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ABSTRACT
Measuring the sleep quality is important or even crucial for
people who are engaged in dangerous jobs such as the high-
speed train drivers. Since the scalp EEG data are generated
by the neural activities of the brain cortex, it is collected from
subjects with different hours of sleep time (4 hours, 6 hours
and 8 hours) to conduct sleep quality evaluation. To suppress
the cross-subject variances of EEG data, in this paper, we
propose a joint feature auto-weighting and semi-supervised
classification model, termed GRLSR, which is formulated by
introducing an auto-weighting variable into the least square
regression to adaptively and quantitatively measure the im-
portance of each dimension of the feature. Once the model
is solved, besides the measurement results, we can use the
auto-weighting variable to 1) analyze the importance of each
frequency band in sleep quality expression and 2) identify the
capacity of different channels connecting to the sleep effect.
Therefore, the proposed GRLSR is a pure data-driven com-
puting model for EEG-based cross-subject sleep quality eval-
uation. Experimental results show its effectiveness.

Index Terms— Sleep quality evaluation, EEG, Feature
auto-weighting, Semi-supervised learning, Classification

1. INTRODUCTION

Sleep is a normal physiological need to keep us in healthy
status and sufficient sleep can make us concentrate on daily
work much easier; however, if having insufficient sleep, we
will feel tired and have low work efficiency. Therefore, it
is of great necessity to develop reliable sleep quality evalua-
tion approaches especially for people engaged in dangerous
jobs, leading to a cutting-edge research topic across multi-
ple disciplines such as information sciences, neuroscience,
health care, and medicine. For the sleep quality evaluation,
the subjective methods such as Pittsgurgh Sleep Quality In-
dex [1], Epworth Sleep Scale [2] and Sleep Diaries [3] are
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time-consuming, laborious and untrustworthy and cannot sat-
isfy the demands of accurate and efficient evaluation. Since
the EEG data is the scalp response of neural activities of the
cerebral cortex and can be collected by wearable acquisition
devices, it has been widely used as an effective media and
objective way to diverse researches such as emotion recog-
nition [4, 5], motor imagery, and driving fatigue estimation
[6, 7]. Recently, using machine learning approaches to au-
tomatically and fast EEG-based sleep quality evaluation has
been a hotspot [8–11]. The K-nearest neighbor, support vec-
tor machine and extreme learning machines (ELM) [12, 13]
are widely used to differentiate different sleep levels.

In this paper, we also focus the topic on EEG-based cross-
subject sleep quality evaluation using machine learning ap-
proach. When compared with existing methods, the main in-
novation of our proposed GRLSR is the introduction of the
auto-weighting variable based on which we can perform more
delicate research besides the recognition accuracy of differ-
ent levels of sleep quality. Specifically, based on the learned
auto-weighting variable, we can 1) investigate the importance
of each frequency band in distinguishing different sleep qual-
ity levels and 2) identify the capacity of different channels
connecting to the sleep effect.

The remainder of the paper is organized as follows. Sec-
tion 2 gives the model formulation and optimization of GRL-
SR. In section 3, we describe the paradigm of EEG data col-
lection and the experiments of evaluating the effectiveness of
GRLSR. Section 4 concludes the whole paper.

2. EVALUATION METHOD

2.1. Model Formulation

Given labeled EEG samples (XL ∈ Rd×l,YL ∈ Rl×c) =
{(xi,yi)}li=1 from one or more subjects, and unlabeled EEG
samples XU = (xl+1, · · · ,xl+u) ∈ Rd×u, n = l + u from
other subject(s), the cross-subject sleep quality evaluation
aims to estimate YU ∈ Ru×c = (yl+1, · · · ,yl+u) corre-
sponding to XU , where c = 3 is the number of sleep levels.
Here, yi ∈ Rc (1 ≤ i ≤ l) is a binary vector in which yj

i = 1
if xi belongs to the j-th class. Inspired by [14], we want to
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measure the importance of the d features in predicting YU

which can be completed by introducing an auto-weighting
variable θ ∈ Rd and θj > 0|dj=1 quantitatively measures the
importance of the j-th feature. This leads to the joint learning
of the feature auto-weighting factor θ and YU by solving

min
W,b,θ,YU

∥XTΘW + 1bT −Y∥2F + γ∥W∥2F

s.t. θ > 0,1Tθ = 1,YU ≥ 0,YU1 = 1,
(1)

where X = [XL,XU ], Y = [YL;YU ], and Θ ∈ Rd×d is a
rescaled diagonal matrix with the j-th element Θjj =

√
θj .

