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Abstract

Current graph neural networks (GNNs) lack generalizability with respect to scales
(graph sizes, graph diameters, edge weights, etc..) when solving many graph analy-
sis problems. Taking the perspective of synthesizing graph theory programs, we
propose several extensions to address the issue. First, inspired by the dependency
of the iteration number of common graph theory algorithms on graph size, we learn
to terminate the message passing process in GNNs adaptively according to the
computation progress. Second, inspired by the fact that many graph theory algo-
rithms are homogeneous with respect to graph weights, we introduce homogeneous
transformation layers that are universal homogeneous function approximators, to
convert ordinary GNNs to be homogeneous. Experimentally, we show that our
GNN can be trained from small-scale graphs but generalize well to large-scale
graphs for a number of basic graph theory problems. It also shows generalizability
for applications of multi-body physical simulation and image-based navigation
problems.

1 Introduction

Graph, as a powerful data representation, arises in many real-world applications [1, 2, 3, 4, 5, 6]. On
the other hand, the flexibility of graphs, including the different representations of isomorphic graphs,
the unlimited degree distributions [7, 8], and the boundless graph scales [9, 10], also presents many
challenges to their analysis. Recently, Graph Neural Networks (GNNs) have attracted broad attention
in solving graph analysis problems. They are permutation-invariant/equivariant by design and have
shown superior performance on various graph-based applications [11, 12, 13, 14, 15].

However, investigation into the generalizability of GNNs with respect to the graph scale is still limited.
Specifically, we are interested in GNNs that can learn from small graphs and perform well on new
graphs of arbitrary scales. Existing GNNs [11, 12, 13, 15] are either ineffective or inefficient under
this setting. In fact, even ignoring the optimization process of network training, the representation
power of existing GNNs is yet too limited to achieve graph scale generalizability. There are at
least two issues: 1) By using a pre-defined layer number [16, 17, 18], these GNNs are not able to
approximate graph algorithms whose complexity depends on graph size (most graph algorithms
in textbooks are of this kind). The reason is easy to see: For most GNNs, each node only uses
information of the 1-hop neighborhoods to update features by message passing, and it is impossible
for k-layer GNNs to send messages between nodes whose distance is larger than k. More formally,
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Loukas [19] proves that GNNs, which fall within the message passing framework, lose a significant
portion of their power for solving many graph problems when their width and depth are restricted;
and 2) a not-so-obvious observation is that, the range of numbers to be encoded by the internal
representation may deviate greatly for graphs of different scales. For example, if we train a GNN to
solve the shortest path problem on small graphs of diameter k with weight in the range of [0, 1], the
internal representation could only need to build the encoding for the path length within [0, k]; but if
we test this GNN on a large graph of diameter K � k with the same weight range, then it has to use
and transform the encoding for [0,K]. The performance of classical neural network modules (e.g.
the multilayer perceptron in GNNs) are usually highly degraded on those out-of-range inputs.

To address the pre-defined layer number issue, we take a program synthesis perspective, to design
GNNs that have stronger representation power by mimicking the control flow of classical graph
algorithms. Typical graph algorithm, such as Dijkstra’s algorithm for shortest path computation, are
iterative. They often consist of two sub-modules: an iteration body to solve the sub-problem (e.g.,
update the distance for the neighborhood of a node as in Dijkstra), and a termination condition to
control the loop out of the iteration body. By adjusting the iteration numbers, an iterative algorithm can
handle arbitrary large-scale problems. We, therefore, introduce our novel Iterative GNN (IterGNN)
that equips ordinary GNN with an adaptive and differentiable stopping criterion to let GNN iterate
by itself, as shown in Figure 1. Our stopping condition is adaptive to the inputs, supports arbitrarily
large iteration numbers, and, interestingly, is able to be trained in an end-to-end fashion without any
direct supervision.

We also give a partial solution to address the issue of out-of-range number encoding, if the underlying
graph algorithm is in a specific hypothesis class. More concretely, the solutions to many graph
problems, such as the shortest path problem and TSP problem, are homogeneous with respect to
the input graph weights, i.e., the solution scales linearly with the magnitudes of the input weights.
To build GNNs with representation power to approximate the solution to such graph problems, we
further introduce the homogeneous inductive-bias. By assuming the message processing functions are
homogeneous, the knowledge that neural networks learn at one scale can be generalized to different
scales. We build HomoMLP and HomoGNN as powerful approximates of homogeneous functions
over vectors and graphs, respectively.

