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a b s t r a c t 

In recent years, sleepiness during driving has become a main cause for traffic accidents. However, the 

fact is that we know very little yet about the electrophysiological marker for assessing diver sleepi- 

ness. Previous studies and our researches have shown that alpha blocking phenomenon and alpha wave 

attenuation-disappearance phenomenon represent two different sleepiness levels, the relaxed wakeful- 

ness and the sleep onset, respectively. This paper proposes a novel model for driver sleepiness detec- 

tion based on electroencephalography (EEG) and electrooculography (EOG) signals. Our model aims to 

track the change in alpha waves and differentiate the two alpha-related phenomena. Continuous wavelet 

transform is adopted to extract features from physiological signals in both time and frequency domains. 

Meanwhile, Long-Short Term Memory (LSTM) network is introduced to deal with temporal information 

of EEG and EOG signals. To deal with insufficient physiological sample problem, generative adversarial 

network (GAN) is used to augment the training dataset. Experimental results indicate that the F1 score 

for detecting start and end points of alpha waves reaches to around 95%. And Conditional Wasserstein 

GAN (CWGAN) we adopted was effective in augmenting dataset and boost classifier performance. Mean- 

while, our LSTM classifier achieved a mean accuracy of 98% for classifying end points of alpha waves 

under leave-one-subject-out cross validation. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

In recent years, driver sleepiness has become one of the main

reasons for traffic accidents. Many drivers have the experience of

feeling drowsy or falling asleep while driving the car, but most of

them tend to ignore the early signs of sleepiness [1–3] . Especially

for train drivers and pilots, this may cause more casualty. Since

sleepiness level transition is a physiological process, physiological

signals change obviously with it [4–7] . Therefore, finding a reli-

able electrophysiological marker and a detection model for it is of

practical importance. 

There are mainly four different ways to detecting driver sleepi-

ness: (1) self-evaluation; (2) vehicle-based detection; (3) behav-
∗ Corresponding author at: Center for Brain-like Computing and Machine Intelli- 

gence, Department of Computer Science and Engineering, Shanghai Jiao Tong Uni- 

versity, 800 Dong Chuan Road, Shanghai 200240, China. 

E-mail address: bllu@sjtu.edu.cn (B.-L. Lu). 
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oral measures; and (4) physiological signals [7–10] . And to have

 greater potential for routine use in real-life scenario, a driver

leepiness detection system should be practical, objective and ro-

ust. However, driver’s self evaluation is obviously subjective. For

ehicle-based detection, since it often makes use of steering wheel

ovements and other input from sensors, it is difficult to develop

 general model due to complex geometric characteristic of roads

nd various vehicle types [4,11] . And behavioral measures, such

s PERCLOS (the percentage of eye closure), are often limited to

riving conditions like illumination. Compared to these measures,

hysiological signals can reflect the mechanism of driver sleepiness

n nature [5–7] . Meanwhile, EEG is regarded as the ‘gold standard’

nd widely used as an indicator of the transition between wake-

ulness and sleep [4–8] . 

Spontaneous alpha activity observed on EEG signals can re-

ect different underlying physiological process [5,7,8] . Alpha

aves originate from the occipital lobe, and can be observed un-

er the relaxed wakefulness state during eye closure. This refers

o the typical alpha blocking phenomenon: when we close our

yes, alpha waves continuously appear; when we reopen our

https://doi.org/10.1016/j.neucom.2019.05.108
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.05.108&domain=pdf
mailto:bllu@sjtu.edu.cn
https://doi.org/10.1016/j.neucom.2019.05.108
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yes, alpha waves quickly disappear [7,12–14] . Meanwhile, in

ur previous research, another alpha-related phenomenon, alpha

ave attenuation-disappearance phenomenon, has been found and

roven to be practical for predicting the sleep onset state [15,16] .

nder higher sleepiness state, when we close our eyes, alpha

aves attenuate until they finally disappear. The attenuation of al-

ha waves is the most valid electrophysiological marker for the be-

inning of sleep onset period (SOP), which refers to the transition

rom wakefulness to real sleep [5,17] . This transition is precisely

escribed in Hori’s nine-stage system, which has been validated to

e particularly useful for describing SOP. Compared to a train of

lpha waves in Hori’s sleep stage 1 (wakefulness), alpha wave ac-

ivity decrease gradually from more than 50% in sleep stage 2 to

ess than 50% in sleep stage 3 [5] . 

In our simulated driving experiments, driver sleepiness is

aused by long-time continuous driving task and partial sleep de-

rivation. The typical alpha blocking phenomenon and alpha wave

ttenuation-disappearance phenomenon occur during eye-closed 

eriod, representing two different sleepiness levels, the relaxed

akefulness and the sleep onset, respectively. By differentiating

hese two phenomena, when a subject closes his/her eyes, we

an determine the two sleepiness levels. Therefore, our study first

racks the change in alpha waves to detect end points of alpha

aves in the two alpha related phenomena, and then the corre-

ponding EOG signals are used to distinguish the two phenomena. 

In this paper, we propose a novel method that combines con-

inuous wavelet transform (CWT) with Long-Short Term Memory

LSTM) to detect drive sleepiness from EEG and EOG signals. When

he two alpha-related phenomena occur, EEG and EOG signals both

hange correspondingly. Thus, we utilize CWT to represent the

hange of EEG and EOG signals in time and frequency domains. At

he same time, LSTM is introduced to classify different waveform

n EOG signals which have inherent temporal dependencies. In our

revious work, we used SVM for classification, but it does not take

emporal dependencies into account. Besides the application in the

eld of computer vision [18–21] , LSTM, as a special form of recur-

ent neural network, is an appropriate deep learning architecture

or analyzing biomedical signals [22–25] . Meanwhile, it is capa-

le of handling long-term dependencies and can avoid the vanish-

ng gradient problem. However, the training of LSTM requires large

umber of samples, whereas it is usually difficult to get sufficient

amples from physiological signals. To solve this problem, Condi-

ional Wasserstein GAN (CWGAN) is adopted to augment EOG data

or training the LSTM classifier [26] . By adversarial training, GANs

ave strong abilities to generate realistic-like data, and are widely

pplied to images [27] . 