We denote this model as RLSR.
Additionally, by considering the local consistency of data

[15], we include a graph regularizer R into (1) to formulate
the proposed Graph regularized Rescaled Linear Regression
(GRLSR) model objective as

min
W,b,θ,YU

∥XTΘW + 1bT −Y∥2F + γ∥W∥2F + αR

s.t. θ > 0,1Tθ = 1,YU ≥ 0,YU1 = 1,
(2)

where R ,
∑n

i,j=1 ∥WTΘxi −WTΘxj∥22sij and its com-
pact matrix form is Tr(ΘTWTXLXTWΘ). L is the graph
Laplacian matrix and can be calculated by L = D−S, where
D is a diagonal degree matrix with its i-th diagonal element
defined by dii =

∑
j sij . S is the graph affinity matrix to

depict the local data manifold and can be defined as

sij =

{
exp

(
−∥xi−xj∥2

2σ2

)
if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0 otherwise

where Nk(xj) means the k-nearest neighbors of xj .
Below are some explanations of GRLSR on cross-subject

sleep quality evaluation.
First. In GRLSR, the sleep quality level of target subject

samples to be solved, YU , is closely coupled with the other
variables. This is superior to most existing semi-supervised
models which optimize the model variables first and then per-
form label estimation to unlabeled samples [16].

Second. Once the GRLSR objective is solved, we obtain
the learned auto-weighting variable θ besides the evaluation
results of sleep quality YU . θ offers us an quantitatively way
to investigate the sleep quality evaluation from diverse aspect-
s. To be specific, it can be used to a) analyze the importance
of each frequency band connecting to sleep; b) identify the
importance of different EEG channels in depicting the con-
nection between brain areas and sleep. Moreover, from ma-
chine learning and pattern recognition perspective, it can be
used to do feature selection and ranking.

2.2. Optimization

Below we derive an equivalent form of (2) which lays the
foundation of its optimization.

Substitute ΘW with W̃ and then (2) can be written as

min
W̃,b,θ,YU

∥XTW̃ + 1bT −Y∥2F + γ

d∑
j=1

∥w̃j∥22
θj

+ αTr(W̃TXLXTW̃),

s.t. θ > 0,1Tθ = 1,YU ≥ 0,YU1 = 1.

(3)

By fixing W̃ and Y, θ can be obtained by solving

min
θ>0,θT 1=1

d∑
j=1

∥∥w̃j
∥∥2
2
/θj . (4)

Then we can get the solution to θ as θj =
∥w̃j∥

2∑d
j′=1∥w̃j′∥

2

. As a

result, we can first optimize W̃ and b by solving

min
W̃,b,YU≥0,YU1=1

∥∥∥XTW̃ + 1bT −Y
∥∥∥2

F
+ γ∥W̃∥22,1

+ αTr(W̃TXLXTW̃).

(5)

and then get the solution to θ based on obtained W̃. Below
we give the derivation in detail.

� Optimize b with other variables fixed. The objective
with respect to b is

min
b

∥XTW̃ + 1bT −Y∥2F . (6)

Taking its derivative with respect to b and setting it to zero,
we get the solution to b as

b =
1

n
(YT1− W̃TX1). (7)

� Update W̃ with other variables fixed. By fixing b and
YU , the objective function of W̃ becomes

min
W̃

∥XTW̃+1bT−Y∥2F+γ∥W̃∥22,1+αTr(W̃TXLXTW̃).

To avoid the non-differentiable problem caused by the pos-
sible existence of zero ℓ2-norm of rows in W̃, we replace

∥W̃∥2,1 with
(∑d

j=1

√
∥w̃j∥22 + ε

)2

where ε is a small e-
nough positive constant. We rewrite the above objective as

min
W̃

∥XTW̃ + 1bT −Y∥2F + γ(
d∑

j=1

√
∥w̃j∥22 + ε)2

+ αTr(W̃TXLXTW̃).