We summarize our contributions as follows: (1) We propose IterGNN to approximate iterative
algorithms, which avoids fixed computation steps in previous graph neural networks, and provides the
potential for solving arbitrary large-scale problems. (2) The homogeneous prior is further introduced
as a powerful inductive bias for solving many graph-related problems. (3) We prove the universal
approximation theorem of HomoMLP for homogeneous functions and also prove the generalization
error bounds of homogeneous neural networks under proper conditions. (4) In experiments, we
demonstrate that our methods can generalize on various tasks and have outperformed baselines.

2 Related Work

Graph Algorithm Learning. Despite the success of GNNs (mostly come within the message passing
framework [14, 15]) in many fields [13, 20, 11], few works have reported remarkable results on
solving traditional graph-related problems, such as the shortest path problem, by neural networks,
especially when the generalizability with regard to scales is taken into account. Neural Turing
Machine [21, 22] first reported performance on solving the shortest path problem on small graphs
using deep neural networks and Neural Logic Machine [23] solved the shortest path problem on
graphs with limited diameters. Recently, [24], [25] and [26] achieved positive performance on graph
algorithm learning on relatively large graphs using GNNs. However, [24, 25] require per-layer
supervision to train, and models in [26] can not extend to large graph scales due to their bounded
number of message passing steps. As far as we know, no previous work has solved the shortest path
problem by neural networks on graphs of diameters larger than 100.

Iterative Algorithm Approximation. Inspired by the success of traditional iterative algorithms [27,
28], several works were proposed to incorporate the iterative architecture into neural networks for
better generalizability [18, 29], more efficiency [30], or to support end-to-end training [16, 17].
However, none of them supports adaptive and unbounded iteration numbers and is therefore not
applicable for approximating general iterative algorithms over graphs of any sizes.
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Figure 1: (a) The illustration of general iterative algorithms. The iteration body is repeated until the
stopping criterion is satisfied. (b) Illustration of IterGNN as a combination of GNNs and iterative
module. (c) A detailed illustration of Iterative GNN. It unfolds the computational flow of IterGNN.
Other than the normal data flow (marked as blue), there is another control flow (marked as orange)
that serves both as an adaptive stopping criterion and as a data flow controller.

Differentiable Controlling Flows. In recent years, multiple works have been proposed in the graph
representation learning field that integrate controlling into neural networks to achieve flexible data-
driven control. For example, DGCNN [31] implemented a differentiable sort operator (sort pooling) to
build more powerful readout functions. Graph U-Net [32, 33] designed an adaptive pooling operator
(TopK pooling) to support flexible data-driven pooling operations. All these methods achieved the
differentiability by relaxing and multiplying the controlling signals with the neural networks’ hidden
representations. Inspired by their works, our method also differentiates the iterative algorithm by
relaxing and multiplying the stopping criterion’s output into neural networks’ hidden representations.

Adaptive Depth of Neural Networks. The final formulation of our method is generally similar to
the previous adaptive computation time algorithm (ACT) [34] for RNNs or spatially ACT [35, 36] for
CNNs, however, with distinct motivations and formulation details. The numbers of iterations for ACT
are usually small by design (e.g.the formulation of regularizations and halting distributions). Con-
trarily, Our method is designed to fundamentally improve the generalizability of GNNs w.r.t. scales
by generalizing to much larger iteration numbers. Several improvements are proposed accordingly.
The recent flow-based methods (e.g. the Graph Neural ODE [37]) are also potentially able to provide
adaptive layer numbers. However, with no explicit iteration controller, they are not a straightforward
solution to approximate iterative algorithms and to encode related inductive biases.

