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Abstract— Recently, cross-subject emotion recognition at-
tracts widespread attention. The current emotional experiments
mainly use video clips of different emotions as stimulus ma-
terials, but the videos watched by different subjects are the
same, which may introduce the same noise pattern in the
collected data. However, the traditional experiment settings
for cross-subject emotion recognition models couldn’t elimi-
nate the impact of same video clips on recognition results,
which may lead to a bias on classification. In this paper, we
propose a novel experiment setting for cross-subject emotion
recognition. We evaluate different experiment settings on four
public emotion datasets, DEAP, SEED, SEED-IV and SEED-
V. The experimental results demonstrate the deficiencies of
the traditional experiment settings and the advantages of our
proposed experiment setting.

I. INTRODUCTION

Emotion plays an important role in human life and inter-
personal interaction [1]. Although people have defined all
kinds of emotions, it is difficult to directly quantify and
measure the specific emotional state. There are two widely
accepted models of emotion. The first emotion model divides
emotions into six basic categories (anger, disgust, fear, happi-
ness, sadness, and surprise) according to Ekman’s theory [2].
The other emotion model called pleasure-arousal-dominance
(PAD) model describes emotions using their underlying
dimensions [3], which measures emotions from displeasure
to pleasure, nonarousal to arousal, and submissiveness to
dominance, respectively.

Emotion recognition refers to the process in which ma-
chines identify human emotions through various signals,
such as facial expressions [4], voice [5], body postures [6],
and physiological signals [7]. Recently, emotion recognition
based on physiological signals, represented by electroen-
cephalography (EEG), has attracted extensive attention for
its information sufficiency and stable neural patterns [8].
In addition to EEG signals, eye movement signals are also
widely used due to their easy acquisition.

Emotion recognition models can be broadly catego-
rized into subject-dependent models [9] [10] and subject-
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independent (cross-subject) models [11]. Subject-dependent
means that both the training and test data come from the
same subject. In other words, an individual model needs to
be trained for each subject. However, emotion recognition
models trained on one subject tend to perform poorly on
others because the EEG data varies significantly across dif-
ferent subjects [12] [13]. Therefore, it is necessary to develop
subject-independent models by using transfer learning which
are applicable to the real application scenario.

At present, the mainstream way to induce emotion is to use
video clips [14] [15]. However, different subjects watching
the same video may introduce the same noise pattern, which
has no effect on the subject-dependent setting but would
affect the cross-subject setting. The general experiment set-
ting applied in the subject-independent models is leave-
one-subject-out cross validation, i.e, take the data from one
subject as the target domain and the rest data from other
subjects as the source domain for each fold. So it is hard
to say what the model categorizes are different emotions or
different materials under the influence of the same stimulus
materials.

In this paper, we reveal that the stimulus materials used to
induce emotions have influence on the classification of emo-
tion recognition under the general experiment setting applied
in the subject-independent models and propose a new cross-
subject experiment setting which can eliminate the impact of
materials. We evaluate the experiment setting on four public
emotion datasets and the experimental results demonstrate
the advantages of the proposed experiment setting.

II. METHOD
A. Data Partition

In subject-dependent emotion recognition, an individual
model will be trained for each subject and each subject’s
data is divided into two parts: training set and test set, e.g.,
the model will be trained on first 9 trials and tested on the rest
6 trials in SEED dataset [16]. It is clear that the data in the
training set and the test set are based on different materials.
However, for cross-subject emotion recognition, the general
experiment setting is leave-one-subject-out cross validation.
In other word, the model will be trained on 14 subjects’ data
and evaluated on the remaining subject. In this experiment
setting, the materials used to induce the data in the training
set and the test set are exactly the same. Therefore, it is
difficult to tell whether our trained model ultimately classifies
the type of materials or the emotion that the materials evokes.

To avoid the problem mentioned above, we have pro-
posed a novel experiment setting for cross-subject emotion
recognition. In our method, we further divide the data on
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Fig. 1. The data partition of three datasets. Different shapes represent different stimulus material group, and different colors represent different emotions.
DEAP is indicated in white because there is no clear emotion category. The partition of SEED-V is similar to SEED-IV. This figure shows only one fold
in cross-validation.

the basis of leave-one-subject-out cross validation. We first
divide the data into two or three parts based on the stimulus
materials. Then we select the data of n-1 (n is the # subject)
subjects from one part as the training set, and then select the
remaining subject’s data from another part as the test set. In
the Experiment Settings section, we give detailed examples
of data partitioning.

