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Abstract—A brain-computer interface (BCI) enables a user
to communicate with a computer directly using brain signals.
The most common non-invasive BCI modality, electroencephalo-
gram (EEG), is sensitive to noise/artifact and suffers between-
subject/within-subject non-stationarity. Therefore, it is difficult to
build a generic pattern recognition model in an EEG-based BCI
system that is optimal for different subjects, during different
sessions, for different devices and tasks. Usually, a calibration
session is needed to collect some training data for a new subject,
which is time-consuming and user unfriendly. Transfer learning
(TL), which utilizes data or knowledge from similar or relevant
subjects/sessions/devices/tasks to facilitate learning for a new sub-
ject/session/device/task, is frequently used to reduce the amount
of calibration effort. This paper reviews journal publications on
TL approaches in EEG-based BCIs in the last few years, i.e.,
since 2016. Six paradigms and applications – motor imagery,
event-related potentials, steady-state visual evoked potentials,
affective BCIs, regression problems, and adversarial attacks –
are considered. For each paradigm/application, we group the
TL approaches into cross-subject/session, cross-device, and cross-
task settings and review them separately. Observations and
conclusions are made at the end of the paper, which may point
to future research directions.

Index Terms—Brain-computer interfaces, EEG, transfer learn-
ing, domain adaptation, affective BCI, adversarial attacks

I. INTRODUCTION

A brain-computer interface (BCI) enables a user to commu-

nicate with a computer using his/her brain signals directly [1],

[2]. The term was first coined by Vidal in 1973 [3], although

it had been studied previously [4], [5]. BCIs were initially

proposed for disabled people [6], but their current application

scope has been extended to able-bodied users [7], in gaming

[8], emotion recognition [9], mental fatigue evaluation [10],

vigilance estimation [11], [12], etc.

There are generally three types of BCIs [13]:

1) Non-invasive BCIs, which use non-invasive brain signals

measured outside of the brain, e.g., electroencephalo-

grams (EEGs) and functional near-infrared spectroscopy

(fNIRS).

2) Invasive BCIs, which require surgery to implant sensor

arrays or electrodes within the grey matter under the
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scalp to measure and decode brain signals (usually

spikes and local field potentials).

3) Partially invasive (semi-invasive) BCIs, in which the

sensors are surgically implanted inside the skull but

outside the brain rather than within the grey matter.

This paper focuses on non-invasive BCIs, particularly EEG-

based BCIs, which are the most popular type of BCIs due to

their safety, low cost, and convenience.

A closed-loop EEG-based BCI system, shown in Fig. 1,

consists of the following components:

Fig. 1. Flowchart of a closed-loop EEG-based BCI system.

1) Signal acquisition [14], which uses an EEG device to

collect EEG signals from the scalp. In the early days,

EEG devices used wired connections and gel to increase

conductivity. Currently, wireless connections and dry

electrodes are becoming increasingly popular.

2) Signal processing [15], which usually includes tempo-

ral filtering and spatial filtering. The former typically

uses a bandpass filter to reduce interference and noise,

such as muscle artefacts, eye blinks, and DC drift.

The latter combines different EEG channels to increase

the signal-to-noise ratio. Popular spatial filters include

common spatial patterns (CSP) [16], independent com-

ponent analysis (ICA) [17], blind source separation [18],

xDAWN [19], etc.

3) Feature extraction, for which time domain, frequency

domain [20], time-frequency domain, Riemannian space

[21] and/or functional brain connectivity [22] features

could be used.

4) Pattern recognition. Depending on the application, a

classifier or regression model is used.

5) Controller, which outputs a command to control an

external device, e.g., a wheelchair or a drone, or to alter

the behaviour of an environment, e.g., the difficulty level
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of a video game. A controller may not be needed in

certain applications, e.g., BCI spellers.

When deep learning is used, feature extraction and pattern

recognition can be integrated into a single neural network,

and both components are optimized simultaneously and auto-

matically.

EEG signals are weak, easily contaminated by interference

and noise, non-stationary for the same subject, and varying

across different subjects and sessions. Therefore, it is challeng-

ing to build a universal machine learning model in an EEG-

based BCI system that is optimal for different subjects, during

different sessions, for different devices and tasks. Usually, a

calibration session is needed to collect some training data for

a new subject, which is time-consuming and user unfriendly.

Therefore, reducing this subject-specific calibration is critical

to the market success of EEG-based BCIs.

Different machine learning techniques, e.g., transfer learn-

ing (TL) [23] and active learning [24], have been used for

this purpose. Among them, TL is particularly promising

because it can utilize data or knowledge from similar or

relevant subjects/sessions/devices/tasks to facilitate learning

for a new subject/session/device/task. Moreover, it may also be

integrated with other machine learning techniques, e.g., active

learning [25], [26], for even better performance. This paper

focuses on TL in EEG-based BCIs.

There are three classic classification paradigms in EEG-

based BCIs, which will be considered in this paper:

1) Motor imagery (MI) [27], which can modify neuronal

activity in primary sensorimotor areas, is similar to a real

executed movement. As different MIs affect different

regions of the brain, e.g., the left (right) hemisphere for

right-hand (left-hand) MI and centre for feet MI, a BCI

can decode MI from the EEG signals and map it to a

specific command.

2) Event-related potentials (ERP) [28], [29], which are

any stereotyped EEG responses to a visual, audio, or

tactile stimulus. The most frequently used ERP is P300

[30], which occurs approximately 300 ms after a rare

stimulus.

3) Steady-state visual evoked potentials (SSVEP) [31]. The

EEG oscillates at the same (or multiples of) frequency

of the visual stimulus at a specific frequency, usually

between 3.5 and 75 Hz [32]. This paradigm is frequently

used in BCI spellers [33], as it can achieve a very high

information transfer rate.

EEG-based affective BCIs (aBCIs) [34]–[37], which detect

affective states (moods, emotions) from EEGs and use them in

BCIs, have become an emerging research area. There are also

some interesting regression problems in EEG-based BCIs, e.g.,

driver drowsiness estimation [38]–[40] and user reaction time

estimation [41]. Additionally, recent research [42], [43] has

shown that BCIs also suffer from adversarial attacks, where

deliberately designed tiny perturbations are added to benign

EEG trials to fool the machine learning model and cause

dramatic performance degradation. This paper also considers

aBCIs, regression problems, and adversarial attacks of EEG-

based BCIs.

Although TL has been applied in all of the above EEG-

based BCI paradigms and applications, to our knowledge, there

is no comprehensive and up-to-date review on it. Wang et al.

[44] performed a short review in a conference paper in 2015.

Jayaram et al. [45] gave a brief review in 2016, considering

only cross-subject and cross-session transfers. Lotte et al. [46]

provided a comprehensive review of classification algorithms

for EEG-based BCIs between 2007 and 2017. Again, they only

considered cross-subject and cross-session transfers. Azab

et al. [47] performed a review of four categories of TL

approaches in BCIs in 2018: 1) instance-based TL; 2) feature-

representation TL; 3) classifier-based TL; and 4) relational-

based TL.

However, all the aforementioned reviews considered only

cross-subject and cross-session TL of the three classic

paradigms of EEG-based BCIs (MI, ERP and SSVEP) but did

not mention the more challenging cross-device and cross-task

transfers, aBCIs, regression problems and adversarial attacks.

To fill these gaps and to avoid overlapping too much with

previous reviews, this paper reviews journal publications of TL

approaches in EEG-based BCIs in the last few years, i.e., since

2016. Six paradigms and applications are considered: MI, ERP,

SSVEP, aBCI, regression problems, and adversarial attacks.

For each paradigm/application, we group the TL approaches

into cross-subject/session (because these two concepts are

essentially the same), cross-device, and cross-task settings and

review them separately, unless no TL approaches have been

proposed for that category. Some TL approaches may cover

more than two categories, e.g., both cross-subject and cross-

device transfers were considered. In this case, we introduce

them in the more challenging category, e.g., cross-device TL.

