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Abstract—Emotion recognition under sleep deprivation is in-
structive for the study of mental disorders such as major depres-
sive disorder. Previous studies on emotion recognition under sleep
deprivation have been mainly based on psychological research
techniques. In this paper, we introduce a multilayer weight-
sharing multimodal residual LSTM network for emotion recog-
nition under sleep deprivation. The advantage of our proposed
method is that it allows for the combination of three different
features: the electroencephalography (EEG) single-channel dif-
ferential entropy (DE) features, EEG functional strength features
with topological correlation connectivity, and eye movement
features. The experiments under the conditions of sleep depri-
vation, sleep recovery and baseline are designed and conducted.
The experimental results demonstrate that the proposed method
significantly enhances the performance compared with the simple
concatenation of the features of different modalities, and the
best mean accuracies of 86.86% and 82.03% are achieved for
four emotions (happiness, sadness, fear, and neutral) in subject-
dependent and cross-subject emotion recognition tasks under
30 hours of sleep deprivation, respectively. The classification
accuracy of the happiness emotion is obviously impaired under
sleep deprivation, indicating that sleep deprivation impairs the
stimulation of the happiness emotion, and one night of sleep
recovery can reactivate the elicitation of the happiness emotion
to the baseline level. Furthermore, we study the brain neural
patterns of the four emotional states. The prefrontal area becomes
less activated for the happiness emotion and sadness emotion
in the gamma band under sleep deprivation, while the neural
pattern of the fear emotion is highly robust with respect to sleep
deprivation.

Index Terms—emotion recognition, sleep deprivation, long
short-term memory network, electroencephalography (EEG)

I. INTRODUCTION

Emotion recognition under sleep deprivation is a particularly
interesting field of research, because almost all psychiatric
and neurological mood disorders co-occur with sleep abnor-
malities. Subjective self-reports of associated irritability and
behavioral volatility due to sleep deprivation are available in
the literature [1]. This association indicates a potential inti-
mate interdependence between sleep conditions and emotional
functioning. An emerging consensus suggests that sufficient
sleep plays a vital role in the recalibration of the emotional
processing of the brain [2], while sleep deprivation reduces
the capacities of emotional regulation and leads to the loss of
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perceptual sensitivity of critical emotional information about
the external environment and the internal milieu [3].

The majority of studies on emotion recognition under
sleep deprivation have been based on psychological research
techniques, including subjective approaches and objective ap-
proaches. Subject rating scales often utilize a sleep restriction
paradigm with questionnaire emotion scales [4], in which
the questionnaires require the participants to self-evaluate the
elicitation level of certain types of emotions. However, these
subjective approaches are unable to deal with the individual
evaluation scaling differences across participants and the gap
between the ground-truth emotional elicitation level and the
self-evaluated emotional elicitation level. Using approaches
that objectively evaluate the performance of the participants
on emotion recognition with sleep restriction, several studies
have investigated the effects of sleep deprivation on emotional
processing. Emotional facial expression rating is a commonly
used objective task. Pallesen et al. [5] demonstrated that the
accuracy and the speed of the rating of emotional facial
expressions deteriorate simultaneously following one night
of sleep deprivation. Wagner et al. [6] reported that sleep
significantly improves the accuracy of recognizing emotional
facial expressions.

Emotion recognition under sleep deprivation has also been
investigated at the physiological level. The functional MRI
(fMRI) method has been often applied to study the internal
emotional states. Yoo et al. [7] suggested that sleep deprivation
can result in a weakening of the capacity of higher-order brain
areas to regularly control the primitive threat detection systems
and emotional reactivity systems. Eye movements have also
been employed to study the external subconscious behaviors
of emotion recognition under sleep deprivation. Franzen et
al. [8] demonstrated that the pupillary responses to negative
emotional images are more significant compared to the positive
or neutral emotional images in sleep-deprived participants.

Since emotions are complex psychophysiological processes
that are associated with internal emotional states and external
subconscious behaviors, it is essential to take advantage of
the intramodality and intermodality correlations that contain
different aspects of information underlying different types of
emotions. The integration of different modalities with fusion
technologies has been widely applied for multimodal emotion
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recognition. The combination of auditory and visual modalities
[9]. Other studies applying the integration of emotion-related
physiological modalities, e.g., EEG and eye movements, that
correspond to the internal and external physiological represen-
tation of emotion recognition, respectively, has been reported
to outperform the former method in emotion recognition [10]
[11].