B. Classifier

Two different classifiers are used in our paper, Support
Vector Machine (SVM) and Kernel principal component
analysis (KPCA) [17].

SVM with a linear kernel acts as a benchmark model for
cross-subject emotion recognition task. The reason why we
choose SVM as the basic model in this paper is that we
mainly focus on the impact of different experimental settings
on classification results rather than the accuracy.

KPCA is the kernel version of principal component anal-
ysis and it can realize dimensionality reduction of linearly
inseparable data. The general idea of KPCA is: for the data
in the D-dimensional feature space, a nonlinear mapping
φ(x) is used to map all samples to a M -dimensional feature
space (M � D) to make it linearly separable. Because the
computational complexity of using mapping φ(x) directly is
very high, the kernel function is used instead. After that,
the PCA dimension reduction is carried out in this high-
dimensional space. For KPCA-based subject transfer, we
concatenate the training data and test data and apply KPCA
on it first. After that, we repartition the data into the training
data and test data. Finally, the processed data is used as input
to evaluate the classification model (SVM in this paper).

III. EXPERIMENTS AND RESULTS

A. Datasets

We evaluate our experiment setting on four public emoti
datasets, DEAP [14], SEED [15] [16], SEED-IV [18] and
SEED-V [19] [20]. Table I shows the comparison of these
four datasets, where # subject refers to the number of
subjects, # session refers to the number of times each subject
took part in the experiment, # trial refers to the number of
video clips in each session, category refers to whether the
video clips used in different sessions are the same.

TABLE I
THE COMPARISON OF DEAP, SEED, SEED-IV AND SEED-V.

Dataset # subject # emotion # session # trial category
DEAP 32 - 1 40 -
SEED 15 3 3 15 same
SEED-IV 15 4 3 24 different
SEED-V 20 5 3 15 different

The DEAP dataset is a multimodal dataset for analyzing
the human affective states with data from 32 subjects. Dur-
ing the experiments, subjects watched 40 one-minute long
excerpts of music videos and rated each video in terms of
the levels of arousal, valence, like/dislike, dominance and
familiarity. Note that each subject took part in the experiment
only once, and different subjects watched the same music
videos. In this paper, we label the data on the valence
dimension (high valence: level > 5, low valence: level ≤ 5)
and arousal dimension (high arousal: level > 5, low arousal:
level ≤ 5).

The SEED dataset comprises EEG and eye movement
data of 9 subjects (15 subjects for only EEG data) and
contains three emotions: happy, sad and neutral. During the
experiments, subjects watched fifteen rigorously screened
Chinese movie clips. Each subject took part in the experiment
three times (sessions) but watched the same movie clips in
each session.

The SEED-IV dataset comprises EEG and eye movement
data of 15 subjects and contains four emotions: happy, sad,
neutral and fear. The SEED-V dataset comprises EEG and
eye movement data of 20 subjects and contains five emotions:
happy, sad, fear, disgust, and neutral. For each subject, three
sessions are performed on different days, and each session
contains 15 (24 for SEED-IV) movie clips. Each subject
took part in the experiment three times and watched different
movie clips in each session.

It should be noted that the subjects watched the same
movie clips in three sessions in the SEED dataset, which
are different in SEED-IV and SEED-V.

B. Feature Extraction

1) EEG feature: Datasets SEED, SEED-IV and SEED-
V provide the differential entropy (DE) features of EEG by
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Fig. 3. The experimental results on (a) SEED, (b) SEED-IV, (c) SEED-V dataset by using the new experiment setting. For each subgraph, (1) refers to
the results on EEG using SVM, (2) refers to the results on EYE using SVM, (3) refers to the results on EEG using KPCA and (4) refers to the results on
EYE using KPCA.

using the short-term Fourier transforms (STFT) with a 4-
second Hanning window without overlapping [21]. In order
to maintain consistency, we also extract DE features from
DEAP.