When there are multiple TL approaches in each category, we

generally introduce them according to the years in which they

were proposed, unless there are intrinsic connections among

several approaches.

The remainder of this paper is organized as follows: Sec-

tion II briefly introduces some basic concepts of TL. Sec-

tions III-VIII review TL approaches in MI, ERP, SSVEP, aB-

CIs, regression problems, and adversarial attacks, respectively.

Section IX makes observations and conclusions, which may

point to some future research directions.

II. TL CONCEPTS AND SCENARIOS

This section introduces the basic definitions of TL, some

related concepts, e.g., domain adaptation and covariate shift,

and different TL scenarios in EEG-based BCIs.

In machine learning, a feature vector is usually denoted by

a bold symbol x. To emphasize that each EEG trial is a 2D

matrix, this paper denotes a trial by X ∈ R
E×T , where E is

the number of electrodes and T is the number of time domain

samples. Of course, X can also be converted into a feature

vector x.

A. TL Concepts

Definition 1: A domain [23], [48] D consists of a feature

space X and its associated marginal probability distribution

P (X), i.e., D = {X , P (X)}, where X ∈ X .
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A source domain Ds and a target domain Dt are different if

they have different feature spaces, i.e., Xs 6= Xt, and/or differ-

ent marginal probability distributions, i.e., Ps(X) 6= Pt(X).
Definition 2: Given a domain D, a task [23], [48] T consists

of a label space Y and a prediction function f(X), i.e., T =
{Y, f(X)}.

Let y ∈ Y . Then, f(X) = P (y|X) is the conditional

probability distribution. Two tasks Ts and Tt are different if

they have different label spaces, i.e., Ys 6= Yt, and/or different

conditional probability distributions, i.e., Ps(y|X) 6= Pt(y|X).
Definition 3: Given a source domain Ds = {(X i

s, y
i
s)}

N
i=1

and a target domain Dt with Nl labelled samples

{(X i
t , y

i
t)}

Nl

i=1 and Nu unlabelled samples {X i
t}

Nl+Nu

i=Nl+1, trans-

fer learning (TL) aims to learn a target prediction function

f : Xt 7→ yt with low expected error on Dt under the general

assumptions that Xs 6= Xt, Ys 6= Yt, Ps(X) 6= Pt(X), and/or

Ps(y|X) 6= Pt(y|X).
In inductive TL, the target domain has some labelled

samples, i.e., Nl > 0. For most inductive TL scenarios

in BCIs, the source domain samples are labelled, but they

could also be unlabelled. When the source domain samples

are labelled, inductive TL is similar to multi-task learning

[49]. The difference is that multi-task learning tries to learn

a model for every domain simultaneously, whereas inductive

TL focuses only on the target domain. In transductive TL, the

source domain samples are all labelled, but the target domain

samples are all unlabelled, i.e., Nl = 0. In unsupervised TL,

no samples in either domain are labelled.

Domain adaptation is a special case of TL, or more specif-

ically, transductive TL:

Definition 4: Given a source domain Ds and a target domain

Dt, domain adaptation aims to learn a target prediction

function f : xt 7→ yt with low expected error on Dt, under the

assumptions that Xs = Xt and Ys = Yt, but Ps(X) 6= Pt(X)
and/or Ps(y|X) 6= Pt(y|X).

Covariate shift is a special and simpler case of domain

adaptation:

Definition 5: Given a source domain Ds and a target

domain Dt, covariate shift occurs when Xs = Xt, Ys = Yt,

Ps(y|X) = Pt(y|X), but Ps(X) 6= Pt(X).

B. TL Scenarios

According to the variations between the source and the

target domains, there can be different TL scenarios in EEG-

based BCIs:

1) Cross-subject TL. Data from other subjects (the source

domains) are used to facilitate the calibration for a new

subject (the target domain). Usually, the task and EEG

device are the same across subjects.

2) Cross-session TL. Data from previous sessions (the

source domains) are used to facilitate the calibration of

a new session (the target domain). For example, data

from previous days are used in the current calibration.

Usually, the subject, task and EEG device are the same

across sessions.

3) Cross-device TL. Data from one EEG device (the source

domain), is used to facilitate the calibration of a new

device (the target domain). Usually, the task and subject

are the same across EEG devices.

4) Cross-task TL. Labelled data from other similar or

relevant tasks (the source domains) is used to facilitate

the calibration for a new task (the target domain). For

example, data from left- and right-hand MI are used

in the calibration of feet and tongue MI. Usually, the

subject and EEG device are the same across tasks.

Since cross-subject TL and cross-session TL are essentially

the same, this paper combines them into one category: cross-

subject/session TL. Generally, cross-device TL and cross-task

TL are more challenging than cross-subject/session TL; hence,

they were less studied in the literature.

The above simple TL scenarios could also be mixed to form

more complex TL scenarios, e.g., cross-subject and cross-

device TL [26], cross-subject and cross-task TL [50], etc.

III. TL IN MI-BASED BCIS

This section reviews recent progress in TL for MI-based

BCIs. Many of them used the BCI Competition datasets1.

Assume there are S source domains, and the s-th source

domain has Ns EEG trials. The n-th trial of the s-th source

domain is denoted by Xn
s ∈ R

E×T , where E is the number

of electrodes and T is the number of time domain samples

from each channel. The corresponding covariance matrix is

Cn
s ∈ R

E×E , which is symmetric and positive definite (SPD)

and lies on a Riemannian manifold. For binary classification,

the label for Xn
s is yns ∈ {−1, 1}. The n-th EEG trial in the

target domain is denoted by Xn
t , and the covariance matrix

is denoted by Cn
t . These notations are used throughout the

paper.

A. Cross-Subject/Session Transfer

Dai et al. [51] proposed the transfer kernel common spatial

patterns (TKCSP) method, which integrates kernel common

spatial patterns (KCSP) [52] and transfer kernel learning

(TKL) [53] for EEG trial spatial filtering in cross-subject

MI classification. It first computes a domain-invariant kernel

by TKL and then uses it in the KCSP approach, which

further finds the components with the largest energy difference

between two classes. Note that TL was used in EEG signal

processing (spatial filtering) instead of classification.

Jayaram et al. [45] proposed a multi-task learning frame-

work for cross-subject/session transfers, which does not need

any labelled data in the target domain. The linear decision rule

is y = sign(µT
αXµw), where µα ∈ R

C×1 are the channel

weights and µw ∈ R
T×1 are the feature weights. µα and µw

are obtained by minimizing

min
αs,ws

[
1

λ

S∑

s=1

Ns∑

n=1

∥∥αT
s X

n
s ws − yns

∥∥2

+
S∑

s=1

Ω(ws;µw,Σw) +
S∑

s=1

Ω(αs;µα,Σα)

]
, (1)

1http://www.bbci.de/competition/
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where αs ∈ R
C×1 are the channel weights for the s-th

source subject, ws ∈ R
T×1 are the feature weights, λ is

a hyperparameter, and Ω(ws;µw,Σw) is the negative log

prior probability of ws given the Gaussian distribution pa-

rameterized by (µw,Σw). µw and Σw (µα and Σα) are the

mean vector and covariance matrix of {ws}
S
s=1 ({αs}

S
s=1),

respectively.

In (1), the first term requires αs and ws to work well

for the s-th source subject; the second term ensures that the

divergence of ws from the shared (µw,Σw) is small, i.e., all

the source subjects should have similar ws values; and the

third term ensures that the divergence of αs from the shared

(µα,Σα) is small. µα and µw can be viewed as the subject-

invariant characteristics of stimulus prediction and hence used

directly by a new subject. Jayaram et al. demonstrated that

their approach worked well on cross-subject transfers in MI

classification and cross-session transfers for one patient with

amyotrophic lateral sclerosis.