3 Backgrounds

Graphs and graph scales. Each graph G := (V,E) consists of a set of nodes V and a set of
edges (pairs of nodes) E. To notate graphs with attributes, we use ~xv for node attributes of node
v ∈ V and use ~xe for edge attributes of edge e ∈ E. We consider three graph properties to
quantify the graph scales, which are the number of nodes N := |V |, which is also called the
graph size, the graph diameter δG := maxu,v∈V d(u, v), and the scale of attributes’ magnitudes
H := maxv∈V ||~xv||+maxe∈E ||~xe||. Here, || · || denotes an arbitrary norm of vectors and d(u, v)
denotes the length of the shortest path from node u to node v, which is also called the distance
between node u and node v for undirected graphs. We assume graph scales are unbounded but finite,
and the aim is to generalize learned knowledge to graphs of arbitrary scales.

Graph Neural Networks. We describe a known class of GNNs that encompasses many state-of-art
networks, including GCN [38], GAT [39], GIN [40], and Interaction Networks [4], among others.
Networks with a global state [15] or utilizing multi-hop information per layer [41, 42, 43] can
often be re-expressed within this class, as discussed in [19]. The class of GNNs generalizes the
message-passing framework [14] to handle edge attributes. Each layer of it can be written as

~h(l+1)
v = f

(l)
θ (~h(l)v , {~xe : e ∈ NE(v)}, {~h

(l)
v′ : v′ ∈ NV (v)}). (1)

~h
(l)
v is the node feature vector of node v at layer l. NV (v) and NE(v) denote the sets of nodes and

edges that are directly connected to node v (i.e. its 1-hop neighborhood). f (l)θ is a parameterized
function, which is usually composed of several multilayer perceptron modules and several aggregation
functions (e.g. sum/max) in practice. Readers are referred to [11, 12, 13, 15] for thorough reviews.
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4 Method

We propose Iterative GNN (IterGNN) and Homogeneous GNN (HomoGNN) to improve the gen-
eralizability of GNNs with respect to graph scales. IterGNN is first introduced, in Section 4.1, to
enable adaptive and unbounded iterations of GNN layers so that the model can generalize to graphs
of arbitrary scale. We further introduce HomoGNN, in Section 4.2, to partially solve the problem
of out-of-range number encoding for graph-related problems. We finally describe PathGNN that
improves the generalizability of GNNs for distance-related problems by improving the algorithm
alignments [26] to the Bellman-Ford algorithm in Section 4.3.

4.1 Iterative module

Algorithm 1: Iterative module. g is the stop-
ping criterion and f is the iteration body

input: initial feature x; stopping threshold ε
k ← 1
h0 ← x
while

∏k−1
i=1 (1− ci) > ε do

hk ← f(hk−1)
ck ← g(hk)
k ← k + 1

end while
return h =

∑k−1
j=1

(∏j−1
i=1 (1− ci)

)
cjhj

The core of IterGNN is a differentiable iterative
module. It executes the same GNN layer repeat-
edly until a learned stopping criterion is met. We
present the pseudo-codes in Algorithm 1. At
time step k, the iteration body f updates the hid-
den states as hk = f(hk−1); the stopping crite-
rion function g then calculates a confidence score
ck = g(hk) ∈ [0, 1] to describe the probability of
the iteration to terminate at this step. The mod-
ule determines the number of iterations using a
random process based on the confidence scores
ck. At each time step k, the random process has a
probability of ck to terminate the iteration and to
return the current hidden states hk as the output.
The probability for the whole process to return
hk is then pk =

(∏k−1
i=1 (1− ci)

)
ck, which is the

product of the probabilities of continuing the iteration at steps from 1 to k − 1 and stopping at step
k. However, the sampling procedure is not differentiable. Instead, we execute the iterative module
until the “continue” probability

∏k−1
i=1 (1− ci) is smaller than a threshold ε and return an expectation

h =
∑k
j=1 p

jhj at the end. The gradient to the output h thus can optimize the hidden states hk and
the confidence scores ck jointly.

For example, assume ci = 0 for i < k, ck = a, ck+1 = b, and (1 − a)(1 − b) < ε. If we
follow the pre-defined random process, for steps before k, the iteration will not stop as ci = 0 for
i < k. For the step k, the process has a probability of a to stop and output hk; otherwise, the
iteration will continue to the step k + 1. Similarly, at the step k + 1, the iteration has a probability
of b to stop and output hk+1. We stop the iteration after step k + 1 as the “continue” probability∏k
i=1(1− ci) = (1− a)(1− b) is negligible. The final output is the expectation of the output of the

random process h = ahk + (1− a)bhk+1.