To effectively extract temporal information from the EEG
signals and eye movements, we adopt a multimodal residual
LSTM network that learns the intramodality high-level tem-
poral features with multiple LSTM layers for each type of
features and the intermodality correlations among the three
different types of features by sharing the weights across the
parallel LSTM structures in the same layer [12]. This weight-
sharing architecture across modalities was first proposed for
speaker identification [13]. It also achieved satisfactory per-
formance when it was implemented for multimodal emotion
recognition using raw EEG signals and raw peripheral physi-
ological signals (PPS) signals [12]. A significant performance
improvement was obtained from the complementation and the
competition among all of the modalities by learning shared
weights across modalities.

This paper has two innovation aspects. On the one hand,
we investigate the emotion recognition under sleep deprivation
using deep neural networks instead of using subjective or
objective psychological research approaches. On the other
hand, we integrate the intramodality and intermodality cor-
relations of EEG single-channel DE features, EEG strength
features with topological correlation connectivity, and eye
movement features for multimodal emotion recognition using
the multimodal residual LSTM network, as illustrated in Fig.
1. The main contributions of this paper are as follows.

1) We perform experiments under sleep deprivation condi-
tion, sleep recovery condition, and baseline condition for
recognizing four types of emotions (happiness, sadness,
fear, and neutral emotions).

2) We adopt a multilayer weight-sharing multimodal resid-
ual LSTM network for combining the intramodality
and intermodality emotional correlations of EEG single-
channel DE features, EEG strength features with corre-
lation connectivity, and eye movement features for the
first time.

3) We improve the performance by using the multimodal
residual LSTM network in both subject-dependent and
cross-subject emotion classification tasks.

4) We investigate the emotion types and neural emotional
patterns impaired by sleep deprivation.

The remainder of this paper is organized as follows. Section
II provides a brief review of the related work on emo-
tion recognition with satisfactory performance using different
modalities of features. Section III describes feature extraction
and the multimodal residual LSTM network that we adopt in
this paper. Section IV introduces the experiment setup. Section
V presents the experimental results and discussion. Finally, we
summarize our work in Section VI.

Fig. 1. Multimodal residual LSTM network
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II. RELATED WORK

In the context of mood disorders, some works using in-
formation processing technology have been proven to be
efficient. Mahendran et al. [20] developed a stacking-based
ensemble learning model using multilayer perceptron, SVM
and random forest as low-level learners to diagnose major
depressive disorders. Jadhav et al. [32] applied the decision
tree classifier to screen bipolar disorder using the Mood
Disorder Questionnaire.

As an essential component of studying mental disorders,
emotion recognition has been performed using various modali-
ties, such as voice, facial expressions, EEG, pupillary diameter
(PD), and electrocardiograph (ECG). Among these modal-
ities, for emotion recognition using single modality, EEG
signals have been widely utilized to develop effective brain-
computer interaction systems for their representation of human
internal emotional and cognitive states. EEG-based emotion
recognition is mainly applied using single-channel analysis.
Specifically, features such as the most common used power
spectral density (PSD) features and differential entropy (DE)
features are independently extracted from each EEG channel
in each frequency band. DE features are specifically preferred
because they reflect the energy changes in the EEG signals
[14] [15]. However, these single-channel-based features only
reflect neural activities within a single EEG channel but fail
to take advantage of the functional connectivity information
among the EEG channels in different brain areas.

A few studies on EEG-based emotion recognition have
focused on exploiting the brain functional connectivity among
the EEG channels. Song et al. [16] modeled the multichannel
features based on the dynamical graph convolutional neural
networks. Chen et al. [17] and Lee et al. [18] directly used
connectivity indices including correlation, coherence, phase
synchronization, and mutual information as features without
taking the brain network topology into consideration. Wu
et al. [19] explored the emotion associated functional brain
connectivity patterns by using a critical subnetwork selection
approach and extracting the topological features based on the
brain connectivity networks and achieved an enhancement
of 3.78% by the decision-level fusion of the DE features
and strength features compared with the state-of-the-art result
solely using the DE feature on the SEED dataset.