Azab et al. [54] proposed weighted TL for cross-subject

transfers in MI classification as an improvement of the above

approach. They assumed that each source subject has plenty

of labelled samples, whereas the target subject has only a

few labelled samples. They first trained a logistic regression

classifier for each source subject by using a cross-entropy

loss function with an L2 regularization term. Then, a logistic

regression classifier for the target subject was trained so that

the cross-entropy loss of the few labelled samples in the

target domain is minimized, and its parameters are close to

those of the source subjects. The mean vector and covariance

matrix of the classifier parameters in the source domains were

computed in a similar way to that in [45], except that for each

source domain, a weight determined by the Kullback-Leibler

divergence between it and the target domain was used.

Hossain et al. [55] proposed an ensemble learning approach

for cross-subject transfers in multi-class MI classification. Four

base classifiers were used, all constructed using TL and active

learning: 1) multi-class direct transfer with active learning

(mDTAL), a multi-class extension of the active TL approach

proposed in [56]; 2) multi-class aligned instance transfer

with active learning, which is similar to mDTAL except that

only the source domain samples correctly classified by the

corresponding classifier are transferred; 3) most informative

and aligned instances transfer with active learning, which

transfers only the source domain samples correctly classified

by its classifiers and near the decision boundary (i.e., the

most informative samples); and 4) most informative instances

transfer with active learning, which transfers only source

domain samples close to the decision boundary. The four

base learners were finally stacked to achieve a more robust

performance.

Since the covariance matrices of EEG trials are SPD and

lie on a Riemannian manifold instead of in Euclidean space,

Riemannian approaches [21] have become popular in EEG-

based BCIs. Different TL approaches have also been proposed

recently.

Zanini et al. [57] proposed a Riemannian alignment (RA)

approach to centre the EEG covariance matrices {Cn
k }

Nk

n=1 in

the k-th domain with respect to a reference covariance matrix

Rk specific to that domain. More specifically, RA computes

first the covariance matrices of some resting trials in the k-

th domain, in which the subject is not performing any task,

and then calculates their Riemannian mean Rk. Rk is next

used as the reference matrix to reduce the inter-subject/session

variation:

C̃n
k = R

−
1

2

k Cn
kR

−
1

2

k , (2)

where C̃n
k is the aligned covariance matrix for Cn

k . Equation

(2) centres the reference state of different subjects/sessions at

the identity matrix. In MI, the resting state is the time window

during which the subject is not performing any task, e.g., the

transition window between two MI tasks. In ERP, the non-

target stimuli are used as the resting state, requiring that some

labelled trials in the target domain must be known. Zanini et al.

also proposed improvements to the minimum distance to the

Riemannian mean (MDRM) [58] classifier and demonstrated

the effectiveness of RA and the improved MDRM in both MI

and ERP classifications.

Yair et al. [59] proposed a domain adaptation approach

using the analytic expression of parallel transport (PT) on

the cone manifold of SPD matrices. The goal was to find

a common tangent space such that the mappings of Ct and

Cs are aligned. It first computes the Riemannian mean Rk of

the k-th domain and then the Riemannian mean R̂ of all Rk.

Then, each Rk is moved to R̂ by PT ΓRk→R̂, and Cn
k , the

n-th covariance matrix in the k-th domain, is projected to

Log
(
R̂−

1

2ΓRk→R̂ (Cn
k ) R̂

−
1

2

)
= Log

(
R

−
1

2

k Cn
kR

−
1

2

k

)
. (3)

After the projection step, the covariance matrices in different

domains are mapped to the same tangent space, so a classifier

built in a source domain can be directly applied to the

target domain. Equation (3) is essentially identical to RA in

(2), except that (3) works in the tangent space, whereas (2)

works in the Riemannian space. Yair et al. demonstrated the

effectiveness of PT in cross-subject MI classification, sleep

stage classification, and mental arithmetic identification.

To make RA more flexible, faster, and completely unsu-

pervised, He and Wu [60] proposed a Euclidean alignment

(EA) approach to align EEG trials from different subjects in

Euclidean space. Mathematically, for the k-th domain, EA

computes the reference matrix Rk = 1
N

∑N
n=1 X

n
k (X

n
k )

T,

i.e., Rk is the arithmetic mean of all covariance matrices in

the k-th domain (it can also be the Riemannian mean, which

is more computationally intensive than the arithmetic mean),

then performs the alignment by X̃n
k = R

−
1

2

k Xn
k . After EA, the

mean covariance matrices of all domains become the identity

matrix. Both Euclidean space and Riemannian space feature

extraction and classification approaches can then be applied

to X̃n
k . EA can be viewed as a generalization of Yair et al.’s

parallel transport approach because the computation of Rk in

EA is more flexible, and both Euclidean and Riemannian space

classifiers can be used after EA. He and Wu demonstrated that

EA outperformed RA in both MI and ERP classifications in

both offline and simulated online applications.

Rodrigues et al. [61] proposed Riemannian Procrustes anal-

ysis (RPA) to accommodate covariant shifts in EEG-based
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BCIs. It is semi-supervised and requires at least one labelled

sample from each target domain class. RPA first matches

the statistical distributions of the covariance matrices of the

EEG trials from different domains, using simple geometrical

transformations, namely, translation, scaling, and rotation, in

sequence. Then, the labelled and transformed data from both

domains are concatenated to train a classifier, which is next ap-

plied to the transformed and unlabelled target domain samples.

Mathematically, it transforms each target domain covariance

matrix Cn
t into

C̃n
t = M

1

2

s

[
UT

(
M̃

−
1

2

t Cn
t M̃

−
1

2

t

)p

U
]
M

1

2

s , (4)

where

• M̃
−

1

2

t is the geometric mean of the labelled target domain

samples, which centres the target domain covariance

matrices at the identity matrix.

• p = (d/d̃)
1

2 stretches the target domain covariance

matrices so that they have the same dispersion as the

source domain, in which d and d̃ are the dispersions

around the geometric mean of the source domain and

the target domain, respectively.

• U is an orthogonal rotation matrix to be optimized, which

minimizes the distance between the class means of the

source domain and the translated and stretched target

domain.

• M
−

1

2

s is the geometric mean of the labelled source

domain samples, which ensures that the geometric mean

of C̃n
t is the same as that in the source domain.

Note that the class label information is only needed in com-

puting U . Although M̃
−

1

2

t , p and M
−

1

2

s are also computed

from the labeled samples, they do not need the specific class

labels.

Clearly, RPA is a generalization of RA. Rodrigues et al.

[61] showed that RPA can achieve promising results in cross-

subject MI, ERP and SSVEP classification.

Recently, Zhang and Wu [62] proposed a manifold embed-

ded knowledge transfer (MEKT) approach, which first aligns

the covariance matrices of the EEG trials in the Riemannian

manifold, extracts features in the tangent space, and then per-

forms domain adaptation by minimizing the joint probability

distribution shift between the source and the target domains

while preserving their geometric structures. More specifically,

it consists of the following three steps [62]:

1) Covariance matrix centroid alignment (CA). Align the

centroid of the covariance matrices in each domain,

i.e., C̃n
s = R

−
1

2

s Cn
s R

−
1

2

s and C̃n
t = R

−
1

2

t Cn
t R

−f 1

2

t ,

where Rs (Rt) can be the Riemannian mean, the Eu-

clidean mean, or the Log-Euclidean mean of all Cn
s

(Cn
t ). This is essentially a generalization of RA [57].

The marginal probability distributions from different

domains are brought together after CA.

2) Tangent space feature extraction. Map and assemble all

C̃n
s (C̃n

t ) into a tangent space super matrix X̃s ∈ R
d×Ns

(X̃t ∈ R
d×Nt), where d = E(E + 1)/2 is the dimen-

sionality of the tangent space features.

3) Mapping matrices identification. Find the projection

matrices A ∈ R
d×p and B ∈ R

d×p, where p ≪ d is the

dimensionality of the shared subspace, such that ATX̃s

and BTX̃t are similar.