By setting f and g as GNNs, we obtain our novel IterGNN, as shown in Figure 1. The features are
associated with nodes in the graph as {~h(k)v : v ∈ V }. GNN layers as described in Eq. 1 are adopted
as the body function f to update the node features iteratively {~h(k)v : v ∈ V } = GNN(G, {~h(k−1)v :

v ∈ V }, {~he : e ∈ E}). We build the termination probability module as g by integrating a readout
function and an MLP. The readout function (e.g. max/mean pooling) summarizes all node features
{~h(k)v : v ∈ V } into a fixed-dimensional vector ~h(k). The MLP predicts the confidence score as
ck = sigmoid(MLP(~h(k))). The sigmoid function is utilized to ensure the output of g is between 0
and 1. With the help of our iterative module, IterGNN can adaptively adjust the number of iterations.
Moreover, it can be trained without any supervision of the stopping condition.

Our iterative module can resemble the control flow of many classical graph algorithms since the
iteration of most graph algorithms depends on the size of the graph. For example, Dijkstra’s
algorithm [27] has a loop to greedily propagate the shortest path from the source node. The number
of iterations to run the loop depends linearly on the graph size. Ideally, we hope that our f can
learn the loop body and g can stop the loop when all the nodes have been reached from the source.
Interestingly, the experiment result shows such kind behavior. This structural level of the computation
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Figure 2: (a) An example of homogeneous functions. (b-c) Illustration of the improved generalizability
by applying the homogeneous prior. Knowledge learned from the training samples not only can be
generalized to samples of the same data distribution as ordinary neural networks, as shown in (b), but
also can be generalized to samples of the scaled data distributions, as shown in (c).

allows superior generalizability, which agrees with the findings in [26] that improved algorithm
alignment can increase network generalizability. In contrast, without a dynamic iterative module,
previous GNNs have much inferior ability to generalize to larger graphs.

We state more details of IterGNN in Appendix, including the memory-efficient implementation, the
theoretical analysis of representation powers, the node-wise iterative module to support unconnected
graphs, and the decaying confidence mechanism to achieve much larger iteration numbers during
inference in practice (by compensating the nonzero properties of the sigmoid function in g).

4.2 Homogeneous prior

The homogeneous prior is introduced to improve the generalizability of GNNs for out-of-range
features/attributes. We first define the positive homogeneous property of a function:

Definition 1 A function f over vectors is positive homogeneous iff f(λ~x) = λf(~x) for all λ > 0.

A function f over graphs is positive homogeneous iff for any graphG = (V,E) with node attributes ~xv
and edge attributes ~xe, f(G, {λ~xv : v ∈ V }, {λ~xe : e ∈ E}) = λf(G, {~xv : v ∈ V }, {~xe : e ∈ E})

The solutions to most graph-related problems are positive homogeneous, such as the length of the
shortest path, the maximum flow, graph radius, and the optimal distance in the traveling salesman
problem.

The homogeneous prior tackles the problem of different magnitudes of features for generalization.
As illustrated in Figure 2, by assuming functions as positive homogeneous, models can generalize
knowledge to the scaled features/attributes of different magnitudes. For example, let us assume two
datasets D and Dλ that are only different on magnitudes, which means Dλ := {λx : x ∈ D} and
λ > 0. If the target function f and the function FA represented by neural networks A are both
homogeneous, the prediction error on dataset Dλ then scales linearly w.r.t. the scaling factor λ:∑

x∈Dλ

||f(x)− FA(x)|| =
∑
x′∈D

||f(λx′)− FA(λx′)|| = λ
∑
x′∈D

||f(x′)− FA(x′)||. (2)

We design the family of GNNs that are homogeneous, named HomoGNN, as follows: simply remove
all the bias terms in the multi-layer perceptron (MLP) used by ordinary GNNs, so that all affine
transformations degenerate to linear transformations. Additionally, only homogeneous activation
functions are allowed to be used. Note that ReLU is a homogeneous activation function. The original
MLP used in ordinary GNNs become HomoMLP in HomoGNNs afterward.