The main contributions of this paper to driver sleepiness detec-

ion from EEG and EOG signals can be summarized as follows: 

(1) We utilize CWT with proper basis functions to characterize

the peculiarities in EEG and EOG signals. 

(2) We make use of CWGAN for EOG data augmentation to train

the LSTM classifier. 

(3) LSTM is adopted to learn the temporal information in EOG

signals in order to classify different waveform. 

(4) Our proposed method places very few electrodes on sub-

jects, and it is thus a promising approach to implementing

driver sleepiness detection in real-life scenarios. 

. Related work 

.1. Detecting driver sleepiness using physiological signals 

Among all physiological signals, EEG is regarded as the most

eliable signal for detecting sleepiness. Numerous studies have

emonstrated that EEG signals such as alpha (8–12 Hz), theta (4–
 Hz) and delta (1–3 Hz) are highly correlated with driver sleepi-

ess [28,29] . Li et al. developed an EEG-based driver drowsiness

etection system with an SVM-based posterior probabilistic model

nd a wearable EEG headband [30] . Shi and Lu proposed an EEG-

ased vigilance estimation model using extreme learning machines

31] . Wu et al. proposed a novel online weighted adaptation reg-

larization for regression algorithm to estimate driver drowsiness

rom EEG signals [32] . Lin et al. used EEG spectra to predict driver

rowsiness [33] . 

In addition to EEG, EOG, which contains characteristic informa-

ion of eye blinks and other eye movements, is also widely used to

stimate sleepiness due to its high signal-noise ratio. Jammes et al.

roposed an automatic detection algorithm for eye blinks in EOG

o estimate drowsiness according to blink duration [34] . Ma et al.

sed EOG features, mainly slow eye movements, to estimate the

uman vigilance changes [35] . Zhang et al. proposed a novel ap-

roach to driving fatigue detection using forehead EOG, and SVM’s

rediction correlation coefficient reached 0.88 on average [36] . 

Meanwhile, many researches combined EEG and EOG signals to

ncrease the reliability and accuracy of sleepiness detection. Zheng

nd Lu combined EEG and forehead EOG to leverage their comple-

entary characteristics for vigilance estimation [37] . Kartsch et al.

eveloped a wearable EEG-based drowsiness detection system by

etermining blink durations and recognizing the presence of alpha

aves [38] . Using both EEG and EOG signals, Chen et al. combine

he wavelet-based nonlinear features with extreme learning ma-

hine classifier for detecting drowsy/alert states [39] . Arnin et al.

eveloped a portable wireless drowsiness detection system accord-

ng to the characteristics of eye blinks and eye movements and the

hanges in EEG waves in drowsy state [40] . 

In recent years, along with the quick development of wearable

evices for processing EEG and other physiological signals, the de-

and for methodologies based on fewer channels has been raised.

heng et al. implemented continuous vigilance estimation using a

earable EOG device [41] . So far, fusing multiple physiological sig-

als with fewer channels has been the main trend for designing

eliable and feasible driver sleepiness detection system. 

.2. Using deep networks to classify EEG and EOG signals 

Some recent works have proposed novel methods that utilize

STM to classify EEG signals. Dong et al. applied a Mixed Neural

etwork approach to classify temporal sleep stage using features

xtracted from EEG signals [24] . Their MNN model combined a

ectifier neural network with LSTM, and their method was proven

o be effective compared with other existing models. Similarly,

upratak et al. proposed DeepSleepNet for automatic sleep stage

coring based on raw single-channel EEG [25] . The model mainly

dopted two CNNs for feature representation and a bidirectional-

STM for sequence residual learning, and the sleep stage scor-

ng performance of DeepSleepNet achieved similar overall accu-

acy compared to the state-of-the-art hand-engineering methods.

esides, Tang et al. utilized bimodal LSTM for emotion recognition

sing EEG and eye movement signals, and the model outperformed

ther methods with a mean accuracy of 93.97% [42] . 

. Materials 

.1. Experimental procedure 

In total, twelve healthy subjects (8 males and 4 females, with

n average age of 22) who have siesta habit for more than a year

articipated in our experiments. The study was approved by the

ocal ethics committee, and subjects gave written informed con-

ent before participation. The Epworth Sleepiness Scale (ESS) [43] ,

 simple and reliable method for measuring the general level of
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Fig. 1. Illustration of three kinds of experiments performed in this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Environment for simulated driving experiment. 
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daytime sleepiness for adults, was used to measure the daytime

sleepiness level of subjects. The mean ± SD of ESS score for all

twelve subjects is 10.5 ± 1.2. For each subject, we conducted

three experiments: (1) Repeated eye closure experiment; (2) One-

minute eye closure experiment; and (3) Simulated driving experi-

ment. 

3.1.1. Repeated eye closure experiment 

The repeated eye closure experiment aims to obtain EEG

and EOG signals with alpha blocking phenomenon. As shown in

Fig. 1 (a), in this experiment, subjects closed and opened their eyes

according to the instruction. The duration of eye closure was ran-

dom, ranging from 5 s to 15 s. And the subjects were seated in a

chair under relaxed wakefulness. Each subject participated in this

experiment for about 60 minutes once. 