After MEKT, a classifier can be trained on (ATX̃s,ys) and

applied to BTX̃t to estimate their labels.

MEKT can cope with one or more source domains and still

be efficient. Zhang and Wu [62] also used domain transferabil-

ity estimation (DTE) to identify the most beneficial source

domains, in case there are too many of them. Experiments

in cross-subject MI and ERP classification demonstrated that

MEKT outperformed several state-of-the-art TL approaches,

and DTE can reduce the computational cost to more than half

of when the number of source domains is large, with little

sacrifice of classification accuracy.

A comparison of the afore-mentioned EEG data alignment

approaches, and a new approach [50] introduced later in this

section, is given in Table I.

Singh et al. [63] proposed a TL approach for estimating the

sample covariance matrices, which are used by the MDRM

classifier, from a very small number of target domain samples.

It first estimates the sample covariance matrix for each class

by a weighted average of the sample covariance matrix of

the corresponding class from the target domain and that in

the source domain. The mixed sample covariance matrix is

the sum of the per-class sample covariance matrices. Spatial

filters are then computed from the mixed and per-class sample

covariance matrices. Next, the covariance matrices of the

spatially filtered EEG trials are further filtered by Fisher

geodesic discriminant analysis [64] and used as features in

the MDRM [58] classifier.

Deep learning, which has been very successful in image

processing, video analysis, speech recognition and natural

language processing, has also started to find applications

in EEG-based BCIs. For example, Schirrmeister et al. [65]

proposed two convolutional neural networks (CNNs) for EEG

decoding, and showed that both outperformed filter bank

common spatial patterns (FBCSP) [66] in cross-subject MI

classification. Lawhern et al. [67] proposed EEGNet, a com-

pact CNN architecture for EEG classification. It can be applied

across different BCI paradigms, be trained with very limited

data, and generate neurophysiologically interpretable features.

EEGNet achieved robust results in both the within-subject and

cross-subject classification of MIs and ERPs.

Although the above approaches achieved promising cross-

subject classification performance, they did not explicitly use

the idea of TL. Currently, a common TL technique for deep

learning-based EEG classification [68], [69] is based on fine-

tuning with new data from the target session/subject. Unlike

concatenating target data with existing source data, the fine-

tuning process is established on a pre-trained model and

performs iterative learning on a relatively small amount of

target data. Although the training data involved is exactly the

same as using data concatenation, the prediction performance

can be improved significantly.

More specifically, Wu et al. [70] proposed a parallel mul-

tiscale filter CNN for MI classification. It consisted of three

layers: a CNN to extract both temporal and spatial features

from EEG signals, a feature reduction layer with square and

log non-linear functions followed by pooling and dropout, and
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TABLE I
COMPARISON OF DIFFERENT EEG DATA ALIGNMENT APPROACHES.

RA [57] PT [59] PTA [61] EA [60] CA [62] LA [50]

Applicable Paradigm MI, ERP MI MI, ERP, SSVEP MI, ERP MI, ERP MI

Online or Offline Both Both Both Both Both Offline

Need Labeled Target
Domain Trials

No for MI,
Yes for ERP

No Yes No No Yes

What to Align
Riemannian space

covariance matrices
Riemannian Tangent

space features
Riemannian space

covariance matrices
Euclidean space

EEG trials
Riemannian space

covariance matrices
Euclidean space

EEG trials

Reference Matrix
Calculation

Riemannian mean
of resting state

covariance matrices
in each domain

Riemannian mean
of all covariance

matrices in
each domain

Riemannian mean
of all labeled

covariance
matrices in

each domain

Euclidean mean
of all covariance

matrices in
each domain

Riemannian,
Euclidean, or

Log-Euclidean
mean of all
covariance
matrices in

each domain

Log-Euclidean
mean of labeled

covariance matrices
in each class

of each domain

Classifier
Riemannian
space only

Euclidean
space only

Riemannian
space only

Riemannian or
Euclidean space

Riemannian or
Euclidean space

Riemannian or
Euclidean space

Handle Class
Mismatch between

Domains
No No No No No Yes

Computational Cost High High High Low Low Low

a dense classification layer fine-tuned on a small amount of

calibration data from the target subject. They showed that

fine-tuning achieved improved performance in cross-subject

transfers.

B. Cross-Device TL

Xu et al. [71] studied the performance of deep learning

in cross-dataset TL. Eight publicly available MI datasets were

considered. Although the different datasets used different EEG

devices, channels and MI tasks, they only selected three

common channels (C3, CZ, C4) and the left-hand and right-

hand MI tasks. They applied an online pre-alignment strategy

to each EEG trial of each subject by recursively computing

the Riemannian mean online and using it as the reference

matrix in the EA approach. They showed that online pre-

alignment significantly increased the performance of deep

learning models in cross-dataset TL.

C. Cross-Task TL

Both RA and EA assume that the source domains have the

same feature space and label space as the target domain, which

may not hold in many real-world applications, i.e., they may

not be used in cross-task transfers. Recently, He and Wu [50]

also proposed a label alignment (LA) approach, which can

handle the situation that the source domains have different

label spaces from the target domain. For MI-based BCIs, this

means the source subjects and the target subject can perform

completely different MI tasks (e.g., the source subject may

perform left-hand and right-hand MI tasks, whereas the target

subject may perform feet and tongue MIs), but the source

subjects’ data can still be used to facilitate the calibration for

a target subject.

When the source and target domain devices are different,

LA first selects the source EEG channels that are the most

similar to the target EEG channels. Then, it computes the mean

covariance matrix of each source domain class and estimates

the mean covariance matrix of each target domain class. Next,

it re-centres each source domain class at the corresponding

estimated class mean of the target domain. Both Euclidean

space and Riemannian space feature extraction and classifica-

tion approaches can next be applied to aligned trials. LA only

needs as few as one labelled sample from each target domain

class, can be used as a pre-processing step before different

feature extraction and classification algorithms, and can be

integrated with other TL approaches to achieve an even better

performance. He and Wu [50] demonstrated the effectiveness

of LA in simultaneous cross-subject, cross-device and cross-

task TL in MI classification.

An illustration of the difference between LA and EA is

shown in Fig. 2. To our knowledge, LA is the only cross-task

TL work in EEG-based BCIs and the most complicated TL

scenario (simultaneous cross-subject, cross-device and cross-

task TL) considered in the literature so far.

Fig. 2. Illustration of EA and LA [50].
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IV. TL IN ERP-BASED BCIS

This section reviews recent TL approaches in ERP-based

BCIs. Many approaches introduced in the previous section,

e.g., RA, EA, RPA and EEGNet, can also be used here. To

avoid duplication, we only include approaches not introduced

in the previous section here. Because there were no publica-

tions on cross-task TL in ERP-based BCIs, we do not have a

“Cross-Task TL” subsection.

A. Cross-Subject/Session TL

Waytowich et al. [72] proposed unsupervised spectral trans-

fer method using information geometry (STIG) for subject-

independent ERP-based BCIs. STIG uses a spectral meta-

learner [73] to combine predictions from an ensemble of

MDRM classifiers on data from individual source subjects.

Experiments on single-trial ERP classification demonstrated

that STIG significantly outperformed some calibration-free ap-

proaches and traditional within-subject calibration approaches

when limited data were available in both offline and online

ERP classifications.

Wu [74] proposed weighted adaptation regularization

(wAR) for cross-subject transfers in ERP-based BCIs in both

online and offline settings. Mathematically, wAR learns the

following classifier directly:

argmin
f

Ns∑

n=1

wn
s ℓ(f(X

n
s ), y

n
s ) + wt

Nl∑

n=1

wn
t ℓ(f(X

n
t ), y

n
t )

+ σ‖f‖2K + λPDf,K(Ps(Xs), Pt(Xt))

+ λQDf,K(Ps(Xs|ys), Pt(Xt|yt)) (5)

where ℓ is a loss function, wt is the overall weight of target

domain samples, K is a kernel function, and σ, λP and λQ

are non-negative regularization parameters. wn
s and wn

t are

the weights for the n-th sample in the source domain and the

target domain, respectively, to balance the number of positive

and negative samples in the corresponding domain.