4.2.1 Theoretical analysis of HomoGNN and HomoMLP

We provide theoretical proofs showing that, if the target function is homogeneous, low generalization
errors and low training errors are both achievable using the pre-defined homogeneous neural networks
under proper conditions. We first formalize the generalization error bounds of homogeneous neural
networks on approximating homogeneous functions under some assumptions, by extending the
previous example to more general cases. To show that low training errors are achievable, we further
prove that HomoMLP is a universal approximator of the homogeneous functions under proper
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conditions, based on the universal approximation theorem for width-bounded ReLU networks [44].
We present propositions stating that HomoGNN and HomoMLP can only represent homogeneous
functions, along with the proofs for all theorems, in the Appendix.

Let training samples Dm = {x1, x2, · · ·xm} be independently sampled from the distribution Dx,
then if we scale the training samples with the scaling factor λ ∈ R+ which is independently
sampled from the distribution Dλ, we get a “scaled” distribution Dλx , which has a density function
PDλx (z) :=

∫
λ

∫
x
δ(λx = z)PDλ(λ)PDx(x) dxdλ. The following theorem bounds the generalization

error bounds on Dλx :

Theorem 1 (Generalization error bounds of homogeneous neural networks with independent scaling
assumption). For any positive homogeneous functions function f and neural network FA, let β
bounds the generalization errors on the training distribution Dx , i.e., Ex∼Dx |f(x) − FA(x)| ≤
1
m

∑m
i=1 |f(xi)− FA(xi)|+ β, then the generalization errors on the scaled distributions Dλx scale

linearly with the expectation of scales EDλ [λ]:

Ex∼Dλx |f(x)− FA(x)| = EDλ [λ]Ex∼Dx |f(x)− FA(x)| ≤ EDλ [λ](
1

m

m∑
i=1

|f(xi)− FA(xi)|+ β) (3)

Theorem 2 (Universal approximation theorem for width-bounded HomoMLP). For any positive-
homogeneous Lebesgue-integrable function f : X 7→ R, where X is a Lebesgue-measurable compact
subset of Rn, and for any ε > 0, there exists a finite-layer HomoMLP A′ with width dm ≤ 2(n+ 4),
which represents the function FA′ such that

∫
X |f(x)− FA′(x)|dx < ε.

4.3 Path graph neural networks

We design PathGNN to imitate one iteration of the classical Bellman-Ford algorithm. It inherits the
generalizability of the Bellman-Ford algorithm and the flexibility of the neural networks. Specifically,
the Bellman-Ford algorithm performs the operation disti = min(disti,minj∈N (i)(distj + wji))
iteratively to solve the shortest path problem, where disti is the current estimated distance from
the source node to the node i, and wji denotes the weight of the edge from node j to node i. If we
consider disti as node features and wij as edge features, one iteration of the Bellman-Ford algorithm
can be exactly reproduced by GNN layers as described in Eq. 1:

~hi = min(~hi, min
j∈N (i)

(~hj + ~xji)) ≡ −max(−~hi, max
j∈N (i)

(−~hj − ~xji)).

To achieve more flexibilities for solving problems other than the shortest path problem, we integrate
neural network modules, such as MLPs to update features or the classical attentional-pooling to
aggregate features, while building the PathGNN layers. A typical variant of PathGNN is as follows:

αji = softmax({MLP1(~hj ;~hi; ~xji) for j ∈ N (i)});
~h′i =

∑
j∈N (i)

αjiMLP2(~hj ;~hi; ~xji); ~hi = max(~hi,~h
′
i),

We state the detailed formulation and variations of PathGNN layers in the Appendix.

5 Experiments

Our experimental evaluation aims to study the following empirical questions: (1) Will our proposals,
the PathGNN layer, the homogeneous prior, and the iterative module, improve the generalizability
of GNNs with respect to graph scales that are the number of nodes, the diameter of graphs, and the
magnitude of attributes? (2) Will our iterative module adaptively change the iteration numbers and
consequently learn an interpretable stopping criterion in practice? (3) Can our proposals improve the
performance of general graph-based reasoning tasks such as those in physical simulation, image-based
navigation, and reinforcement learning?