Eye movement signals have been widely used in human-
computer interaction (HCI) research for usability analysis and
assessment because they provide an efficient and convenient
method for observing user behaviors. Most previous works
use eye movements to analyze the interests of users, visual
search processes, and information processing. Eye movement
signals enable the determination of what attracts the atten-
tion of the users and the observation of their subconscious
behaviors. Eye movement signals are also essential cues for
the context-aware environment that contains complementary
information for emotion recognition. Some previous studies
have developed effective eye movement features for emotion
recognition. These studies mostly focus on pupillary responses

to different emotions [10] or the combination of pupillary
responses, blink, fixation and saccade information [21].

Since emotions are complicated psychophysiological phe-
nomena associated with nonverbal cues, it is difficult to build
robust emotion recognition models using only a single modal-
ity of physiological signals. In addition to the abovementioned
studies that focused on a single EEG modality or a single eye
movement modality, multimodal approaches have also been
widely implemented for emotion recognition. Lu et al. [11]
applied a fuzzy integral fusion strategy to combine EEG fea-
tures and eye movement features on the SEED dataset. Lin et
al. [22] transformed the EEG signals into images and extracted
the hand-crafted features of other peripheral physiological
signals to train a deep CNN. Zhang et al. [23] used group
sparse canonical correlation analysis to investigate the group
structure information among the EEG and eye movement
features and to obtain a fusion representation of EEG and
eye movement to detect anxiety. However, these works do not
explicitly model the temporal correlations among the multiple
modalities for emotion recognition; instead, their approaches
are generally based on feature concatenation, common layers
or decision ensemble. Therefore, our proposed method aims
to improve the previous studies by using a deep multimodal
residual LSTM network with temporal weights shared across
the multiple modalities, including EEG single-channel DE
features, EEG strength features with topological correlation
connectivity, and eye movement features.

III. METHODS

A. Feature Extraction

To investigate emotion recognition under sleep deprivation,
we exploit three types of physiological features: the EEG
differential entropy (DE) features, EEG strength features with
correlation connectivity, and eye movement features.

a) Differential Entropy Features: EEG signals can be
generally divided into five different frequency bands, namely,
delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-
30 Hz), and gamma (30-50 Hz). The DE feature extraction
procedure converts the EEG signals from the time domain to
the frequency domain and then extracts useful information for
the five frequency bands. DE features are commonly used due
to their efficacy for reflecting the energy change of the EEG
signals [14]. We extracted DE features from the 62-channel
EEG signals in five frequency bands using short-term Fourier
transforms with a 1 s nonoverlapping time window, for a
feature vector with the total length of 310. The linear dynamic
system approach is adopted to filter out the components of the
DE features that are not associated with emotional states [24].

b) Strength Features with Correlation Connectivity: EEG
strength features are derived according to critical subnetworks
of the five aforementioned frequency bands. We select the
critical subnetworks based on a 62 × 62 symmetric connec-
tivity matrix that represents the connections between pairs
of EEG channels in each frequency band for each 1-second
sample. To eliminate the disturbance of the emotion-irrelevant
connections, critical subnetwork selection is applied to identify
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the common emotion associated connectivity patterns among
the different subjects under different sleep conditions based on
a tuned threshold [25]. From these matrices, we can extract the
strength features with correlation connectivity that are demon-
strated to be the topological features with the best emotion
classification performance [19]. The linear dynamic system
is also adopted for the extracted strength features for fea-
ture smoothing, and minimal redundancy maximal relevance
(mRMR) [26] is employed to filter the emotion-irrelevant
strength features and diminish the curse of dimensionality.

c) Eye Movement Features: Eye movement features are
extracted from different detailed parameters used in the lit-
erature, such as pupil diameter, fixation and saccade [21].
The details of the features extracted from eye movements are
shown in Table I.

TABLE I
DETAILS OF EXTRACTED EYE MOVEMENT FEATURES

Parameters Extracted features

Pupil diameter
(X and Y)

Mean, standard deviation and DE features in four
bands: 0-0.2 Hz, 0.2-0.4 Hz, 0.4-0.6 Hz, and 0.6-1
Hz.

Pupil dispersion
(X and Y) Mean, standard deviation.

Fixation duration Mean, standard deviation.

Saccade

Mean, standard deviation of saccade duaration and
saccade amplitude.
Mean, standard deviation of peak speed, average
speed, peak acceleration, peak deceleration, average
acceleration.

