi-
ple models are introduced to ensure universality and stability
of the result. We adopt Long Short-Term Memory (LSTM)
[10] and Deep Canonical Correlation Analysis (DCCA).

B. Long Short-Term Memory

LSTM network is a recurrent neural network with LSTM
blocks capable of taking temporal information, which
achieved competitive performance in classifying emotions
[15].

In LSTM model, complicated resulting units called mem-
ory cell and gate units including input gate, forget gate and
output gate are introduced to preclude perturbation [10]. Gate
units command the error flow for memorizing, forgetting and
overriding the information during update, which precludes
input as well as output weight conflicts and also circumvents
other gates to be perturbed. By cutting back the gradient

problem, LSTM network can minimize learning time of
establishing bridges, whose time complexity is only O(1)
per step [10].

For i-th time step, states of cells ci acquire input from
the previous step’s output outi−1 and the input ini of the
current time step. We have

ci = ci−1fgi + igiei (2)

oi = S(Wo[outi−1, ini] + bo) (3)

outi = oitanh(ci) (4)

where
fgi = S(Wf [outi−1, ini] + bo)

igi = S(Wi[outi−1, ini] + bi)

ei = tanh(Wg[outi−1, ini] + bg)

in which fg and ig denote forget gate and input gate,
respectively, S denotes sigmoid function, W denotes weight
matrices, gi denotes the i-th step’s candidates of cell states
and b denotes the bias. EEG and eye movement signals
are encoded by LSTM network, and linear support vector
machines (SVM) is applied in classification layer.

C. Deep Canonical Correlation Analysis

The DCCA model can establish a strong coordination
between modalities on account of deep learning, which is
favorable for emotion classification task [16].

The procedures of DCCA can be described as follows.
Firstly, EEG and eye movement features are transformed
nonlinearly in neural networks. Then features are calculated
based on the canonical correlation analysis. Assuming the
output features of nonlinear transformation are A1 and A2,
the correlated result can be defined as:

corr(A1, A2) = corr(f1(X1), f2(X2))

= ||S||tr = tr(S′S)1/2,
(5)

where:

S = (
1

m− 1
Ā1

¯A21′ + r1I)−1/2
1

m− 1
Ā1Ā′2

(
1

m− 1
Ā2Ā′2 + r2I)−1/2,

Ā1 = A1 −
1

m
A1I, Ā1 = A1 −

1

m
A1I,

Ā1 and Ā2 denote the centered output, and r1 and r2 are
the regularization constants. When updating the weight, the
gradients are also calculated. After the transformed features
are fused, SVM is utilized as the classifier.

IV. EXPERIMENT AND RESULT

A. Dataset Division

In our dataset division, for each subject, the rest subjects’
data are divided into same-sex dataset and cross-sex dataset
according to their sex. We utilizes the single subject’s data
as test data.

We use ssi and csi to represent the same-sex dataset and
the cross-sex dataset, respectively, and si(i = 1, 2.....12)
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(a) using LSTM

(b) using DCCA

Fig. 1. The same sex and cross sex accuracies using (a) LSTM and (b)
DCCA of 6 male subjects, 6 female subjects, and the average of female,
male and all subjects, respectively.

denotes a subject from 6 male subjects and 6 female subjects.
Take male subject as example. In same-sex experiment, each
male data si(i = 1, 2, ..., 6) is taken as test set, and training
set ssmi will be

⋃
j 6=i sj(j = 1, 2, ..., 6). This procedure is

repeated among all male subjects. In cross-sex experiment,
the test set is same while the training set csmi will be⋃
sj(j = 7, 8, ..., 12). We obtain the same-sex accuracy

when models are trained on same-sex dataset ssi, while the
cross-sex accuracy is obtained when models are trained on
cross-sex dataset csi.

B. Sex Differences in Classification

The accuracy of LSTM model is 43.05% (SD = 6.61%)
for same sex and 37.29% (SD = 7.84%) for cross sex and
the accuracy of DCCA model is 46.89% (SD = 5.34%) for
same sex and 36.48% (SD = 3.78%) for cross sex. A higher
overall accuracy is achieved by DCCA, which correlates to
previous study on non-related to sex [9], suggesting that
DCCA’s competitiveness is consistent in sex-based study. To
specify the overall difference between cross sex and same
sex accuracies, two types of accuracies from each subject
and each model are illustrated in Fig. 1.