(8)

Based on the derivation in [17], taking the derivative of ob-
jective (8) with respect to W̃ and setting it to zero, we have

W̃ = (XXT + γQ+ αXLXT )−1(X1bT −XY). (9)

By substituting b with (7), we have

W̃ = (XHXT + γQ+ αXLXT )−1XHY, (10)
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where H = I− 1
n11

T , and Q is a diagonal matrix with the i-

th diagonal element defined as qjj =
∑d

v=1

√
∥w̃v∥2

2+ε√
∥w̃j∥2

2+ε
. Note

that Q is unknown and dependent on W̃, we can iteratively
update Q and W̃.

� Update YU with other variables fixed. By fixing W̃
and b, since the problem (5) is independent for each i (l+1 ≤
i ≤ l + u), we can optimize each yi by solving

min
yi≥0,yT

i 1=1
∥W̃Txi + b− yi∥22. (11)

This is a problem of Euclidean projection defined on the sim-
plex [18]. Its corresponding Lagrangian function is

L = ∥W̃Txi + b− yi∥22 + η(yT
i 1− 1)− yT

i βi, (12)

where η and βi are the Lagrangian multipliers. It can be ver-
ified the optimal solution to yi is

yi = (W̃Txi + b+ η)+, (13)

where (var)+ = max(0, var) and η can be obtained via
yT
i 1 = 1. The detailed derivation can be found in [19].

Notations. We use α, βi, γ, η and θ to represent the
model parameters (variables) while the five frequency bands
of EEG are denoted by Delta, Theta, Alpha, Beta, Gamma.

3. EXPERIMENTS AND RESULTS

3.1. EEG Data Preparation

The sleep EEG data set we used was collected on 14 healthy
subjects. In the sleep deprivation experiment, subjects were
strictly asked to sleep at night for respectively 4, 6 and 8
hours. The raw EEG data was recorded by the ESI NeuroScan
system with a 62-channel electrode according to the interna-
tional 10-20 system placement. The sampling frequency of
EEG was down-sampled from 1000 to 200 Hz and then EEG
signals were filtered to 1-50 Hz by Butterworth bandpass fil-
ter. We extracted the differential entropy (DE) feature [9]
from five frequency bands, i.e., Delta (1-3 Hz), Theta (4-7
Hz), Alpha (8-13 Hz), Beta (14-30 Hz), and Gamma (31-50
Hz), leading to a 310-dimension representation of each sam-
ple. Linear dynamic system was used to perform feature s-
moothing. For each subject, we selected 900 samples and
there are the same number of samples in each class for the
labeled subject. We adopted a subject-to-subject sleep qual-
ity evaluation strategy, resulting in 13 tasks in total. In each
task, samples from subject 1 were set as labeled while sam-
ples from each of the other 13 subjects were as unlabeled.

Figure 1 gives the schematic diagram of why the proposed
GRLSR framework can perform the critical frequency bands
and channels identification. Since there is obvious correspon-
dence between θ and the feature vector, the learned θ can
effectively characterize the importance of each dimension of
the DE feature by concatenating all five frequency bands.

Fig. 1. The GRLSR-based critical frequency bands and chan-
nels identification.

3.2. Comparison on Evaluation Accuracy

We compare GRLSR with two supervised learning models
(SVM and GELM [15]) and three semi-supervised learning
models (TSVM [20], LapSVM, and ASL [21]). The param-
eters in GRLSR are searched from [10−3, 10−2, · · · , 103].
The sleep quality evaluation results are shown in Table 1
in which the best results are in boldface. We can find that
GRLSR outperforms the other models in most cases. As we
can see, the pure supervised classification models, i.e. SVM,
GELM, respectively achieved mean accuracies across 13
tasks as 32.88% and 54.71%. The semi-supervised models,
i.e. TSVM, LapSVM, ASL, obtained mean accuracies of all
13 tasks as 52.57%, 48.33% and 44.91% respectively. The
reason why GRLSR outperformed the other methods may
be that the local consistency of data is considered. This is
caused by the local invariance idea that similar inputs gener-
ate similar outputs. Then, we can conclude that 1) the graph
regularization of efficiently exploiting the data manifold in-
formation is effective and 2) the utilization of unlabeled
samples during the model training process is beneficial for
the recognition of different levels of sleep quality.