Event statistics

Fixation frequency.
Average, maximum and minimum of fixation duara-
tion.
Average, maximum and minimum of pupil dispersion
(X and Y).
Saccade frequency.
Average, maximum and minimum of saccade dura-
tion and saccade amplitude.
Average saccade latency.
Scanpath Length.

For both the subject-independent emotion classification
tasks and the cross-subject emotion classification tasks, the
recorded data from the 63-second continuous period of each
emotion stimuli clip were used for extracting the EEG DE
features, EEG strength features with correlation connectivity,
and eye movement features.

B. Multimodal Residual LSTM Network

To exploit the combination of EEG DE features, EEG
strength features with correlation connectivity, and eye move-
ment features for emotion recognition, we adopt the multi-
modal residual LSTM network, as illustrated in Fig. 1.

LSTM [27] is a popular variant of recurrent neural networks
and serves as the basic component of each layer of the model
for its effectiveness in the extraction of temporal information
from long-term biosignals [28] [29]. Temporal information is
stored in the cell states ct that propagate through time. Three
data-driven gates, the forget gate ft, the input gate it, and the

output gate ot, are responsible for protecting and controlling
the cell state ct.

The multimodal residual LSTM network explicitly learns
the correlations among the three different types of features
by sharing the weights Wh∗ across the LSTM structure in
the same layer [12]. Because of the complexity of high-level
temporal feature learning with explicit correlation control, we
used the multimodal residual LSTM network with multiple
LSTM layers for each type of feature. As depicted in Fig. 1,
we adopt the multimodal residual LSTM network that consists
of three 4-layer parallel LSTM structures sharing the weights
Wh∗, and each structure corresponds to the input sequences
of EEG DE features, EEG strength features with correlation
connectivity, and eye movement features. The formulas for the
multimodal residual LSTM network, excluding the bias terms,
are given as follows:

c̃st = tanh(Whg ∗ hst−1 +W s
xg ∗ xst ),

fst = σ(Whf ∗ hst−1 +W s
xf ∗ xst ),

ist = σ(Whi ∗ hst−1 +W s
xi ∗ xst ),

ost = σ(Who ∗ hst−1 +W s
xo ∗ xst ),

cst = fst �s
t−1 +i

s
t � c̃st ,

hst = ost � tanh(cst ),

where the shared weights Wh∗ across the three parallel LSTM
structures including Whg , Whf , Whi, and Who are the weight
matrices of the previous time step’s hidden states, while Wxg ,
Wxf , Wxi, and Wxo are the weight matrices of the current
time step’s input. The superscript ‘s’ represents each type of
features in the input sequences, the subscript ‘t’ represents
the time step, σ represents the sigmoid function, the operator
‘∗’ indicates the matrix multiplication, and the operator ‘�’
indicates elementwise multiplication.

Residual learning, which was first introduced in image
recognition for training ultra-deep CNNs [30], is adopted in
this model for the representation learning of higher layers and
the reformulation of the layers by learning residual functions
with reference to the layer inputs. The formula of residual
learning can be expressed as follows:

y = F (x,W ) + x,

where x and y refer to the input and output vectors of the
layers under consideration in the multimodal residual LSTM
network, respectively, and F (x,W ) represents the residual
function learned by the corresponding layers.

Through residual learning, the output of the corresponding
layer becomes a linear combination of the input and a non-
linear residual. Residual learning provides a shortcut across
the layers for training the multilayer LSTM network more
effectively and avoids the problem of vanishing gradients due
to the multilayer structure by adjusting the residual F (x,W ).
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Fig. 2. Illustration of our proposed experiment design. The experiment consists of a sequence of experiment sessions of three different sleep control conditions:
sleep deprivation condition, sleep recovery condition and baseline condition. In the first session, a sleep deprivation experiment is conducted after 30-hour
sleep deprivation. In the second session, sleep recovery experiment is then conducted after an 8-hour sleep recovery. In the third session, a baseline experiment
is carried out at least 14 days after the second session. During this 14-day period, the subjects sleep according to their sleep routines and, in particular, the
8-hour sleep condition is required during the 2 nights prior to the third experiment session.