3.1.2. One-minute eye closure experiment 

The one-minute eye closure experiment was conducted just be-

fore the simulated driving experiment, as shown in Fig. 1 (b). The

subjects kept their eyes opened and closed for one minute re-

spectively under the relaxed wakefulness state. During the one-

minute eye closure, alpha waves were observed to be prominent

and continuous, with a high amplitude. In contrary, when eyes

were opened, we could barely observe alpha waves. Then, alpha

wavelet energy threshold was calculated based on EEG signals ob-

tained from this experiment, and the threshold was later used to

track the change of alpha waves. This experiment and the simu-

lated driving experiment were conducted in succession with the

same experimental setup, so that we could maintain data consis-

tency for subsequent data analysis and processing. 

3.1.3. Simulated driving experiment 

The simulated driving experiment was conducted to induce the

sleepiness level change of the subject from relaxed wakefulness

to sleep onset. The experiment started at the subject’s usual nap

time, which leads to a certain degree of sleep deprivation and thus

makes it easier to induce a higher sleepiness level. Fig. 2 is our ex-

perimental environment, in which there was a real vehicle without

engine. The subject was seated in the car, and operated the steer-

ing wheel and gas pedal to drive a virtual car on a highway scene

shown on the LCD screen. To effectively make the subject drowsy,

the virtual car’s speed was slow, and the scene around the road

was monotonous. 

The experimental task for subjects was to drive the car prop-

erly in the virtual scene. Meanwhile, subjects were asked not to

deliberately close their eyes when they were not sleepy. However,

lacking real threat to life safety, subjects tended to close their eyes

spontaneously. Therefore, a lot of eye closure periods appeared,

during which we could observe the two alpha-related phenom-

ena. Due to unfamiliarity with the experimental settings, a higher

sleepiness level usually could not be induced when the subject

participated in this experiment for the first time. Therefore, they
ften took part in this experiment for 2 to 3 times, and each lasted

or about 90 minutes. 

.2. Data recording 

For all the experiments, data recording settings were the same.

EG and EOG signals were recorded at a 10 0 0 Hz sampling rate

sing ESI NeuroScan System. In total, six electrodes were placed

n the subject, as shown in Fig. 3 : (1) two electrodes, Vu and Vd,

or obtaining VEOG signal, and VEOG = Vu - Vd; (2) two occipital
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Fig. 3. Illustration of EEG and EOG electrode placement. 
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Fig. 4. VEOG signal, O2 signal and their corresponding continuous wavelet transform results for the two alpha-related phenomena. 
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lectrodes for obtaining EEG signal, and we used O1 as an alterna-

ive when O2 was corrupted by noise; and (3) one reference (REF)

lectrode and one ground (GND) electrode behind the ears. Sub-

ects were asked to wear a headband to fix O1 and O2 electrodes. 

Meanwhile, a digital video camera was set to monitor the sub-

ect’s face. In order to observe eye movements and the correspond-

ng physiological signals at the same time, the facial video cap-

ured from the camera and the signals displayed on the Scan soft-

are interface were synchronously recorded into a file. This also

llows us to review and investigate the relationship between eye

ovements and EEG/EOG signals manually. 

.3. Two alpha-related phenomena and their visual marking 

.3.1. Eye closure event (ECE) 

As shown in the VEOG signal in Fig. 4 , the behavior of clos-

ng and opening eyes produces an upward trend line and a down-
ard trend line, respectively. And the energy value of VEOG sig-

al around these two trend lines is larger (vertical bars in yellow

nd light blue on CWT of VEOG). Based on this pattern, an eye

losure event is defined as the period from the end point of the

pward trend line to that of the downward trend line on VEOG

ignal. 

.3.2. Presence of alpha waves 

Alpha waves can be observed on O2 signal. And we judged the

resence of alpha waves by visual inspection. That is, when we

ound a sinusoidal rhythm of 8 to 12 cps, which corresponds to the

requency of alpha frequency band, we considered alpha waves to

e present [44,45] . In addition, alpha rhythm was double-checked

y apply CWT, because alpha wavelet energy was higher after the

ransform, shown as the horizontal areas in yellow on CWT of O2

n Fig. 4 . 
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Fig. 5. The flowchart of the proposed model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Driver Sleepiness Detection. 

1: E max : maximum alpha wavelet energy value during OPEN pe- 

riod 

2: E min : minimum alpha wavelet energy value during CLOSE pe- 

riod 

3: Calculate alpha wavelet energy threshold E th = 

E max + E min 
2 

4: Calculate alpha wavelet energy E w 

during simulated driving ex- 

periment 

5: Train the LSTM classifier using (augmented and) labeled VEOG 

features 

6: for all time point t in E w 

do 

7: Compare E w 

at time point t with E th 

8: if time point t e is an end point of alpha waves then 

9: Extract features from VEOG signals around t e 
10: Put the extracted features into the trained LSTM classifier 

11: if the extracted features belong to the end point of al- 

pha waves in alpha wave attenuation-disappearance phe- 

nomenon then 

12: The subject is under the sleep onset state 

13: else 

14: The subject is under the relaxed wakefulness state 

15: end if 

16: end if 

17: end for 

i  

e  

t  

c  

t  

f  

o  

m  

t  

i  

i  

n

4

4

 

t

3.3.3. Alpha blocking phenomenon 

Alpha blocking phenomenon is illustrated in Fig. 4 (a) where

spontaneous alpha oscillations are prominent and continuous on

O2 signal during eye closure period. Alpha waves appear when

eyes are closed under relaxed wakefulness, and quickly disappear

when eyes are reopened [7] . When applying CWT to O2 signal,

we can see that the CWT coefficients are large in alpha frequency

band (8 - 12 Hz) within the period of alpha blocking phenomenon.