2) Eye movement features: Datasets SEED, SEED-IV and
SEED-V also provide the eye movement features extracted
from SMI ETG eye-tracking glasses [22]. The feature di-
mension is 33, including pupil diameter, dispersion, fixation
duration, blink duration, saccade and so on.

C. Experiment Settings

Fig.1 shows the data partition of DEAP, SEED and SEED-
IV. For DEAP dataset, we divide the data into two parts and

Fig. 2. The experimental results on DEAP dataset by using the new
experiment setting, part 1 and part 2 are the results of bisection of DEAP
in our experiment setting. (a) results on valence dimension using SVM. (b)
results on arousal dimension using SVM. (c) results on valence dimension
using KPCA. (d) results on arousal dimension using KPCA.

each part contains the data when all subjects watched 20
(half of 40) music videos. We also follow the leave-one-
subject-out cross validation idea here, i.e, during each fold,
we train the model on 31 subjects’ data in one part and
test on the remaining subject’s data in the other part. In
order to make the comparison, we also test the model on
the remaining subject’s data in the same part. For SEED,
SEED-IV and SEED-V dataset, we just divide the data by
sessions for convenience and follow the approach we used
in DEAP.

D. Experiment Results

In this section, we present the experimental results on
DEAP, SEED, SEED-IV and SEED-V datasets by using
SVM and KPCA-based subject transfer.

1) DEAP: Fig.2 shows the results on DEAP dataset. For
each accuracy matrix, the label of each row refers to the
training set, and the label of each column refers to the test
set.

According to the idea we mentioned earlier, if emotional
materials have an impact on classification accuracy, then the
value on the diagonal of the accuracy matrix will be greater
than the value on the other position because the training set
and the test set used on the diagonal are generated from the
same emotional material.

It can be seen from the experimental results that stimulus
materials have a relatively large impact on arousal dimension
and almost no impact on valence dimension. The results
are well explained from the perspective of common sense
that the same video had the same effect on EEG signals in
different people. However, due to the differences in personal
experience and physiology, there is a large difference in
valence dimension, which eliminates the influence of whether
the material is the same or not, resulting in a relatively
average value in the accuracy matrix.

2) SEED, SEED-IV and SEED-V: Since the data com-
position and experimental settings of these three data sets
are basically the same, we put their results in one section
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for comparison. Fig.3 shows the results of our experiment
settings on SEED, SEED-IV and SEED-V datasets. For each
accuracy matrix, the label of each row refers to the session
used as the training set, and the label of each column refers
to the session used as the test set.

From the results of SEED dataset, whether using SVM
or KPCA-based subject transfer model, it is easy to find
that the values in the accuracy matrix are close for EEG or
eye movement features. This is because the data in SEED
for each session is evoked by the same movie clips and the
influence of movie clips on the signal is consistent from
session to session.

For the results of SEED-IV and SEED-V dataset, we can
find that the values on the diagonal of the accuracy matrix
are greater than the values on the other position in general,
which is similar to DEAP. This is because each session uses
different movie clips to induce emotion, which is essentially
the same as the partition we do on DEAP.

To summarize, the materials have an effect on the classifi-
cation of emotion recognition and we can eliminate the effect
by letting the training set and test set data be generated from
different materials. For DEAP and SEED, the recommended
method is to divide the data into 2-3 equal parts according
to the material. For SEED-IV and SEED-V dataset, we need
to use the division outside the diagonal. The final accuracy
should be the average of the values in the accuracy matrix
except the values on diagonal.

IV. CONCLUSIONS
In this paper, we have revealed that the materials used

to induce emotions have an effect on the classification of
emotion recognition under the traditional general experiment
setting for the subject-independent models and have proposed
a new cross-subject experiment setting which can eliminate
the impact of stimulus materials. We evaluate our new
experiment setting on four public emotion datasets (DEAP,
SEED, SEED-IV and SEED-V) and find that when the data
in the training set and test set is induced by the same video
materials, the classification accuracy is often higher than that
of the data induced by different video materials. Therefore,
for cross-subject emotion recognition on any emotion dataset,
the data should be partitioned according to our method and
then the accuracy matrix should be calculated. The final
accuracy should be the average of the values in the accuracy
matrix except the values on diagonal.
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