In each layer of the multimodal residual LSTM Network,
layer normalization [31] is applied to stabilize the hidden-
state dynamics and reduce the training time of deep RNNs by
recentering and rescaling the neurons of the LSTM as follows:

µt =
1

H

H∑
i=1

(ht)i,

δt =

√√√√ 1

H

H∑
i=1

((ht)i − µt)2,

yt = f(
g

δt
� (ht − µt) + b),

where (ht)i represents the hidden state of the ith neuron in
each LSTM layer, the subscript ‘t’ represents the time steps,
and g and b are trainable weights with the same size as ht
that are used for rescaling and recentering the input of the
activation function f , respectively.

Dropout in each layer of the multimodal residual LSTM
network is applied before the forward connections to reduce
overfitting. High-level representations of three types of fea-
tures are eventually concatenated to predict the emotion labels
by dense layer with Softmax activation.

This multimodal residual LSTM network can effectively
capture the intramodality correlations by each 4-layer LSTM
structure and the intermodality correlations among the three
types of features by sharing weights across the three LSTM
structures. Residual learning and layer normalization are also
employed for efficient training.

IV. EXPERIMENTS

The sleep deprivation experiments consist of three experi-
ment sessions with different sleep conditions, namely, the sleep
deprivation experiment, the sleep recovery experiment and the
baseline experiment, corresponding to the sleep conditions
depicted in Fig. 2.

Sixteen healthy subjects (eight males and eight females, age
range: 18-32 years, mean: 22.25, std: 3.09) participated in the
experiments. All of the subjects were preselected to ensure
that they had regular daily sleep routines and had the habit

of sleeping for 7-8 hours every day. The subjects satisfying
these conditions are considered more obviously influenced by
sleep deprivation compared to people regularly stay up late.
Prior to each experiment session, the subjects were informed
of the experimental purpose, the experimental procedure, and
the harmlessness of the equipment used in the experiment. The
study was approved by the local ethics committee.

In the first experiment session, the sleep deprivation exper-
iment was conducted after 30-hour sleep deprivation. After
one normal night sleep recovery of 8-hour sleep, the subjects
participated in the second experiment session, namely, the
sleep recovery experiment. The third experiment session was
the baseline experiment. To thoroughly eliminate the influence
of previous sleep deprivation, the baseline experiment was
conducted at least 14 days after the second session. The
subjects were required to maintain their regular sleep routines
during the 14 days between the second session and the third
session and to sleep for 8 hours during the 2 nights before
the baseline experiment. The sleep conditions of all of the
experiment sessions were monitored and recorded by portable
smart bands that tracked sleep duration and sleep quality
information of the subjects.

The emotion recognition task of each experiment session
is watching emotion stimuli film clips. The emotion stimuli
film clips used in our experiments are exactly same as the
stimuli clips used in a public emotion EEG dataset called the
SEED-IV Dataset [21]. All of the emotion stimuli film clips
contain highly emotional contents and have been demonstrated
to be reliable for eliciting the target emotions. Each experiment
session contains 24 different trials (six trials per emotion) of
stimuli clips that are designed to elicit four target emotions:
happiness, fear, sadness and neutral. Each stimuli clip was
presented only once during the three experiment sessions to
avoid repetition.

EEG signals were recorded by a 62-channel wet electrode
cap at a sampling rate of 1000 Hz using the ESI NeuroScan
system. The electrodes on the cap are placed according to
the higher-resolution international 10-20 system. Eye move-
ment signals were simultaneously collected by SMI-ETG eye-
tracking glasses.
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TABLE II
ACCURACY (%) OF SUBJECT-DEPENDENT EMOTION CLASSIFICATION TASKS

Experiment Model Feature Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Mean ± Std

Baseline

SVM EEG DE 53.12 57.76 57.24 68.77 65.40 51.71 59.00 ± 13.18
SVM EEG Strength 53.02 61.01 54.5 67.14 56.51 40.40 55.43 ± 11.13
SVM EEG DE, Eye 47.32 52.98 71.48 75.47 64.71 46.97 59.83 ± 14.40
Residual LSTM EEG DE 86.31 84.62 87.95 88.47 89.71 79.74 86.13 ± 3.54
Multimodal LSTM EEG DE, Eye 87.10 83.78 93.75 96.75 87.20 73.66 87.04 ± 6.18
Multimodal LSTM EEG DE, EEG Strength, Eye 89.96 86.38 93.75 95.98 92.86 76.22 89.19 ± 6.29

