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Abstract—A brain-computer interface (BCI) enables a user
to communicate with a computer directly using brain signals.
The most common noninvasive BCI modality, electroencephalo-
gram (EEG), is sensitive to noise/artifact and suffers between-
subject/within-subject nonstationarity. Therefore, it is difficult to
build a generic pattern recognition model in an EEG-based BCI
system that is optimal for different subjects, during different
sessions, for different devices and tasks. Usually, a calibration
session is needed to collect some training data for a new subject,
which is time consuming and user unfriendly. Transfer learning
(TL), which utilizes data or knowledge from similar or relevant
subjects/sessions/devices/tasks to facilitate learning for a new sub-
ject/session/device/task, is frequently used to reduce the amount
of calibration effort. This article reviews journal publications
on TL approaches in EEG-based BClIs in the last few years,
i.e., since 2016. Six paradigms and applications—motor imagery,
event-related potentials, steady-state visual evoked potentials,
affective BClIs, regression problems, and adversarial attacks—
are considered. For each paradigm/application, we group the TL
approaches into cross-subject/session, cross-device, and cross-task
settings and review them separately. Observations and conclu-
sions are made at the end of the article, which may point to
future research directions.

Index Terms—Adversarial attacks, affective brain-computer
interface (BCI), brain-computer interfaces, domain adaptation,
electroencephalogram (EEG), transfer learning (TL).
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I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) enables a user to

communicate with a computer using his/her brain sig-
nals directly [1], [2]. The term was first coined by Vidal in
1973 [3], although it had been studied previously [4], [5].
BCIs were initially proposed for disabled people [6], but their
current application scope has been extended to able-bodied
users [7], in gaming [8], emotion recognition [9], mental
fatigue evaluation [10], vigilance estimation [11], [12], etc.

There are generally three types of BCIs [13].

1) Noninvasive BClIs, which use noninvasive brain signals
measured outside of the brain, e.g., electroencephalo-
grams (EEGs) and functional near-infrared spectroscopy
(fNIRS).

2) Invasive BCls, which require surgery to implant sen-
sor arrays or electrodes within the gray matter under
the scalp to measure and decode brain signals (usually
spikes and local field potentials).

3) Partially invasive (semiinvasive) BCls, in which the sen-
sors are surgically implanted inside the skull but outside
the brain rather than within the gray matter.

This article focuses on noninvasive BClIs, particularly EEG-
based BCls, which are the most popular type of BCIs due to
their safety, low cost, and convenience.

A closed-loop EEG-based BCI system, shown in Fig. 1,
consists of the following components.

1) Signal acquisition [14], which uses an EEG device to

collect EEG signals from the scalp. In the early days,
EEG devices used wired connections and gel to increase
conductivity. Currently, wireless connections and dry
electrodes are becoming increasingly popular.

2) Signal processing [15], which usually includes tempo-
ral filtering and spatial filtering. The former typically
uses a bandpass filter to reduce interference and noise,
such as muscle artifacts, eye blinks, and DC drift.
The latter combines different EEG channels to increase
the signal-to-noise ratio. Popular spatial filters include
common spatial patterns (CSPs) [16], independent com-
ponent analysis (ICA) [17], blind source separation [18],
xDAWN [19], etc.

3) Feature extraction, for which time domain, frequency
domain [20], time—frequency domain, Riemannian
space [21], and/or functional brain connectivity [22]
features could be used.

4) Pattern recognition, where depending on the application,
a classifier or regression model is used.
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5) Controller, which outputs a command to control an
external device, e.g., a wheelchair or a drone, or to alter
the behavior of an environment, e.g., the difficulty level
of a video game. A controller may not be needed in
certain applications, e.g., BCI spellers.

When deep learning is used, feature extraction and pat-
tern recognition can be integrated into a single neural
network, and both components are optimized simultaneously
and automatically.