On O2 signal in Fig. 4 (a), according to the way we judged the

presence of alpha waves in Section 3.3.2 , we visually marked s 1 

and e 1 as the start and end points of alpha waves in alpha blocking

phenomenon. s 1 and e 1 also correspond approximately to the end

point of the upward trend line and the downward trend line in

VEOG signal. Therefore, we define ECE 1 as the eye closure event

corresponding to alpha blocking phenomenon. 

3.3.4. Alpha wave attenuation-disappearance phenomenon 

In our previous work [15,16,46] , we found alpha wave

attenuation-disappearance phenomenon and demonstrated that

attenuation-disappearance phenomenon can be used as an indica-

tor for the entry into sleep. As shown on O2 signal in Fig. 4 (b), this

phenomenon has a split point, before which alpha waves present

and gradually attenuate, and after which alpha waves almost com-

pletely disappear. We consider this split point as the end point

of alpha waves, and it was marked as p 2 according to the way

we judged the presence of alpha waves in Section 3.3.2 . Similar

to alpha blocking phenomenon, the start point of alpha waves is

marked as s 2 , corresponding to the end point of the upward trend

line on VEOG signal. In addition to s 2 , we marked e 2 as the end

point of the downward trend line on VEOG signal based on the

pattern of ECE in Section 3.3.1 . Therefore, with s 2 and e 2 , we de-

fine ECE 2 as the eye closure event corresponding to alpha wave

attenuation-disappearance phenomenon. 

4. Methods 

As the two alpha-related phenomena represent two different

sleepiness levels, the key to detecting driver sleepiness is to distin-

guish these two phenomena. Therefore, our proposed model tracks

the change in alpha waves on O2 signal, and utilizes VEOG signal

for classification. 

Fig. 5 is the flowchart of our model, and Algorithm 1 describes

the main steps of constructing the proposed model. First, we ap-

plied CWT on O2 signal from the one-minute eye closure experi-

ment in order to obtain alpha wavelet energy threshold E . Sim-
th 
larly, we applied CWT on O2 signal from the simulated driving

xperiment so that we could get a wavelet energy curve over

ime. Then, alpha wavelet energy threshold was compared with the

urve so as to detect the start and end points of alpha waves. If

he detected point was an end point, we first extracted features

rom its corresponding VEOG signal using CWT. Then, depending

n different training and test strategies, the features may be aug-

ented using CWGAN framework. Finally, features were put into

he trained LSTM classifier to determine whether the correspond-

ng end point is the end point of alpha waves in alpha block-

ng phenomenon or in alpha wave attenuation-disappearance phe-

omenon. 

.1. Obtaining alpha wavelet energy threshold 

.1.1. Continuous wavelet transform (CWT) 

As a signal processing tool, continuous wavelet transform has

he following advantages for processing EEG and EOG signals: 
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Fig. 6. Mother wavelets for CWT. (a) The red and blue curve represent the real and 

imaginary components, respectively. (b) Haar Wavelet. 
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(1) It reveals the time-frequency structure of signals, thus al-

lowing localization of their peculiar features in time and fre-

quency domains. 

(2) It provides more flexibility in the choice of basis function

into which a signal is expanded. 

(3) It enables efficacious analysis of short-term time series con-

taining the abrupt transitions or characteristic oscillation pe-

riods. 

Therefore, we utilized CWT for time-frequency analysis of EEG

nd EOG signals to deal with their non-stationary properties

47,48] . CWT measures the similarity between an input signal f ( t )

nd the analyzing function, which is a mother wavelet, as follows,

 (s, τ ) = 

1 √ 

s 

∫ ∞ 

−∞ 

f (t) ψ 

∗( 
t − τ

s 
) dt (1)

here s is the time scale, τ is the time shift, ψ is the basic com-

lex function (or mother wavelet) of the wavelet transform, and 

∗

enotes its complex conjugate. 

According to Eq. (1) , CWT compares the input signal to the

hifted and compressed or stretched version of a mother wavelet.

y varying the value of s and τ in a continuous way, we can obtain

WT coefficient W ( s, τ ). And wavelet coefficients represent the de-

ree of correlations between mother wavelet and the input signal

49] . Meanwhile, the better the wavelet function matches the in-

ut signal, the more accurately the features of the input signal can

e represented by wavelet coefficients [49,50] . 

We selected complex Morlet wavelet as the mother wavelet

or O2 signals, because it has a similar geometric shape to alpha

aves. Complex Morlet wavelet is a complex exponential modu-

ated Gaussian function, as shown in Fig. 6 (a). 

According to the scale-frequency relationship for complex Mor-

et wavelet, wavelet energy w ( t ) in the fixed alpha frequency band

 = [8, 12] Hz was calculated using wavelet coefficient W ( f s , t ) as

ollows, 

 (t) = 

∫ 
F 

| W ( f s , t) | 2 df s (2)

here W ( f s , t ) is equivalent to W ( s, τ ) in Eq. (1) . Then, w ( t ) was

veraged in time window T , 

 w 

= 

∫ t+ T/ 2 

t−T/ 2 w (t) dt 

F s ∗ T 
(3) 

here F s is the sampling rate. And T was set to 1 s, because obvi-

us short burst of alpha waves hold for approximately 1 s. 

.2. Calculating alpha wavelet energy threshold 

O2 signal in the one-minute eye closure experiment was used

o calculate alpha wavelet energy threshold for each subject. Em-

irically, CWT with complex Morlet mother wavelet scaling from
 to 1024 was applied to the one-minute eye-open period and

ne-minute eye-closed period respectively. According to Eq. (3) ,

indow length was set to 1 s and sliding step size was set to

.1 s. So we obtained numerous alpha wavelet energy values for

he two one-minute periods. Then, in order to avoid interference

ith noise, we removed those alpha wavelet energy values that

ere more than the variance of the distribution from the two pe-

iods. The distribution of alpha wavelet energy value was shown

n Fig. 7 . Finally, we found the minimum energy value during the

ye-closed period and the maximum during eye-open period. In

heory, the threshold can take any value between them. However,

oise is usually included in O2 signals, so we calculated the mean

f those two values as the threshold. Meanwhile, according to our

bservation and calculation, the threshold is different across sub-

ect. 