Briefly, the five terms in (5) minimize the fitting loss in

the source domain, the fitting loss in the target domain,

the structural risk of the classifier, the distance between the

marginal probability distributions Ps(Xs) and Pt(Xt), and

the distance between the conditional probability distributions

Ps(Xs|ys) and Pt(Xt|yt). Experiments on single-trial visual

evoked potential classification demonstrated that both online

and offline wAR algorithms were effective. Wu [74] also

proposed a source domain selection approach, which selects

the most beneficial source subjects for transferring. It can

reduce the computational cost of wAR by ∼50% without

sacrificing the classification performance.

Qi et al. [75] performed cross-subject TL on a P300 speller

to reduce the calibration time. A small set of ERP epochs

from the target subject was used as a reference to compute

the Riemannian distance to each source ERP sample from an

existing data pool. The most similar ones were selected to

train a classifier and were applied to the target subject.

Jin et al. [76] used a generic model set to reduce the

calibration time in P300-based BCIs. Filtered EEG data from

116 participants were assembled into a data matrix, principal

component analysis (PCA) was used to reduce the dimension-

ality of the time domain features, and then the 116 participants

were clustered into 10 groups by k-means clustering. A

weighted linear discriminant analysis (WLDA) classifier was

then trained for each cluster. These 10 classifiers formed the

generic model set. For a new subject, a few calibration samples

were acquired, and an online linear discriminant (OLDA)

model was trained. The OLDA model was matched to the

closest WLDA model, which was then selected as the model

for the new subject.

Deep learning has also been used in ERP classification.

Inspired by generative adversarial networks (GANs) [77],

Ming et al. [78] proposed a subject adaptation network (SAN)

to mitigate individual differences in EEGs. Based on the

characteristics of the application, they designed an artificial

low-dimensional distribution and forced the transformed EEG

features to approximate it. For example, for two-class visual

evoked potential classification, the artificial distribution is

bimodal, and the area of each modal is proportional to the

number of samples in the corresponding class. Experiments

on cross-subject visual evoked potential classification demon-

strated that SAN outperformed a support vector machine

(SVM) and EEGNet.

B. Cross-Device TL

Wu et al. [26] proposed active weighted adaptation reg-

ularization (AwAR) for cross-device TL. It integrates wAR

(introduced in Section IV-A), which uses labelled data from

the previous device and handles class imbalance, and active

learning [24], which selects the most informative samples from

the new device to label. Only the common channels were used

in wAR, but all the channels of the new device can be used in

active learning to achieve better performance. Experiments on

single-trial visual evoked potential classification using three

different EEG devices with different numbers of electrodes

showed that AwAR can significantly reduce the calibration

data requirement for a new device in offline calibration.

To our knowledge, this is the only study on cross-device

TL in ERP-based BCIs.

V. TL IN SSVEP-BASED BCIS

This section reviews recent TL approaches in SSVEP-based

BCIs. Because there were no publications on cross-task TL

in SSVEP-based BCIs, we do not have a “Cross-Task TL”

subsection. Overall, many fewer TL studies on SSVEPs have

been performed compared with MI tasks and ERPs.

A. Cross-Subject/Session TL

Waytowich et al. [79] proposed Compact-CNN, which is

essentially the EEGNet [67] approach introduced in Sec-

tion III-A, for 12-class SSVEP classification without the need

for any user-specific calibration. It outperformed state-of-

the-art hand-crafted approaches using canonical correlation

analysis (CCA) and Combined-CCA.

Rodrigues et al. [61] proposed RPA, which can also be used

in cross-subject transfer of SSVEP-based BCIs. Since it has

been introduced in Section III-A, it is not repeated here.
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B. Cross-Device TL

Nakanishi et al. [80] proposed a cross-device TL algorithm

for reducing the calibration effort in an SSVEP-based BCI

speller. It first computes a set of spatial filters by channel

averaging, CCA, or task-related component analysis and then

concatenates them to form a filter matrix W . The average trial

of Class c of the source domain is computed and filtered by

W to obtain Zc. Let Xt be a single trial to be classified in the

target domain. Its spatial filter matrix Wc is then computed by

Wc = argmin
W

∥∥Zc −WTXt

∥∥2
2
; (6)

i.e., Wc = (XtX
T
t )

−1XtZ
T
c . Then, Pearson’s correlation

coefficients between WT
c Xt and Zc are computed as r

(1)
c , and

canonical correlation coefficients between Xt and computer-

generated SSVEP models Yc are computed as r
(2)
c . The two

feature values are combined as

ρc =

2∑

i=1

sign
(
r(i)c

)
·
(
r(i)c

)2

, (7)

and the target class is identified as argmax
c

ρc.

To our knowledge, this is the only study on cross-device

TL in SSVEP-based BCIs.

VI. TL IN ABCIS

Recently, there has been a fast-growing research interest

in aBCIs [34]–[37]. Emotions can be represented by discrete

categories [81] (e.g., happy, sad, and angry) and by continuous

values in the 2D space of arousal and valence [82] or the

3D space of arousal, valence, and dominance [83]. Therefore,

there can be both classification and regression problems in

aBCIs. However, the current literature focused exclusively on

classification problems.

Most studies used the publicly available DEAP [84] and

SEED [9] datasets. DEAP consists of 32-channel EEGs

recorded by a BioSemi ActiveTwo device from 32 subjects

while they were watching minute-long music videos, whereas

SEED consists of 62-channel EEGs recorded by an ESI

NeuroScan device from 15 subjects while they were watching

4-minute movie clips. By using SEED, Zheng et al. [85]

investigated whether stable EEG patterns exist over time

for emotion recognition. Using differential entropy features,

they found that stable patterns did exhibit consistency across

sessions and subjects. Thus, it is possible to perform TL in

aBCIs.

This section reviews the latest progress on TL in aBCIs.

Because there were no publications on cross-task TL in aBCIs,

we do not have a “Cross-Task TL” subsection.

A. Cross-Subject/Session TL

Chai et al. [86] proposed adaptive subspace feature match-

ing (ASFM) for cross-subject and cross-session transfer in

offline and simulated online EEG-based emotion classification.

Differential entropy features were used. ASFM first performs

PCA of the source domain and the target domain separately.

Let Zs (Zt) be the d leading principal components in the

source (target) domain, which form the corresponding sub-

space. Then, ASFM transforms the source domain subspace

to ZsZ
T
s Zt and projects the source data into it. The target

data are projected directly into Zt. In this way, the marginal

distribution discrepancy between the two domains is reduced.

Next, an iterative pseudo-label refinement strategy is used to

train a logistic regression classifier using the labelled source

domain samples and pseudo-labelled target domain samples,

which can be directly applied to unlabelled target domain

samples.

Lin and Jung [87] proposed a conditional TL (cTL) frame-

work to facilitate positive cross-subject transfers in aBCIs.

Five differential laterality features (topoplots), corresponding

to five different frequency bands, from each EEG channel are

extracted. The cTL method first computes the classification

accuracy by using the target subject’s data only and performs

transfer only if that accuracy is below the chance level. Then, it

uses ReliefF [88] to select a few of the most emotion-relevant

features in the target domain and calculates their correlations

with the corresponding features in each source domain to

select a few of the most similar (correlated) source subjects.

Next, the target domain data and the selected source domain

data are concatenated to train a classifier.

Lin et al. [89] proposed a robust PCA (RPCA)-based [90]

signal filtering strategy and validated its performance in cross-

day binary emotion classification. RPCA decomposes an input

matrix into the sum of a low-rank matrix and a sparse matrix.

The former accounts for the relatively regular profiles of the

input signals, whereas the latter accounts for its deviant events.