EEG signals are weak, easily contaminated by interference
and noise, nonstationary for the same subject, and varying
across different subjects and sessions. Therefore, it is chal-
lenging to build a universal machine learning model in an
EEG-based BCI system that is optimal for different subjects,
during different sessions, and for different devices and tasks.
Usually, a calibration session is needed to collect some train-
ing data for a new subject, which is time consuming and user
unfriendly. Therefore, reducing this subject-specific calibration
is critical to the market success of EEG-based BCls.

Different machine learning techniques, e.g., transfer learn-
ing (TL) [23] and active learning [24], have been used for this
purpose. Among them, TL is particularly promising because
it can utilize data or knowledge from similar or relevant
subjects/sessions/devices/tasks to facilitate learning for a new
subject/session/device/task. Moreover, it may also be inte-
grated with other machine learning techniques, e.g., active
learning [25], [26], for even better performance. This article
focuses on TL in EEG-based BCls.

There are three classic classification paradigms in EEG-
based BCIs, which will be considered in this article as
follows.

1) Motor imagery (MI) [27], which can modify neuronal
activity in primary sensorimotor areas, is similar to a real
executed movement. As different MIs affect different
regions of the brain, e.g., the left (right) hemisphere for
right-hand (left-hand) MI and center for feet MI, a BCI
can decode MI from the EEG signals and map it to a
specific command.

Event-related potentials (ERPs) [28], [29], which are
any stereotyped EEG responses to a visual, audio,
or tactile stimulus. The most frequently used ERP is
P300 [30], which occurs approximately 300 ms after a
rare stimulus.

Steady-state visual evoked potentials (SSVEPs) [31],
in which EEG oscillates at the same (or multiples of)
frequency of the visual stimulus at a specific frequency,
usually between 3.5 and 75 Hz [32]. This paradigm is
frequently used in BCI spellers [33], as it can achieve a
very high information transfer rate.

EEG-based affective BCIs (aBCls) [34]-[37], which detect
affective states (moods, emotions) from EEGs and use them in
BCls, have become an emerging research area. There are also
some interesting regression problems in EEG-based BClIs, e.g.,
driver drowsiness estimation [38]-[40] and user reaction time
estimation [41]. Additionally, a recent research [42], [43] has
shown that BClIs also suffer from adversarial attacks, where
deliberately designed tiny perturbations are added to benign
EEG trials to fool the machine learning model and cause
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Fig. 1. Flowchart of a closed-loop EEG-based BCI system.

dramatic performance degradation. This article also consid-
ers aBCls, regression problems, and adversarial attacks of
EEG-based BCls.

Although TL has been applied in all of the above EEG-
based BCI paradigms and applications, to the best of our
knowledge, there is no comprehensive and up-to-date review
on it. Wang et al. [44] performed a short review in a confer-
ence paper in 2015. Jayaram et al. [45] gave a brief review in
2016, considering only cross-subject and cross-session trans-
fers. Lotte er al. [46] provided a comprehensive review of
classification algorithms for EEG-based BCIs between 2007
and 2017. Again, they only considered cross-subject and cross-
session transfers. Azab et al. [47] performed a review of four
categories of TL approaches in BCIs in 2018: 1) instance-
based TL; 2) feature-representation TL; 3) classifier-based TL;
and 4) relational-based TL.

However, all the aforementioned reviews considered only
cross-subject and cross-session TL of the three classic
paradigms of EEG-based BCIs (MI, ERP, and SSVEP) but did
not mention the more challenging cross-device and cross-task
transfers, aBCls, regression problems, and adversarial attacks.