Sleep Deprivation

SVM EEG DE 50.22 49.45 42.29 59.23 51.59 54.71 51.25 ± 12.78
SVM EEG Strength 43.70 54.14 46.83 55.65 57.66 55.68 52.28 ± 13.95
SVM EEG DE, Eye 46.75 40.58 49.88 54.64 49.93 44.59 47.73 ± 8.86
Residual LSTM EEG DE 81.62 79.53 80.38 88.07 88.47 87.30 84.23 ± 7.93
Multimodal LSTM EEG DE, Eye 84.82 89.81 78.89 85.81 85.66 88.29 85.55 ± 5.02
Multimodal LSTM EEG DE, EEG Strength, Eye 89.73 89.73 80.06 87.85 86.73 87.08 86.86 ± 5.55

Sleep Recovery

SVM EEG DE 55.73 44.62 40.38 61.04 53.37 61.16 52.72 ± 13.77
SVM EEG Strength 42.76 51.54 48.41 51.76 41.96 48.34 47.46 ± 11.77
SVM EEG DE, Eye 50.16 64.18 53.97 67.46 65.00 64.81 60.93 ± 12.07
Residual LSTM EEG DE 86.58 77.45 80.01 88.37 84.65 88.49 84.26 ± 6.37
Multimodal LSTM EEG DE, Eye 86.66 88.07 80.08 95.61 92.46 88.34 88.54 ± 7.36
Multimodal LSTM EEG DE, EEG Strength, Eye 87.04 90.82 83.53 97.54 94.42 90.60 90.66 ± 6.95

Fig. 3. Confusion matrices of multimodal residual LSTM networks using EEG DE features, EEG strength features with correlation connectivity and eye
movement features. (a) Baseline experiment, (b) sleep deprivation experiment, and (c) sleep recovery experiment.

V. RESULTS AND DISCUSSIONS

A. Subject-dependent Classification Performance

We first evaluate the performance of our model on the
subject-dependent emotion classification tasks. For subject-
dependent emotion classification tasks, the models were
trained and tested individually for each session of a single
subject. Six-fold cross-validation was applied and each fold
contains four emotional stimuli trials corresponding to the
four target emotions. The average classification accuracy and
standard deviation over subjects and folds were calculated.
A linear kernel support vector machine (SVM) with default
parameters implemented by LIBLINEAR [33] with EEG DE
features, EEG strength features, and the concatenation of EEG
DE features and eye movement features as inputs was adopted
as the baseline classifier. For the multimodal residual LSTM
networks, we adopted two input cases. In the first case, we
used the EEG DE features and eye movement features as the
inputs of two parallel weight-sharing LSTM structures. In the
second case, the strength features with correlation connectivity

were applied as the third type input features of the additional
parallel multimodal residual LSTM structure. We determined
the optimal parameter settings for the multimodal residual
LSTM network. The LSTM node number was set to 128,
the layer number to 4, dropout ratio to 0.5, l2 regularization
to 1e-2, learning rate to 1e-3, and the maximum number of
epochs to 1200. The Adam optimization algorithm was used to
train the network. The accuracy not increasing by 0.1% on the
validation set for the previous 30 epochs was used as the early
stop criterion. The subject-dependent classification accuracies
and standard deviations of three experiment sessions of the
respective sleeping conditions are summarized in Table II and
Fig. 3.

Both the residual LSTM network using only the EEG DE
features as inputs and the multimodal residual LSTM networks
achieve clearly superior emotion classification performance
compared to that of the baseline SVM model. Using the EEG
DE features, EEG strength features and eye movement features
as inputs, the multimodal residual LSTM network obtained the
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best subject-dependent classification performance characteris-
tics for all three sessions, with the mean accuracies of 89.19%,
86.86%, and 90.66%, respectively, which is 2.15%, 1.31%, and
2.12% higher than the multimodal residual LSTM network
using the EEG DE and eye movement as input features. The
standard deviations of the multimodal residual LSTM network
are also observed to be obviously lower compared to SVM
for all three sessions, suggesting that the multimodal residual
LSTM network is more stable than the baseline SVM model.