Lin et al. showed that the RPCA-decomposed sparse signals

filtered from the background EEG activity contributed more to

the inter-day variability and that the predominately captured

the EEG oscillations of emotional responses behaved relatively

consistently across days.

Li et al. [91] extracted nine types of time-frequency do-

main features (the peak-to-peak mean, mean square, variance,

Hjorth activity, Hjorth mobility, Hjorth complexity, maximum

power spectral frequency, maximum power spectral density,

power sum) and nine types of non- linear dynamical system

features (the approximate entropy, C0 complexity, correlation

dimension, Kolmogorov entropy, Lyapunov exponent, permu-

tation entropy, singular entropy, Shannon entropy, spectral

entropy) from EEG measurements. Through automatic and

manual feature selection, they verified the effectiveness and

performance of the upper bounds of those features in cross-

subject emotion classification on DEAP and SEED. They

found that L1-norm penalty-based feature selection achieved

robust performance on both datasets, and the Hjorth mobility

in the beta rhythm achieved the highest mean classification

accuracy.

Liu et al. [92] performed cross-day EEG-based emo-

tion classification. Seventeen subjects watched 6-9 emotional

movie clips on five different days over one month. Spectral

powers of the delta, theta, alpha, beta, low and high gamma

bands were computed for each of the 60 channels as initial

features, and then recursive feature elimination was used for

feature selection. In cross-day classification, the data from a

subset of the five days were used by an SVM to classify
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the data from the remaining days. They showed that EEG

variability could impair the emotion classification performance

dramatically, and using data from more days during training

could significantly improve the generalization performance.

Yang et al. [93] studied cross-subject emotion classification

on DEAP and SEED. Ten linear and non-linear features (the

Hjorth activity, Hjorth mobility, Hjorth complexity, standard

deviation, PSD alpha, PSD beta, PSD gamma, PSD theta,

sample entropy, and wavelet entropy) were extracted from each

channel and concatenated. Then, sequential backward feature

selection and significance test were used for feature selection,

and an RBF SVM was used as the classifier.

Li et al. [94] considered cross-subject EEG emotion clas-

sification for both supervised (the target subject has some

labelled samples) and semi-supervised (the target subject has

some labelled samples and unlabelled samples) scenarios.

We briefly introduce only their best-performing supervised

approach here. Multiple source domains are assumed. They

first performed source selection by training a classifier in

each source domain and compute its classification accuracy

on the labelled samples in the target domain. These accuracies

were then sorted to select the top few source subjects. A

style transfer mapping was learned between the target and

each selected source. For each selected source subject, they

performed SVM classification on his/her data, removed the

support vectors (because they are near the decision boundary

and hence uncertain), performed k-means clustering on the

remaining samples to obtain the prototypes, and mapped each

target domain labelled sample feature vector xn
t to the nearest

prototype in the same class by the following mapping:

min
A,b

n∑

i=1

‖Axn
t + b− dn‖22 + β‖A− I‖2F + γ‖b‖22, (8)

where dn is the nearest prototype in the same class of the

source domain, and β and γ are hyperparameters. A new,

unlabelled sample in the target domain is first mapped to

each selected source domain and then classified by a classifier

trained in the corresponding source domain. The classification

results from all source domains were then weighted averaged,

where the weights were determined by the accuracies of the

source domain classifiers.

Deep learning has also been gaining popularity in aBCI.

Chai et al. [95] proposed a subspace alignment autoencoder

(SAAE) for cross-subject and cross-session transfer in EEG-

based emotion classification. First, differential entropy features

from both domains were transformed into a domain-invariant

subspace using a stacked autoencoder. Then, kernel PCA,

graph regularization and maximum mean discrepancy were

used to reduce the feature distribution discrepancy between

the two domains. After that, a classifier trained in the source

domain can be directly applied to the target domain.

Yin and Zhang [96] proposed an adaptive stacked denoising

autoencoder (SDAE) for cross-session binary classification of

mental workload levels from EEG. The weights of the shallow

hidden neurons of the SDAE were adaptively updated during

the testing phase using augmented testing samples and their

pseudo-labels.

Zheng et al. [97] presented EmotionMeter, a multi-modal

emotion recognition framework that combines brain waves

and eye movements to classify four emotions (fear, sadness,

happiness, and neutrality). They adopted a bimodal deep

autoencoder to extract the shared representations of both EEGs

and eye movements. Experimental results demonstrated that

modality fusion combining EEG and eye movements with

multi-modal deep learning can significantly enhance emotion

recognition accuracy compared with a single modality. They

also investigated the complementary characteristics of EEGs

and eye movements for emotion recognition and the stability

of EmotionMeter across sessions. They found that EEGs and

eye movements have important complementary characteristics,

e.g., EEGs have the advantage of classifying happy emotion

(80%) compared with eye movements (67%), whereas eye

movements outperform EEGs in recognizing fear emotion

(67% versus 65%).

Fahimi et al. [98] performed cross-subject attention clas-

sification. They first trained a CNN by combining EEG data

from the source subjects and then fine-tuned it by using some

calibration data from the target subject. The inputs were raw

EEGs, bandpass filtered EEGs, and decomposed EEGs (delta,

theta, alpha, beta and gamma bands).

Li et al. [99] proposed R2G-STNN, which consists of

spatial and temporal neural networks with regional-to-global

hierarchical feature learning, to learn discriminative spatial-

temporal EEG features for subject-independent emotion clas-

sification. To learn the spatial features, a bidirectional long

short-term memory (LSTM) network was used to capture the

intrinsic spatial relationships of EEG electrodes within and

between different brain regions. A region-attention layer was

also introduced to learn the weights of different brain regions.

A domain discriminator working corporately with the classifier

was used to reduce domain shift between training and testing.

Li et al. [100] further proposed an improved bi-hemisphere

domain adversarial neural network (BiDANN-S) for subject-

independent emotion classification. Inspired by the neuro-

science findings that the left and right hemispheres of the

human brain are asymmetric to the emotional response,

BiDANN-S uses a global and two local domain discriminators

working adversarially with a classifier to learn discriminative

emotional features for each hemisphere. To improve the gen-

eralization performance and to facilitate subject-independent

EEG emotion classification, it also tries to reduce the possible

domain differences in each hemisphere between the source and

target domains and ensure that the extracted EEG features are

robust to subject variations.

Li et al. [101] proposed a neural network model for cross-

subject/session EEG emotion recognition, which does not

require label information in the target domain. The neural

network was optimized by minimizing the classification error

in the source domain while making the source and target

domains similar in their latent representations. Adversarial

training was used to adapt the marginal distributions in the

early layers, and association reinforcement was performed to

adapt the conditional distributions in the last few layers. In

this way, it achieved joint distribution adaptation [102].

Song et al. [103] proposed a dynamical graph convolutional

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 09:46:08 UTC from IEEE Xplore.  Restrictions apply. 



2379-8920 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2020.3007453, IEEE
Transactions on Cognitive and Developmental Systems

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 10

neural network (DGCNN) for subject-dependent and subject-

independent emotion classification. Each EEG channel was

represented as a node in the DGCNN, and differential entropy

features from five frequency bands were used as inputs. After

graph filtering, a 1 × 1 convolution layer learned the dis-

criminative features among the five frequency bands. A ReLU

activation function was adopted to ensure that the outputs of

the graph filtering layer are non-negative. The outputs of the

activation function were sent to a multilayer dense network

for classification.

Appriou et al. [104] compared several modern ma-

chine learning algorithms on subject-specific and subject-

independent cognitive and emotional state classification, in-

cluding Riemannian approaches and a CNN. They found

that the CNN performed the best in both subject-specific

and subject-independent workload classification. A filter bank

tangent space classifier (FBTSC) was also proposed. It first

filters an EEG into several different frequency bands. For each

band, it computes the covariance matrices of the EEG trials,

projects them onto the tangent space at their mean, and then

applies a Euclidean space classifier. FBTSC achieved the best

performance in subject-specific emotion (valance and arousal)

classification.