Table 1. Accuracies(%) on subject-to-subject evaluation.
SVM GELM ASL LapSVM TSVM RLSR GRLSR

1→2 34.22 59.11 45.56 53.22 45.89 37.55 66.67
1→3 26.55 51.56 42.22 55.22 43.78 44.44 66.67
1→4 25.22 35.00 39.67 37.22 38.11 30.11 30.67
1→5 33.33 66.67 40.44 38.89 45.56 44.11 47.00
1→6 33.33 60.00 42.67 66.67 35.89 39.88 66.67
1→7 28.55 49.33 41.11 33.33 34.22 39.66 51.67
1→8 23.33 47.44 48.00 34.33 41.67 54.55 58.56
1→9 37.00 45.33 40.67 55.22 45.78 43.33 43.33
1→10 45.22 52.33 45.33 63.56 68.44 66.66 66.67
1→11 14.11 66.67 40.67 45.67 36.89 49.22 50.33
1→12 33.33 66.67 45.11 42.56 100.0 58.22 61.44
1→13 35.11 67.56 50.78 35.78 66.89 36.55 35.78
1→14 58.22 43.67 61.56 66.67 80.33 81.77 88.89
Avg. 32.88 54.71 44.91 48.33 52.57 48.16 56.47
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Fig. 2. The θ of tasks 1→9 (left) and 1→12 (middle), and the average importance of each band across all 13 tasks (right).

3.3. Identification of Critical Frequency Bands
In this experiment, we want to check the connection between
different frequency bands and the sleep quality. Once the
GRLSR is solved, we obtain the learned θ ∈ R310. Then, the
importance of the Delta band can be measured by

∑62
i=1 θi

and the Theta band is
∑124

i=63 θi. And so on for each of the
other bands. To visualize the learned θ, we randomly select
the two ones corresponding to tasks 1→9 and 1→12 and re-
spectively shown them in Figure 2(a) and 2(b), from which
we can observe that most of non-zero values accumulate in
the Delta and Gamma bands. Based on our understanding,
the Delta band which usually happens in deep sleep may be
more likely corresponding to the 8-hour sleep. Accordingly,
the high frequency band, Gamma, may be more likely corre-
sponding to the 4-hour sleep. The average importance of each
frequency band is shown in Figure 2(c). Therefore, we con-
clude that there might exist critical frequency bands in sleep
which may provide new insights to simplify the feature ex-
traction for sleep quality evaluation.

3.4. Identification of Critical Channels

In this subsection, we want to check whether there exist some
critical channels connecting to the sleep effect. Based on the
learned θ ∈ R310, the importance of the i-th (1 ≤ i ≤ 62)
channel, denoted as ω(i), can be calculated by ω(i) = θi +
θ62+i+θ124+i+θ186+i+θ248+i. Then, we sorted the ω(i)|62i=1

in descend order and recorded the indices of channels. For
each number of selected channels, from 1 to 62, we ran the
GRLSR and tuned its parameters to let it achieve the best per-
formance. Then we show the comparison of GRLSR with
channel selection and without channel selection on sleep qual-
ity evaluation in Figure 3. From this figure, we observe that
the sleep quality evaluation performance is enhanced with a
few selected channels. The number on the top of each blue bar
in Figure 3 is the number of selected channels when GRLSR
achieves the best performance.

In Figure 4, we visualize the selected six channels of task
1→4 which distribute mainly in the occipital lobe. From this
result, we conclude that there might exist critical channel-
s connecting to the sleep effect. This may be valuable for
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Fig. 3. Performance of GRLSR on features with and without
channel selection.

simplifying the EEG data collection and the customizing the
wearable devices for sleep-related data acquisition.

Fig. 4. The selected channels by GRLSR on task 1→4.

4. CONCLUSION

In this paper, we proposed a joint semi-supervised feature
auto-weighting and classification model, termed GRLSR,
for EEG-based cross-subject sleep quality evaluation. The
main contribution of GRLSR is the introduction of the auto-
weighting variable, which allows us to identify the critical
frequency bands and channels connecting to the sleep effect.
After completing the optimization of GRLSR, the importance
of different frequency bands and channels can be automat-
ically determined. Experimental results demonstrated the
effectiveness of the proposed GRLSR model. This conclu-
sions obtained by the proposed data-driven computing model
may provide new insights to cognitive and neuroscientist who
are conducting the sleep research.
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