Graph theory problems and tasks. We consider three graph theory problems, i.e., shortest path,
component counting, and Traveling Salesman Problem (TSP), to evaluate models’ generalizability
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(a) Physical Simulation (b) Symbolic PacMan (c) Image-based Navigation

Figure 3: Figure (a) shows a set of Newton’s balls in the physical simulator. The yellow arrow is the
moving direction of the first ball. Figure (b) shows our symbolic PacMan environment. Figure (c)
illustrates our image-based navigation task in a RPG-game environment.

w.r.t. graph scales. We build a benchmark by combining multiple graph generators, including
Erdos-Renyi (ER), K-Nearest-Neighborhoods graphs (KNN), planar graphs (PL), and lobster graphs
(Lob), so that the generated graphs can have more diverse properties. We further apply our proposals
to three graph-related reasoning tasks, i.e., physical simulation, symbolic Pacman, and image-based
navigation, as illustrated in Figure 3. The generation processes and the properties of datasets are
listed in the Appendix.

Models and baselines. Previous problems and tasks can be formulated as graph regres-
sion/classification problems. We thus construct models and baselines following the common prac-
tice [15, 31, 40]. We stack 30 GCN [38]/GAT [39] layers to build the baseline models. GIN [40]
is not enlisted since 30-layer GINs do not converge in most of our preliminary experiments. Our
“Path” model stacks 30 PathGNN layers. Our “Homo-Path” model replaces GNNs and MLPs in the
“Path” model with HomoGNNs and HomoMLPs. Our “Iter-Path” model adopts the iterative module
to control the iteration number of the GNN layer in the “Path” model. The final “Iter-Homo-Path”
integrates all proposals together. Details are in the Appendix.

Training Details. We utilize the default hyper-parameters to train models. We generate 10000
samples for training, 1000 samples for validation, and 1000 samples for testing. The only two tunable
hyper-parameter in our experiment is the epoch number (10 choices) and the formulation of PathGNN
layers (3 choices). Validation datasets are used to tune them. More details are listed in the Appendix.

5.1 Solving graph theory problems

Generalize w.r.t. graph sizes and graph diameters. We present the generalization performance
for all three graph theory problems in Table 1. Models are trained on graphs of sizes within [4, 34)
and are evaluated on graphs of larger sizes such as 100 (for shortest path and TSP) and 500 (for
component counting so that the diameters of components are large enough). The relative loss metric
is defined as |y − ŷ|/|y|, given a label y and a prediction ŷ. The results demonstrate that each of
our proposals improves the generalizability on almost all problems. Exceptions happen on graphs
generated by ER. It is because the diameters of those graphs are 2 with high probability even though
the graph sizes are large. Our final model, Iter-Homo-Path, which integrates all proposals, performs
much better than the baselines such as GCN and GAT. The performance on graphs generated by KNN
and PL further supports the analysis. The concrete results are presented in the Appendix due to space
limitations. We also evaluated a deeper Path model, i.e., with 100 layers, on the weighted shortest
path problem (Lob). The generalization performance (relative loss≈ 0.13) became even worse.

We then explore models’ generalizability on much larger graphs on the shortest path problem
using Lob to generate graphs with larger diameters. As shown in Table 2, our model achieves a
100% success rate of identifying the shortest paths on graphs with as large as 5000 nodes even though
it is trained on graphs of sizes within [4, 34). As claimed, the iterative module is necessary for
generalizing to graphs of much larger sizes and diameters due to the message passing nature of GNNs.
The iterative module successfully improves the performance from ∼ 60% to 100% on graphs of sizes
≥ 500.

Ablation studies and comparison. We conduct ablation studies to exhibit the benefits of our
proposals using the unweighted shortest path problem on lobster graphs with 1000 nodes in Table 3.

7



Table 1: Generalization performance on graph algorithm learning and graph-related reasoning.
Models are trained on graphs of smaller sizes (e.g., within [4, 34) or ≤ 10× 10) and are tested on
graphs of larger sizes (e.g., 50, 100, 500, 16× 16 or 33× 33). The metric for the shortest path and
TSP is the relative loss. The metric for component counting is accuracy. The metric for physical
simulation is the mean square error. The metric for image-based navigation is the success rate.

Graph Theory Problems Graph-related Reasoning
Shortest Path Component Cnt. TSP Physical sim. Image-based Navi.