B. Cross-Device TL

Lan et al. [105] considered cross-dataset transfers between

DEAP and SEED, which have different numbers of subjects,

and were recorded using different EEG devices with different

numbers of electrodes. They used only three trials (one posi-

tive, one neutral, and one negative) from 14 selected subjects

in DEAP and only the 32 common channels between the

two datasets. Five differential entropy features in five different

frequency bands (delta, theta, alpha, beta, and gamma) were

extracted from each channel and concatenated as features. Ex-

periments showed that domain adaptation, particularly transfer

component analysis [106] and maximum independence do-

main adaptation [107], can effectively improve the classifi-

cation accuracies compared to the baseline.

Lin [108] proposed RPCA-embedded TL to generate a

personalized cross-day emotion classifier with less labelled

data while obviating intra- and inter-individual differences.

The source dataset consists of 12 subjects using a 14-channel

Emotiv EPOC device, and the target dataset consists of 26

different subjects using a 30-channel Neuroscan Quik-Cap.

Twelve of the 26 channels of Quik-Cap were first selected

to align with 12 of the 14 selected channels from the EPOC

device. The Quik-Cap EEG signals were also down-sampled

and filtered to match those of the EPOC device. Five frequency

band (delta, theta, alpha, beta, gamma) features from each

of the six left-right channel pairs (e.g., AF3-AF4, F7-F8),

four fronto-posterior pairs (e.g., AF3-O1, F7-P7) and the 12

selected channels were extracted, resulting in a 120D feature

vector for each trial. Similar to [89], the sparse RPCA matrix

of the feature matrix was used as the final feature. The

Riemannian distance between the trials of each source subject

and the target subject was computed as a dissimilarity measure

to select the most similar source subjects, whose trials were

combined with the trials from the target subject to train an

SVM classifier.

Zheng et al. [109] considered an interesting cross-device (or

cross-modality) and cross-subject TL scenario in which the

target subject’s eye tracking data were used to enhance the

performance of cross-subject EEG-based affect classification.

It is a 3-step procedure. First, multiple individual emotion

classifiers are trained for the source subjects. Second, a re-

gression function is learned to model the relationship between

the data distribution and classifier parameters. Third, a target

classifier is constructed using the target feature distribution

and the distribution-to-classifier mapping. This heterogeneous

TL approach achieved comparable performance with homoge-

neous EEG-based models and scanpath-based models. To our

knowledge, this is the first study that transfers between two

different types of signals.

Deep learning has also been used in cross-device TL in

aBCIs. EEG trials are usually transformed to some sort of

images before input to the deep learning model. In this way,

EEG signals from different devices can be made consistent.

Siddharth et al. [110] performed multimodality (e.g., EEG,

ECG, face, etc.) cross-dataset emotion classification, e.g.,

training on DEAP and testing on the MAHNOB-HCI database

[111]. We only briefly introduce their EEG-based deep learn-

ing approach here, which works for datasets with different

numbers and placements of electrodes, different sampling

rates, etc. The EEG power spectral densities (PSDs) in the

theta, alpha and beta bands were used to plot three topogra-

phies for each trial. Then, each topography was considered a

component of a colour image and weighted by the ratio of

alpha blending to form the colour image. In this way, one

colour image representing the topographic PSD was obtained

for each trial, and the images obtained from different EEG

devices can be directly combined or compared. A pre-trained

VGG-16 network was used to extract 4,096 features from each

image, whose number was later reduced to 30 by PCA. An

extreme learning machine was used as the classifier for final

classification.

Cimtay and Ekmekcioglu [112] used a pre-trained state-

of-the-art CNN model, Inception-ResNet-v2, for cross-subject

and cross-dataset transfers. Since Inception-ResNet-v2 re-

quires the input data size to be (N1, N, 3), where N1 ≥ 75 is

the number of EEG channels and N ≥ 75 is the number of

time domain samples, when the number of EEG channels is be

less than 75, they increased the number of channels by adding

noisy copies of them (Gaussian random noise was used) to

reach N1 = 80. This process was repeated three times so that

each trial became a 80× 300× 3 matrix, which was then used

as the input to Inception-ResNet-v2. They also added a global

average pooling layer and five dense layers after Inception-

ResNet-v2 for classification.

VII. TL IN BCI REGRESSION PROBLEMS

There are many important BCI regression problems, e.g.,

driver drowsiness estimation [38]–[40], vigilance estimation

[11], [12], [113], and user reaction time estimation [41],

which were not adequately addressed in previous reviews. This
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section fills this gap. Because there were no publications on

cross-device and cross-task TL in BCI regression problems,

we do not have subsections on them.

A. Cross-Subject/Session TL

Wu et al. [40] proposed a novel online weighted adaptation

regularization for regression (OwARR) algorithm to reduce

the amount of subject-specific calibration data in EEG-based

driver drowsiness estimation and a source domain selection

approach to save approximately half of its computational cost.

OwARR minimizes the following loss function, similar to

wAR [26]:

min
f

Ns∑

n=1

(yns − f(Xn
s ))

2
+ wt

Nl∑

n=1

(ynt − f(Xn
t ))

2

+ λ [d(Ps(Xs), Pt(Xt)) + d(Ps(Xs|ys), Pt(Xt|yt))]

− γr̃2(y, f(X)) (9)

where λ and γ are non-negative regularization parameters

and wt is the overall weight for target domain samples.

r̃2(y, f(X)) approximates the sample Pearson correlation

coefficient between y and f(X). Fuzzy sets were used to

define fuzzy classes so that d(Ps(Xs|ys), Pt(Xt|yt)) can be

efficiently computed. The five terms in (9) minimize the

fitting error in the source domain, the fitting error in the

target domain, the distance between the marginal probability

distributions, the distance between the conditional probability

distributions, and the estimated sample Pearson correlation

coefficient between y and f(X). Wu et al. [40] showed

that OwARR and OwARR with source domain selection can

achieve significantly smaller estimation errors than several

other cross-subject TL approaches.

Jiang et al. [39] further extended OwARR to multi-view

learning, where the first view included theta band powers from

all channels, and the second view converted the first view into

dBs and removed some bad channels. A TSK fuzzy system

was used as the regression model, optimized by minimizing (9)

for both views simultaneously and adding an additional term to

enforce the consistency between the two views (the estimation

from one view should be close to that from the other view).

They demonstrated that the proposed approach outperformed

a domain adaptation with a model fusion approach [114] in

cross-subject TL.

Wei et al. [115] also performed cross-subject driver drowsi-

ness estimation. Their procedure consisted of three steps: 1)

Ranking. For each source subject, it computed six distance

measures (Euclidean distance, correlation distance, Cheby-

shev distance, cosine distance, Kullback-Leibler divergence,

and transferability-based distance) between his/her own alert

baseline (the first 10 trials) power distribution and all other

source subjects’ distributions and the cross-subject model

performance (XP), which is the transferability of other source

subjects on the current subject. A support vector regression

(SVR) model was then trained to predict XP from the distance

measures. In this way, given a target subject with a few calibra-

tion trials, the XP of the source subjects can be computed and

ranked. 2) Fusion: a weighted average was used to combine

the source models, where the weights were determined from

a modified logistic function optimized on the source subjects.

3) Re-calibration: the weighted average was subtracted by an

offset, estimated as the median of the initial 10 calibration

trials (i.e., the alert baseline) from the target subject. They

showed that this approach can result in a 90% calibration time

reduction in driver drowsiness index estimation.

Chen et al. [116] integrated feature selection and an adapta-

tion regularization-based TL (ARTL) [48] classifier for cross-

subject driver status classification. The most novel part is

feature selection, which extends the traditional ReliefF [88]

and minimum redundancy maximum relevancy (mRMR) [117]

to class separation and domain fusion (CSDF)-ReliefF and

CSDF-mRMR, which consider both the class separability and

the domain similarity, i.e., the selected feature subset should si-

multaneously maximize the distinction among different classes

and minimize the difference among different domains. The

ranks of the features from different feature selection algorithms

were then fused to identify the best feature set, which was used

in ARTL for classification.