.3. Detecting start and end points of alpha waves 

As illustrated on E w 

in Fig. 8 , to obtain alpha wavelet energy

alue curve, we applied CWT with complex Morlet wavelet on O2

ignal using the same setting of window in Section 4.2 . Then, the

hreshold was compared with the curve to detect start and end

oints of alpha waves on O2 signal. Once an end point was de-

ected, features from its corresponding VEOG signal was extracted

nd put into the trained LSTM classifier. 

.4. Classifying end points using LSTM 

The purpose of the LSTM classifier is to determine whether the

etected end point is the end point of alpha waves in alpha block-

ng phenomenon or in alpha wave attenuation-disappearance phe-

omenon. Thus, the key to distinguishing those two end points

ies in differentiating the corresponding waveform on VEOG signal

round the end point. 

.4.1. Feature extraction 

For VEOG signal, we chose Haar wavelet as the mother wavelet

or CWT, because its square-shaped functions are similar to VEOG

ignal during eye-closure events, as shown in Fig. 6 (b). On CWT of

EOG in Fig. 4 , the wavelet coefficients around e 1 are large (yel-

ow bars), while those around p 2 are small (blue area). This is the

asis for differentiating different end points. For feature extraction,

aar wavelet scaling from 1 to 128 was applied to the 0.5 s win-

ow before the end points p 2 and e 1 , which was either [ e 1 − 0 . 5

, e 1 s] or [ p 2 − 0 . 5 s, p 2 s]. And the corresponding wavelet en-

rgy values at each scale form an 128-dimensional wavelet energy
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feature vector. Moreover, to make full use of temporal information,

the 0.5 s window was moved forward and backward for two times

respectively, and the sliding step size was 0.125 s. After applying

the same feature extraction method on each window, we obtained

five sequential feature vectors from VEOG signal. 

All the five feature vectors of the end point p 2 were marked as

positive samples, and those of the end point e 1 were marked as

negative samples. Depending on different training and test strate-

gies, these feature vectors were either directly put into the trained

LSTM classifier, or were augmented by CWGAN and then put into

the classifier. 

4.4.2. CWGAN for EOG data augmentation 

Luo and Lu proposed CWGAN framework for EEG data augmen-

tation to enhance EEG-based emotion recognition, and their mod-

els trained on appending datasets made significant improvements

in classification accuracy [26] . Therefore, we adopt CWGAN to aug-

ment EOG samples for training LSTM classifier. CWGAN is used to

generate artificial EOG data in the form of 128-dimensional feature

vector from noise distribution. 

Let X r and X g denote real and generated data distributions. The

generator G produces X g that resembles X r in order to ‘fool’ the

discriminator D , while the discriminator D discriminates between

samples from real distribution X g and those produced by generator

G . The goal can then be formulated as a minmax problem: 

min θG 
max θD 

L (X r , X g ) = E x r ∼X r [ log (D (x r ))] 

+ E x g ∼X g [ log (1 − D (x g ))] (4)

where θG and θD denote parameters in generator and discrimina-

tor, respectively, X g = G (x z ) , and x z is sampled from a noise distri-

bution. 

The discontinuous property of Jenson-Shannon divergence in

traditional adversarial training of GANs makes it difficult to for-

mulate a gradient to optimize the generator. Therefore, CWGAN

applied Kantorovich-Rubinstein duality of Earth-Mover distance

(EMD, also called Wasserstein-1): 

 (X r , X g ) = 

1 

K 

sup || f || L ≤K E x r ∼X r [ f (x r )] − E x g ∼X g [ f (x g )] (5)

where f , which denotes the set of 1-Lipschitz functions, is replaced

with discriminator D in realistic implementations, and || f || L ≤ K is

replaced with || D || ≤ 1. 
L 
Meanwhile, instead of weight clipping, Lipschitz constraint with

radient penalty is used to directly constrain the gradient norm

51] . And, an auxiliary label Y r is fed into the generator and dis-

riminator, and it is concatenated with X z in the generator, and X r 

nd X g in the discriminator, respectively. So, CWGAN can be for-

ulated as follows: 

min θG 
max θD 

L (X r , X g , Y r ) 

= E x r ∼X r ,y r ∼Y r [ D (x r | y r )] − E x g ∼X g ,y r ∼Y r [ D (x g | y r )] 

− λE ˆ x ∼ ˆ X ,y r ∼Y r 
[(||∇ ˆ x | y r D ( ̂  x | y r ) || 2 − 1) 2 ] (6)

here λ controls the trade-off between original objective and gra-

ient penalty, and ˆ x denotes the data points sampled from the

traight line between X r and X g . The losses of discriminator and

enerator are optimized in an alternating manner. The structure of

WGAN is shown in Fig. 9 . 

The generated EOG features are considered to be of high qual-

ty using discriminator loss, because it represents EMD between X r 

nd X g when the network converges [26] . 