Models ER Lob ER Lob 2D 50 100 16× 16 33× 33
GCN [38] 0.1937 0.44 0.0% 0.0% 0.52 42.18 121.14 34.2% 28.9%
GAT [39] 0.1731 0.28 24.4 % 0.0% 0.18 >1e4 >1e4 56.7% 44.5%

Path (ours) 0.0003 0.29 82.3% 77.2% 0.16 20.24 27.67 85.6% 65.1%
Homo-Path (ours) 0.0008 0.27 91.9% 83.9% 0.14 20.48 21.45 87.8% 69.3%

Iter-Path (ours) 0.0005 0.09 86.7% 96.1% 0.08 0.13 1.68 89.4% 78.6%
Iter-Homo-Path (ours) 0.0007 0.02 99.6% 97.5% 0.07 0.07 2.01 98.8% 91.7%

Table 2: Generalization performance on the shortest path problem with lobster graphs. During
training, node numbers are within [4, 34) for unweighted problems (whose metric is the success rate),
and edge weights are within [0.5, 1.5) for weighted problems (whose metric is the relative loss).

Generalize w.r.t. sizes and diameters - unweighted w.r.t. magnitudes - weighted
20 100 500 1000 5000 [0.5, 1.5) [1, 3) [2, 6) [8, 24)

GCN [38] 66.6 25.7 5.5 2.4 0.4 0.31 0.37 0.49 0.56
GAT [39] 100.0 42.7 10.5 5.3 0.9 0.13 0.29 0.49 0.55

Path (ours) 100.0 62.9 20.1 10.3 1.6 0.06 0.22 0.44 0.54
Homo-Path (ours) 100.0 58.3 53.7 50.2 1.6 0.03 0.03 0.03 0.03

Iter-Homo-Path (ours) 100.0 100.0 100.0 100.0 100.0 0.01 0.04 0.06 0.08

The models are built by replacing each proposal in our best Iter-Homo-Path model with other possible
substitutes in the literature. For the iterative module, other than the simplest paradigm utilized in
Homo-Path that stacks GNN layers sequentially, we also compare it with the ACT algorithm [34] and
the fixed-depth weight-sharing paradigm [18, 16], resulting in the “ACT-Homo-Path” and “Shared-
Homo-Path” models. The ACT algorithm provides adaptive but usually short iterations of layers
(see Figure 4 and Appendix). The weight-sharing paradigm iterates modules for predefined times
and assumes that the predefined iteration number is large enough. We set its iteration number to
the largest graph size in the dataset. Homo-Path and ACT-Homo-Path perform much worse than
Iter/Shared-Homo-Path because of the limited representation powers of shallow GNNs. Shared-
Homo-Path performs worse than our Iter-Homo-Path, possibly because of the accumulated errors
after unnecessary iterations. For the homogeneous prior, we build “Iter-Path” by simply removing the
homogeneous prior. It performs much worse than Iter-Homo-Path because of the poor performance
of MLPs on out-of-distribution features. For PathGNN, we build “Iter-Homo-GCN” and “Iter-Homo-
GAT” by replacing PathGNN with GCN and GAT. Their bad performance verifies the benefits of
better algorithm alignments [26].

Generalize w.r.t. magnitudes of attributes. We evaluate the generalizability of models w.r.t.
magnitudes of attributes using the weighted shortest path length problem, as shown in Table 2. The
edge weights are randomly sampled from [0.5, 1.5) during training and are sampled from [1, 3), [2, 6),

Iter-Homo-Path
100.0

Homo-Path Iter-Path
53.7 48.9

ACT-Homo-Path Iter-Homo-GAT
52.7 2.9

Shared-Homo-Path Iter-Homo-GCN
91.7 1.4

Table 3: Ablation studies of generalization per-
formance for the shortest path problem on lobster
graphs with 1000 nodes. Metric is the success rate.

Figure 4: The iteration numbers of GNN layers
w.r.t. the distances from the source node to the
target node for the shortest path problem.
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and [8, 24) during evaluations. The distributions of node numbers remain the same. As claimed, our
models successfully generalize to graphs of different magnitudes with far better performance than
baselines. Notably, the Homo-Path model even achieves the same performance (relative loss ≈ 0.03)
for all scales of magnitudes, which experientially supports Theorem 1. The Iter-Homo-Path model
performs slightly worse because the sigmoid function in the iterative module is not homogeneous.