Deep learning has also been used in BCI regression prob-

lems.

Ming et al. [118] proposed a stacked differentiable neural

computer and demonstrated its effectiveness in cross-subject

EEG-based mind load estimation and reaction time estimation.

The original long short-term memory network controller in

differentiable neural computers was replaced by a recurrent

convolutional network controller, and the memory-accessing

structures were also adjusted for processing EEG topographic

data.

Cui et al. [38] proposed a subject-independent TL approach,

feature weighted episodic training (FWET), to completely

eliminate the calibration requirement in cross-subject transfers

in EEG-based driver drowsiness estimation. It integrates fea-

ture weighting to learn the importance of different features and

episodic training for domain generalization. Episodic training

considers the conditional distributions P (ys|f(Xs)) directly

and trains a regression network f that aligns P (ys|f(Xs))
in all the source domains, which usually generalizes well to

the unseen target domain Dt. It first establishes a subject-

specific feature transformation model fθs and a subject-

specific regression model fψs
for each source subject to

learn the domain-specific information, then trains a feature

transformation model fθ that makes the transformed features

from Subject s still perform well when applied to a regressor

fψj
trained on Subject j (j 6= s). The overall loss function of

episodic training, when Subject s’s data are fed into Subject j’s

regressor, is:

ℓs,j =

Ns∑

n=1

ℓ(yns , fψ(fθ(X
n
s )))

+ λ

Ns∑

n=1

ℓ(yns , fψj
(fθ(X

n
s ))), (10)

where fψj
means that fψj

is not updated during backpropaga-

tion. Once the optimal fψ and fθ are obtained, the prediction

for Xt is ŷt = fψ(fθ(Xt)).
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VIII. TL IN ADVERSARIAL ATTACKS OF EEG-BASED

BCIS

Adversarial attacks of EEG-based BCIs represent one of

the latest developments in BCIs. It was first studied by Zhang

and Wu [42]. They found that adversarial perturbations, which

are deliberately designed tiny perturbations, can be added

to normal EEG trials to fool the machine learning model

and cause dramatic performance degradation. Both traditional

machine learning models and deep learning models, as well

as both classifiers and regression models in EEG-based BCIs,

can be attacked.

Adversarial attacks can target different components of a

machine learning model, e.g., training data, model parameters,

test data, and test output, as shown in Fig. 3. To date,

only adversarial examples (benign examples contaminated by

adversarial perturbations) targeting the test inputs have been

investigated in EEG-based BCIs, so this section only considers

adversarial examples.

Fig. 3. Attack strategies to different components of a machine learning model.

A more detailed illustration of the adversarial example

attack scheme is shown in Fig. 4. A jamming module is

injected between signal processing and machine learning to

generate adversarial examples.

Fig. 4. Adversarial example generation scheme [42].

Table II shows the three attack types in EEG-based BCIs.

White-box attacks know all information about the victim

model, including its architecture and parameters, and hence are

the easiest to perform. Black-box attacks know nothing about

the victim model but can only supply inputs to it and observe

its output and hence are the most challenging to perform.

A. Cross-Model Attacks

Different from the cross-subject/session/device/task TL sce-

narios considered in the previous five sections, adversarial

TABLE II
SUMMARY OF THE THREE ATTACK TYPES IN EEG-BASED BCIS [42].

Victim Model White-Box Grey-Box Black-Box
Information Attacks Attacks Attacks

Know its architecture X × ×

Know its parameters θ X × ×

Know its training data − X ×

Can observe its response − − X

attacks in BCIs so far mainly considered cross-model attacks2,

where adversarial examples generated from one machine learn-

ing model are used to attack another model. This assumption

is necessary in grey-box and black-box attacks because the

victim model is unknown, and the attacker needs to construct

its own model (called the substitute model) to approximate the

victim model.

Interestingly, cross-model attacks can be performed without

explicitly considering TL. They are usually achieved by mak-

ing use of the transferability of adversarial examples [119],

i.e., adversarial examples generated by one machine learning

model may also be used to fool a different model. The

fundamental reason behind this property is still unclear, but

it does not hinder people from making use of it.

For example, Zhang and Wu [42] proposed unsupervised

fast gradient sign methods, which can effectively perform

white-box, grey-box and black-box attacks on deep learning

classifiers. Two BCI paradigms, i.e., MI and ERP, and three

popular deep learning models, i.e., EEGNet, Deep ConvNet

and Shallow ConvNet, were considered. Meng et al. [43]

further showed that the transferability of adversarial examples

can also be used to attack regression models in BCIs; e.g.,

adversarial examples designed from a multi-layer perceptron

neural network can be used to attack a ridge regression model,

and vice versa, in EEG-based user reaction time estimation.

IX. CONCLUSIONS

This paper has reviewed recently proposed TL approaches

in EEG-based BCIs, according to six different paradigms and

applications: MI, ERP, SSVEP, aBCI, regression problems,

and adversarial attacks. TL algorithms are grouped into cross-

subject/session, cross-device and cross-task approaches and

introduced separately. Connections among similar approaches

are also pointed out.

The following observations and conclusions can be made,

which may point to some future research directions:

1) Among the three classic BCI paradigms (MI, ERP and

SSVEP), SSVEP seems to receive the least amount of

attention. Very few TL approaches have been proposed

recently. One reason may be that MI and ERP are very

similar, so many TL approaches developed for MI can

2Existing publications [42], [43] also considered cross-subject attacks, but
the meaning of cross-subject in adversarial attacks is different from the cross-
subject TL setting in previous sections: in adversarial attacks, cross-subject
means that the same machine learning model is used by all subjects, but the
scheme for generating adversarial examples is designed on some subjects and
applied to another subject. It assumes that the victim machine learning model
works well for all subjects.
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be applied to ERPs directly or with little modification,

e.g., RA, EA, RPA and EEGNet, whereas SSVEP is a

quite different paradigm.

2) Two new applications of EEG-based BCIs, i.e., aBCI

and regression problems, have been attracting increasing

research interest. Interestingly, both of them are passive

BCIs [120]. Although both classification and regression

problems can be formulated in aBCIs, existing research

has focused almost exclusively on classification prob-

lems.

3) Adversarial attacks, one of the latest developments in

EEG-based BCIs, can be performed across different

machine learning models by utilizing the transferability

of adversarial examples. However, explicitly considering

TL between different domains may further improve the

attack performance. For example, in black-box attacks,

TL can make use of publicly available datasets to reduce

the number of queries to the victim model or, in other

words, to better approximate the victim model given the

same number of queries.

4) Most TL studies focused on cross-subject/session trans-

fers. Cross-device transfers have started to attract atten-

tion, but cross-task transfers remain largely unexplored.

To our knowledge, there has been only one such study

[50] since 2016. Effective cross-device and cross-task

transfers would make EEG-based BCIs much more

practical.

5) Among various TL approaches, Riemannian geometry

and deep learning are emerging and gaining momentum,

each of which has a group of approaches proposed.

6) Although most research on TL in BCIs has focused

on classifiers or regression models, i.e., at the pattern

recognition stage, TL in BCIs can also be performed in

trial alignment, e.g., RA, EA, LA and RPA, in signal

filtering, e.g., transfer kernel common spatial patterns

[51], and in feature extraction/selection, e.g., CSDF-

ReliefF and CSDF-mRMR [116]. Additionally, these

TL-based individual components can also be assembled

into a complete machine learning pipeline to achieve

even better performance. For example, EA and LA data

alignment schemes have been combined with TL clas-

sifiers [50], [60], and CSDF-ReliefF and CSDF-mRMR

feature selection approaches have also been integrated

with TL classifiers [116].

7) TL can also be integrated with other machine learning

approaches, e.g., active learning [24], for improved

performance [25], [26].
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