.4.3. LSTM Classifier 

LSTM network, as a special variant of recurrent neural network,

s known to learn problems with long-term temporal dependencies

52] . LSTM has recurrent connections between hidden unites that

llow information to pass from one time step of the network to

he next. It extracts temporal information using LSTM layer and

earns feature representation from the input sequence. In detail,

he LSTM layer consists of the cell states propagated through time.
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Table 1 

ECE 1 and ECE 2 detection performance. 

subject # E CE 1 start point end point # E CE 2 start point end point 

F1(%) F1(%) F1(%) F1(%) 

1 34 95.5 98.6 24 98.0 98.0 

2 28 98.2 94.7 35 100.0 100.0 

3 22 95.5 93.0 30 94.9 94.9 

4 20 88.4 93.0 27 90.6 90.6 

5 26 98.1 92.3 24 95.8 95.8 

6 28 91.2 92.6 26 92.3 92.3 

7 28 98.2 98.2 27 94.5 94.5 

8 27 94.5 94.5 28 94.9 94.9 

9 23 95.7 93.3 26 98.0 98.0 

10 21 95.0 97.6 23 97.9 97.9 

11 25 96.0 96.2 29 98.2 98.2 

12 26 96.3 94.1 28 94.5 94.5 

Mean ± SD 95.2 ± 2.8 94.8 ± 2.2 94.6 ± 2.9 94.6 ± 2.9 

predicted

label

LSTM and dropout linear SVM

128-d

Haar

wavelet

feature

vectors

split point p2

end point e1

feature

extraction

feature

extraction

Fig. 10. Structure of the LSTM classifier. 
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o  
t each time step, cell states are updated according to the gate

utput, which is calculated using the current input and the previ-

us hidden states. The formulations are as follows: 

f t = σ (W f [ h t−1 , x t ] + b f ) 

i t = σ (W i [ h t−1 , x t ] + b i ) (7) 

 t = tanh (W g [ h t−1 , x t ] + b g ) 

c t = c t−1 ∗ f t + i t ∗ g t , 

here σ denotes the sigmoid function, f t and i t denote the forget

ate and input gate, respectively, g t denotes the candidate of cell

tates, W f , W i and W g are weight matrices, b f , b i and b g are biases,

nd c t and h t are the cell states and the output of LSTM block.

he forget gate controls the process of forgetting information by

ultiplying the cell states by real numbers between zero and one.

imilarly, the input gate controls the process of remembering in-

ormation. The current hidden states can then be calculated using

he current cell states and the output of the output gate o t . The

ormulations are as follows: 

o t = σ (W o [ h t−1 , x t ] + b o ) (8) 

 t = o t ∗ tanh (c t ) . 

here W o and b o are the weight matrix and the bias for the output

ate o t , respectively. 

For our LSTM classifier, dropout was adopted to avoid overfit-

ing. Meanwhile, for the classification layer, Hinge loss with L2 reg-

larization was taken as the loss function, so it can be considered

s a linear kernel SVM. The structure of our classifier is shown in

ig. 10 . 

.4.4. Judging end points of alpha waves 

For the detected end point of alpha waves, we used the method

entioned in Section 4.4.1 to extract five 128-dimensional fea-
ure vectors from its corresponding VEOG signal. Then, the trained

STM classifier produced 5 output labels corresponding to the

ve input feature vectors. And we chose the label that was the

ost frequent among all the output labels as the final label for

he detected end point. This final label indicates whether the de-

ected end point is the end point of alpha waves in alpha block-

ng phenomenon or in alpha wave attenuation-disappearance phe-

omenon. 

. Experiment and result 

We first tested our model’s performance in terms of how well

t detects start and end points of alpha waves. Then, we compared

ifferent classifiers and feature extraction settings in order to bet-

er evaluate our proposed model. For feature extraction of VEOG

ignals, we tried different combinations of window size and slid-

ng step size. For CWGAN, we tested its performance on the LSTM

lassifier, SVM and k -NN using subject-to-subject training and test,

ecause samples are not sufficient under this scenario. And the

WGAN-based data augmentation method was also compared with

nother data augmentation approach similar to SMOTE [53] . To

urther evaluate the performance of our proposed LSTM classifier,

e compared it with RNN, SVM and k -NN using leave-one-subject-

ut cross validation strategy. 

.1. Performance of detecting start and end points of alpha waves 

As shown on E w 

curve in Fig. 8 , the detection of end points is

ensitive to alpha wave energy threshold, resulting in the devia-

ion of the detected end point from the actual end point. There-

ore, we did not enforce exact detection of end points. Instead, if

he detected start point s 1 and s 2 or end point e 1 fell into the

ange of [ s 1 (s 2 ) − 0 . 5 s, s 1 (s 2 ) + 0 . 5 s] or [ e 1 − 0 . 5 s, e 1 + 0 . 5 s],

he point was regarded as a correctly detected point. If the de-

ected end point p 2 of alpha waves fell into the range of [ p 2 − 0 . 8

, p 2 + 0 . 8 s], it was regarded as correctly detected point. We set

 larger range for p 2 , because the exact split point in alpha wave

ttenuation-disappearance was usually hard to determine. 

We used F1 score to evaluate our model’s performance on de-

ecting start and end points of alpha waves. From Table 1 , we can

ee that the F1 score for detecting start and end points of alpha

aves in ECE 1 was around 95%. For ECE 2 , its F1 score was also

round 95%. This demonstrates our model’s strong ability in de-

ecting start and end points of alpha waves. 

.2. Different combinations of window size and sliding step 

We compared the performance of our LSTM classifier in terms

f different combinations of window size and sliding step size.
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Table 2 

Accuracy(%) and standard deviation(%) of classifying end points of alpha waves with different combinations of window size and sliding 

step. 