Though the accuracy is not competitive, it’s still higher
than random guesses (20%), which could illustrate sex dif-
ference. The performance gap between same sex and cross
sex indicates that there exist sex differences for EEG and eye
movements. All subjects display higher same sex accuracy
in DCCA. So do 9 out of 12 in LSTM. It is to say that
models without considering sex differences perform worse,
and using same sex strategy could enhance the classification
accuracy. It is also consistent with the finding that people in

(a) blink duration

(b) blink frequency

Fig. 2. Boxplots of (a) blink duration and (b) blink frequency for each
sex in five emotional states.

different sex share far less unified features in neuroimaging
[3], which could be expanded into EEG and eye movement
signals, suggesting that sex-based factors should be taken
into consideration.

We also switch the training set and test set of our current
strategy, taking one subject data as test set to validate if our
strategy is more dependable, which acquires 32.05% (SD =
4.06%) in same sex and 30.34% (SD = 4.46%) in cross sex
using LSTM. The result still correlates to the former accu-
racy’s conclusion, but fails to achieve a competitive accuracy.
Moreover, difference in emotional states and neural patterns
are opaque through classification due to the fusing of features
and qualified difference in accuracy among emotions. In
order to give a deeper insight of how sexes differ in EEG
and eye movements, specific patterns are compared in the
following section.

C. Sex Differences in Eye and Neural Patterns

The momentary tension, i.e. anxiety level, is related to
the human eyelid dynamics [17]. In order to identify how
two sexes differ, we chose blink frequency (BF) and blink
duration (BD). BF is founded to be effective in identifying
cognitive processing that varies in emotional stimuli [17],
which is expected to correlate with the tension level and
could be crucial for classifying the negative emotions. BD
can reveal the alertness of seeing unexpected things [18].

To study sex’s statistical significance as a factor, one-
way analysis of variance is conducted. For BF, F − value
is 37.57 and p is 1.44 × 10−9 and for BD, F − value is
7.20 and p is 7.45 × 10−3. Both p < 0.01 indicates sex’s
influence is significant. The average of BF over five states
is 0.26 (SD = 0.15) for male and 0.37 (SD = 0.27) for
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female in count per second while male has an average BD of
395.88 (SD = 45.30) and female’s is 385.19 (SD = 55.07)
in millisecond. As the boxplots presented in Fig. 2, difference
in BF is founded, in which average BF of female under five
states are all higher than male’s average BF. The negative
correlation between BF and BD exists. Female has a shorter
average BD as well as a higher average BF in all states and
tends to be more fluctuating among emotions.

Disgust

Fear

Sad

Neutral

Delta

Happy

Theta Alpha Beta Gamma

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Fig. 3. The difference between the average normalized DE features of male
and female from each emotion in five frequency bandwidths with contour
lines.

The brain mapping shown in Fig. 3 can give direct insight
to how neural patterns differentiate in frequency bands and
emotional states. The brain topography shows that male
tends to be more activated under disgust and sad states
in Theta, Alpha and Beta bands. In Delta and Gamma
bands, differences are invariably subtle. In detail, the frontal
temporal lobe of male activates stronger than female under
disgust state in Theta, Alpha and Beta band. Under sad
state, differences are more significant especially in Alpha
band, in which male’s majority of brain area is far more
activated while in the remain area, female’s activity shows
to be stronger possibly resulting from the divided approach
of emotional process. Besides, the frontal lobe of male reacts
more intense in theta band under sad and disgust states, and
in alpha band under the disgust, sad and neutral, suggesting
that a tendency to utilize frontal lobe in emotion processing
exists in male under disgust and sad states. Though male
performs mainly more intense brain activity under disgust
and sad states, female’s brain activation under neutral state
outweighs male’s.

V. CONCLUSION

In this paper, we have investigated sex differences
through EEG and eye movement signals utilizing DCCA
and Bimodal-LSTM model. Experimental results reveal that
same-sex classification could acquire higher accuracy and the

strategy of data division influences the accuracy. Moreover,
the differences are proved existent not only in classification,
but also in EEG and eye movement patterns. Significant
sex differences in cerebral activity especially in sad emotion
and sex differencesx in blink duration are found. Although
happy and fear emotions seem to be more similar for male
and female in present study, it could be resulted from
other factors requiring further study. Present results suggest
that sex-specific classification can perform better accuracy
and sex-based factors should be taken into consideration in
emotion classification.
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