Interpreting stopping criterion learned by the iterative module. We show that our
Iter-Homo-Path model learned the optimal stopping criterion for the unweighted shortest path prob-
lem in Figure 4. Typically, to accurately predict the shortest path of lengths d on undirected graphs,
the iteration number of GNN layers is at least d/2 due to the message passing nature of GNNs (see
Appendix for details). Our iterative module learned such optimal stopping criterion. The Iter-Homo-
Path model adaptively increases the iteration numbers w.r.t. the distances and, moreover, stops timely
when the information is enough.

5.2 General reasoning tasks

Physical simulation. We evaluate the generalizability of our models by predicting the moving
patterns between objects in a physical simulator. We consider an environment called Newton’s ball:
all balls with the same mass lie on a friction-free pathway. With the ball at one end moving towards
others, our model needs to predict the motion of the balls of both ends at the next time step. The
metric is the mean squared error. Models are trained in worlds with [4, 34) balls and are tested in
worlds with 100 balls. As shown in Table 1, the Iter-Homo-Path model and the Iter-Path model
significantly outperform others, demonstrating the advantages of our iterative module for improving
generalizability w.r.t. scales. The homogeneous prior is not as beneficial since the target functions
are not homogeneous.

Symbolic PacMan. To show that our iterative module can improve reinforcement learning, we
construct a symbolic PacMan environment with similar rules to the PacMan in Atari [45]. The
environment contains a map with dots and walls. The agent needs to figure out a policy to quickly
“eat” all dots while avoiding walls on the map to maximize the return. We abstract the observations as
graphs using the landmark [46]. We adopt Double Q learning [47] to train the policy. Unlike original
Atari PacMan, our environment is more challenging because we randomly sample the layout of maps
for each episode, and we test models in environments with different numbers of dots and walls. The
agent cannot just remember one policy to be successful but needs to learn to do planning according to
the current observation. The metric is the success rate of eating dots. Our IterGNN (97.5%) performs
much better than baselines, CNN (91.5%) and PointNet [48] (29.0%). Our IterGNN also shows
remarkable generalizability among different environment settings. For example, even though the
models are trained in environments with 10 dots and 8 walls, our IterGNN achieves a 94.0% success
rate in environments with 10 dots and 15 walls and 93.4% in environments with 8 walls and 20 dots.
The tables that list the generalization performance of IterGNN, GCN, and PointNet in 30 different
settings of environments are presented in the Appendix to save space.

Image-based navigation. We show the benefits of the differentiability of a generalizable reasoning
module using the image-based navigation task. The model needs to plan the shortest route from the
source to target on 2D images with obstacles. However, the properties of obstacles are not given as a
prior, and the model must discover them based on image patterns during training. We simplify the
task by defining each pixel as obstacles merely according to its own pixel values. As stated in Table 1,
our Iter-Homo-Path model successfully solves the task. The model achieves success rates larger than
90% for finding the shortest paths on images of size 16× 16, and 33× 33, while it is only trained on
images of size ≤ 10× 10. All of our proposals help improve generalizability.

6 Conclusion

We propose an iterative module and the homogeneous prior to improve the generalizability of GNNs
w.r.t. graph scales. Experiments show that our proposals do improve the generalizability for solving
multiple graph-related problems and tasks.
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8 Broader Impact

Our methods provide general tools to improve the generalizability of GNNs with respect to scales.
This work can thus be applied to many applications of GNNs, such as natural language processing,
traffic prediction, and recommendation systems. They have many potential positive impact in the
society. For example, better traffic prediction enables shorter traffic time for all vehicles, which could
help protect the environment. Improved recommendation system could promote the transition of
information for more productivity and more fairness. Moreover, by improving the generalizability
with respect to scales, models can be trained on graphs of much smaller scales than reality. It reduces
the cost of collecting and storing large datasets with large samples, which can then alleviate the risks
of violating privacy and of harming the environment. On the other hand, this work may also have
negative consequences. Improving techniques in the field of natural language processing can help
monitor and collect personal information of each individual. Stronger recommendation system can
also hurt the fairness as different information targeted to different groups of people.
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[24] Veličković, P., R. Ying, M. Padovano, et al. Neural execution of graph algorithms. In Interna-
tional Conference on Learning Representations. 2020.
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