Subject Window size = 0.2 Window size = 0.4 Window size = 0.5 Window size = 0.6 

Step size = 0.2 Step size = 0.15 Step size = 0.125 Step size = 0.1 

1 92.34 96.60 97.87 97.45 

2 99.59 98.37 99.18 99.59 

3 97.70 97.05 98.03 97.38 

4 90.69 95.17 96.90 98.97 

5 93.73 97.65 98.43 98.43 

6 97.14 98.37 98.78 97.14 

7 98.60 97.21 98.14 98.14 

8 93.33 95.93 96.67 97.41 

9 96.54 97.69 98.46 98.85 

10 98.40 96.40 98.80 97.20 

11 95.71 98.10 98.57 99.05 

12 96.96 97.39 97.83 97.83 

Averaged accuracy 95.90 97.16 98.14 98.12 

SD 2.77 0.99 0.75 0.84 
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Leave-one-subject-out cross validation was used as the evaluation

strategy. As listed in Table 2 , among the settings we tried, there

was no overlapping of sliding windows in the setting of 0.2 s win-

dow size with 0.2 s sliding step, while there was overlapping in all

the other combinations. Meanwhile, the total coverage of all win-

dows over time was set to 1 s for each setting so that the amount

of information contained in all the settings was the same. 

From Table 2 , we can see that all the windows with overlapping

outperformed the window without overlapping. This indicates that

the context included in the feature vector can improve the perfor-

mance of classification. And, 0.5 s window with 0.125 s sliding step

size was the best. Therefore, we chose it to be our window setting

for feature extraction of VEOG signal. 

5.3. Details of data separation, data augmentation and classifiers 

5.3.1. Leave-one-subject-out 

For each subject, we used VEOG signal from simulated driv-

ing experiments and repeated eye closure experiments. In simu-

lated driving experiments, there were usually very few eye closure

events in the early stage. In the late stage, however, the two eye

closure events occurred more often as the subject became more

sleepy. Therefore, we picked a 30 min period with frequent ap-

pearance of the two alpha-related phenomena. In this period, the

amount of end points e 1 and p 2 were almost balanced. Besides,

to augment training samples, we sequentially picked some of the

end points e 1 in repeated eye closure experiments. And we en-

sured that the training set was not significantly unbalanced after

we added those end points. For each subject, there were about

80 end points in the dataset, among which the number of p 2 was

around 30. 

Then, we left one subject’s data out, and took the remaining 11

subjects’ data to train the LSTM classifier. The classifier was then

tested on the one subject’s data. We did this training and test pro-

cess in turns, and used the averaged result to evaluate the perfor-

mance of our classifier. 

5.3.2. Subject-to-subject evaluation 

For training and test on each subject, we calculated the num-

ber of samples we picked for each subject in Section 5.3.1 , and de-

creased them to the same amount as the subject with minimum

sample number. However, the number of samples was not suffi-

cient for training the LSTM classifier, so we used two different data

augmentation methods. One is an oversampling method similar to

SMOTE, and the other is CWGAN [53] . 

For the first method, the way we augmented the dataset is sim-

ilar to manually enforce a deviation on end points, which also al-
ows us to evaluate the classifier’s performance when an end point

s deviated from the actual one. In the original dataset, for an end

oint at time point t e , we picked N points evenly distributed in

ange [ t e − 0 . 1 s, t e s) and ( t e s, t e + 0 . 1 s], respectively, into the

ataset, as shown in Fig. 11 . This range was chosen according to

he duration of downward trend line around end point e 1 . Together

ith the original end point, the augmented dataset has 2 N + 1

amples. Then, we split the augmented dataset into training and

est sets, where the test set only included samples from the simu-

ated driving experiment, because we would like to test our model

nder a simulated driving condition. 

For the second method, CWGAN, we first separated the origi-

al data for each subject into training and test sets (denote the

umber of samples in the training set as N 1 ) for k -NN, SVM and

STM classifier. Then, the training data was further split into train-

ng and testing set (denote the number of samples as N 2 and N 3 ,

espectively, and N 1 = N 2 + N 3 ) for CWGAN. We evaluated the per-

ormance of CWGAN with different numbers of data appended to

riginal dataset. 

.3.3. Evaluation details for CWGAN 

ReLU activation function was used for all hidden layers, and

dam optimizer was chosen to train the networks. λ was set to 10,

nd the noise followed a uniform distribution U[ −1 , 1] . Meanwhile,

VM was used as the classifier for CWGAN, and the parameter C

as tuned to find the optimal value. When training CWGAN, we

bserved that the loss of discriminator always converged quickly,

ndicating that the generated data are of high quality. 

.3.4. Evaluation details for the classifiers 

For our proposed LSTM classifier, Adam optimizer was chosen

o train the network. And we selected dozens of hyper-parameters

rom a given range. Table 3 listed the hyper-parameters in our
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Table 3 

The hyper-parameters and their range of the LSTM classifier. 

hyper-parameter range 

hidden size 16 ~ 128 

dropout probability 0.2 ~ 0.9 

log 10 (L2 regularization strength) -7 ~ -2 

log 10 (learning rate) -5 ~ -1 

Table 4 

Accuracy(%) of k -NN, SVM and LSTM for classifying end points of alpha waves with 

SMOTE-like augmentation method. Scale denotes the augmentation scale of the 

dataset. 

Scale k -NN SVM LSTM 

1 91.58 95.03 93.98 

3 66.23 80.78 88.50 

5 61.28 71.88 88.18 

7 60.38 69.17 88.33 

9 59.74 67.03 88.88 

11 59.11 65.26 87.61 
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Table 5 

Accuracy(%) of k -NN, SVM and LSTM for classifying end points of alpha waves with 

CWGAN augmentation method. Scale denotes the augmentation scale of the dataset. 

Scale k -NN SVM LSTM 

1 91.58 95.03 93.98 

2 94.21 95.03 95.43 

3 93.84 94.77 96.09 

4 92.26 95.04 94.66 

5 93.96 95.04 95.32 

6 93.96 94.91 96.61 

7 93.57 94.90 94.90 

8 94.25 94.91 94.93 

9 93.18 94.64 94.79 

Table 6 

Accuracies and standard deviations of different classifiers under leave-one-subject- 

out cross validation. 