As shown in Table II, the mean accuracy of the classifica-
tion performance using the best multimodal residual LSTM
networks of the sleep deprivation session is 2.33% and 3.80%
lower compared to the other two experiment sessions. The
main reason for this accuracy reduction is the classification
performance of the happiness emotion that is depicted by
the confusion matrices of the three experiment sessions in
Fig. 3. It is observed that the mean classification accuracy
of the happiness emotion for the sleep deprivation session
is 72%, dropping by 15% compared to the baseline and the
sleep recovery sessions. This indicates that sleep deprivation
impairs the stimulation of the happiness emotion, and one
night of sleep recovery can reactivate the stimulation of the
happiness emotion, which is consistent with a previous study
[34]. Moreover, among the three experiment sessions, the fear
emotion and the neutral emotion can all be identified with
relatively high accuracy. This observation indicates that the
emotion patterns of these two emotions are insensitive to sleep
deprivation. The sadness emotion is also stable across the
different sleep experiment sessions but is more difficult to
be distinguished than the fear emotion and the neutral emo-
tion. Furthermore, the accuracy distributions of the confusion
matrices of baseline and sleep recovery sessions are quite
similar, so we can infer that the overall emotional states of
the subjects are generally recovered to the baseline standard
from the preceding sleep deprivation through sleep recovery.

B. Cross-subject Classification Performance

The results of the cross-subject emotion classification per-
formance are presented in Table III. Leave-one-subject-out
cross-validation (i.e., 16-fold validation) was applied to com-
pare the classification performance of the multimodal residual
LSTM network using different input features. It is observed
that for all three experiment sessions, using the combination
of DE, strength and eye movement features improves the
classification performance compared to using DE and eye
movement features only. These results demonstrate the effec-
tiveness of strength features across the individual differences.
Moreover, for all three sessions, the reduction in accuracy
and the increase in the standard deviation compared to the
subject-dependent classification tasks indicate the individual
differences on emotion patterns, whereas the cross-subject
classification performance of sleep deprivation session is high-
est among the three sessions and decreases 4.83% compared
to the subject-dependent task, which is much less than the
performance reduction of the other two sessions. We can infer

that the emotion patterns under sleep deprivation have certain
general characteristics, regardless of individual differences.

TABLE III
ACCURACY (%) OF CROSS-SUBJECT EMOTION

CLASSIFICATION TASKS USING MULTIMODAL RESIDUAL
LSTM NETWORK

Experiment Feature Mean ± Std

Baseline EEG DE, Eye 76.38 ± 9.64
EEG DE, EEG Strength, Eye 77.67 ± 8.67

Sleep Deprivation EEG DE, Eye 81.04 ± 8.24
EEG DE, EEG Strength, Eye 82.03 ± 8.24

Sleep Recovery EEG DE, Eye 80.93 ± 9.75
EEG DE, EEG Strength, Eye 81.99 ± 10.25

C. Topographic Neural Patterns

The average energy distributions for the happiness, sadness,
fear, and neutral emotions in the gamma band of the EEG
DE features are depicted in Fig. 4 because the most distin-
guishable neural patterns are observed in this band. Under
sleep deprivation, for the happiness emotion and sadness
emotion, the prefrontal area is least activated compared to the
baseline condition and the sleep recovery condition; for neutral
emotion, energy is concentrated in the lateral temporal area,
which is most likely due to the lack of attention caused by
sleep deprivation.

Fig. 4. Topographic maps of the four emotions (sadness, fear, happiness, and
neutral) in the gamma band for the three sessions.

For all the three experiment sessions, the activation levels
of the prefrontal area for the happiness emotion are lower than
those for the sadness emotion. Fear emotion is generally low-
activated except for the post lateral temporal area, and this
characteristic is stable for all three sleep conditions.

VI. CONCLUSIONS

In this paper, we have introduced the multimodal residual
LSTM network to investigating emotion recognition under
sleep deprivation with the integration of the EEG DE features,
EEG strength features with correlation connectivity, and eye
movement features. For each type of feature, four LSTM layers
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are employed for explicitly learning the high-level temporal
features. The weight-sharing architecture in each layer across
the parallel LSTM structures corresponding to three type of
features reinforces the effectiveness of learning intramodality
and intermodality correlations. The experimental results on the
sleep deprivation session, the sleep recovery session and the
baseline session demonstrate that the classification accuracy
increases with increasing number of the modalities used for
both subject-dependent and cross-subject emotion recognition
tasks under sleep deprivation. The elicitation of the happiness
emotion is the most impaired by sleep deprivation compared
with the other emotion types. Moreover, under sleep depriva-
tion, the prefrontal brain area is less activated for the happiness
emotion and sadness emotion in the gamma band, whereas fear
emotion corresponds to a highly robust neural pattern.
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