Subject k-NN SVM RNN LSTM 

1 90.34 93.44 98.04 96.90 

2 86.56 95.74 98.04 98.03 

3 86.53 95.92 97.48 98.78 

4 90.70 97.21 98.63 98.14 

5 85.11 95.74 99.21 97.87 

6 87.76 96.33 99.20 99.18 

7 89.80 92.16 98.45 98.43 

8 90.74 92.96 98.52 96.67 

9 93.48 95.22 95.77 97.83 

10 92.86 95.71 97.20 98.57 

11 88.85 95.77 98.10 98.46 

12 89.60 94.80 98.70 98.80 

Average accuracy 89.35 95.08 98.11 98.14 

SD 2.54 1.49 0.95 0.75 
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odel and their ranges. We adopted 10-fold cross validation to

hoose the best sets of hyper-parameters. 

The settings for RNN were same as LSTM. We implemented

VM and k -NN by sklearn module in Python, and the penalty pa-

ameter C in SVM and k in k -NN were tuned. k was set to 5. 

.4. Comparison for two data augmentation methods 

As shown in Table 4 , for k -NN, SVM and LSTM classifier, the

MOTE method cannot improve the classification accuracy. With

ore number of augmented data, the accuracy tends to decline

n general. This decreasing trend was normal, because there are

ore deviated end points with the growth of sample numbers. k -

N and SVM suffer from a much larger decrease than LSTM, indi-

ating that LSTM can alleviate the impact of deviation on classi-

cation accuracy. Meanwhile, the accuracy drops drastically when

he size of the augmented dataset is 3 or 5 times the size of the

riginal dataset. In contrary, the accuracy becomes stable when the

ize of the augmented dataset continues to grow. One reason may

e that the end points become closer to each other when the size

f the dataset is augmented to a certain degree, i.e. 5 in our model.

The accuracies of k -NN, SVM and LSTM classifier for CWGAN

ugmentation method is shown in Table 4 . For k -NN, CWGAN can

ncrease the accuracy, and it reaches the highest accuracy with

ugmentation scale of 8. For SVM, there is little improvement in

ccuracy. When the augmented dataset is four or five times the

ize of the original dataset, SVM reached its highest accuracy with

nly 0.01% improvement. This may indicate that SVM can char-

cterize distribution of the dataset with few samples. Therefore,

hen the generated data including noise are added, it does not

elp with the improvement in performance. For the LSTM classi-

er, we can observe improvement in all different sizes of appended

ata, and it has the highest accuracy of 96.61% with six times aug-

entation. Compared with k -NN and SVM, LSTM as a deep learn-

ng approach, need large-scale data to depict the true distribution

f dataset. Thus, with much more augmented data, there are more

oost in classification accuracy. 

.5. Comparison of classifiers 

To make the comparison of classifiers simpler, we only took into

ccount those correctly detected points in Section 5.1 . 

.5.1. Subject-to-subject evaluation 

We compared our LSTM classifier with k -NN and SVM using

ubject-to-subject evaluation. As shown in Table 5 , with CWGAN
ata augmentation, our LSTM classifier has a much better accu-

acy of 96.61%. As mentioned in Section 5.1 , the detection of end

oints is sensitive to alpha wave energy threshold, which results

n deviation of the detected end point from the actual end point.

eanwhile, for SMOTE-like data augmentation, the way we aug-

ented the dataset resembles the deviation manner of end points.

nd LSTM suffers from much less decrease in classification accu-

acy when the dataset size grows, as shown in Table 4 . There-

ore, LSTM can reduce the effect of deviation on classification

erformance by utilizing temporal information from a sequential

nput. 

.5.2. Leave-one-subject-out cross validation 

As shown in Table 6 , our LSTM classifier achieves the high-

st accuracy of 98.14% and the lowest standard deviation of 0.75%,

howing its strong classification performance and robustness. The

verall performance of RNN is very close to that of the LSTM clas-

ifier, and its accuracy is slightly less than LSTM. Besides, k -NN

odel in which k was 5 is the worst among them, because it just

imply classifies a point according to its neighbors without con-

idering temporal information. Meanwhile, although the averaged

ccuracy of SVM is close the LSTM, it is less stable across subjects

n terms of standard deviation. We ascribe the robustness of our

STM classifier to its recurrent structure that makes use of sequen-

ial information. Therefore, even if the information carried in some

f the five input feature vectors is incomplete, our LSTM classifier

an still correctly classify the end points by integrating temporal

nformation. What’s more, LSTM can deal with the deviation prob-

em mentioned in Section 5.5.1 . If the detected point slightly devi-

tes from the true end point, it can still fall into the range of the

liding window. All these advantages of LSTM leads to its satisfying

erformance. 
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6. Conclusion and future work 

In this paper, we have proposed a novel method for driver

sleepiness detection from EEG and EOG signals. Our model aims to

track the change of alpha waves on O2 signal and differentiate the

two alpha-related phenomena. The proposed model utilizes con-

tinuous wavelet transform to extract features from physiological

signals, CWGAN to augment EOG features in dataset, and LSTM to

classify end points of alpha waves. Our results have demonstrated

that our model can detect start and end points of alpha waves with

high accuracy. CWGAN can effectively generate realistic-like EOG

data and increase classification accuracy. Meanwhile, the LSTM

classifier outperforms SVM and k -NN classifiers in both subject-to-

subject evaluation and leave-one-subject-out cross validation. As

our model places very few electrodes on the subject, we believe

that it is practical for routine use in real-life scenarios. 

Our future work will focus on facilitating the feature extrac-

tion process. If continuous wavelet transform can be replaced with

deep neural networks such as CNN, we no longer need to ex-

tract features manually. Meanwhile, we will adopt transfer learn-

ing methods to deal with individual differences across subjects

[54–56] . 
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