To fill these gaps and to avoid overlapping too much
with previous reviews, this article reviews journal publi-
cations of TL approaches in EEG-based BCIs in the last
few years, i.e., since 2016. Six paradigms and applica-
tions are considered: 1) MI; 2) ERP; 3) SSVEP; 4) aBCI,;
5) regression problems; and 6) adversarial attacks. For each
paradigm/application, we group the TL approaches into cross-
subject/session (because these two concepts are essentially
the same), cross-device, and cross-task settings and review
them separately, unless no TL approaches have been proposed
for that category. Some TL approaches may cover more than
two categories, e.g., both cross-subject and cross-device trans-
fers were considered. In this case, we introduce them in the
more challenging category, e.g., cross-device TL. When there
are multiple TL approaches in each category, we generally
introduce them according to the years in which they were
proposed, unless there are intrinsic connections among several
approaches.

The remainder of this article is organized as follows.
Section II briefly introduces some basic concepts of TL.
Sections III-VIII review TL approaches in MI, ERP, SSVEP,
aBClIs, regression problems, and adversarial attacks, respec-
tively. Section IX makes observations and conclusions, which
may point to some future research directions.
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II. TL CONCEPTS AND SCENARIOS

This section introduces the basic definitions of TL, some
related concepts, e.g., domain adaptation and covariate shift,
and different TL scenarios in EEG-based BCls.

In machine learning, a feature vector is usually denoted by
a bold symbol x. To emphasize that each EEG trial is a 2-D
matrix, this article denotes a trial by X € REXT where E is
the number of electrodes and T is the number of time-domain
samples. Of course, X can also be converted into a feature
vector x.

A. TL Concepts

Definition 1: A domain [23], [48] D consists of a feature
space X and its associated marginal probability distribution
P(X), i.e., D ={X, P(X)}, where X € X.

A source domain Dy and a target domain D, are different
if they have different feature spaces, i.e., Xy # A}, and/or dif-
ferent marginal probability distributions, i.e., Ps(X) # Py(X).

Definition 2: Given a domain D, a task [23], [48] T con-
sists of a label space ) and a prediction function f(X), i.e.,
T={J.fX}

Let y € Y. Then, f(X) = P(y|X) is the condi-
tional probability distribution. Two tasks 7y and 7; are
different if they have different label spaces, ie., Vi #
Y:, and/or different conditional probability distributions,
e, Ps(1X) # P(y|X).

Definition 3: Given a source domain Dy = {(Xi, yi)}i | and
a target domain D; with N; labeled samples {(Xf, yﬁ)}fil and
N, unlabeled samples {Xf}?l;j\_]ﬁl, TL aims to learn a target
prediction function f : X, — y, with low expected error on
D; under the general assumptions that Xy, # X, Vs # Vi,
Ps(X) # Pi(X), and/or Py(y|X) # P/(yX).

In inductive TL, the target domain has some labeled
samples, i.e., Ny > 0. For most inductive TL scenarios
in BCIs, the source domain samples are labeled, but they
could also be unlabeled. When the source domain sam-
ples are labeled, inductive TL is similar to multitask learn-
ing [49]. The difference is that multitask learning tries to
learn a model for every domain simultaneously, whereas
inductive TL focuses only on the target domain. In trans-
ductive TL, the source domain samples are all labeled, but
the target domain samples are all unlabeled, ie., Ny =0.
In unsupervised TL, no samples in either domain are
labeled.

Domain adaptation is a special case of TL, or more
specifically, transductive TL.

Definition 4: Given a source domain D; and a target
domain D;, domain adaptation aims to learn a target prediction
function f : x; — y,; with low expected error on D;, under the
assumptions that Xy = A&; and Vs = ), but Py(X) # Py(X)
and/or Ps(y|X) # P;(y|X).

Covariate shift is a special and simpler case of domain
adaptation.

Definition 5: Given a source domain D; and a target
domain D, covariate shift occurs when X; = A, Vs = Yy,
P,(y1X) = P,(y1X), but Py(X) # Pi(X).

B. TL Scenarios

According to the variations between the source and the
target domains, there can be different TL scenarios in
EEG-based BClIs.

1) Cross-Subject TL: Data from other subjects (the source
domains) are used to facilitate the calibration for a new
subject (the target domain). Usually, the task and EEG
device are the same across subjects.

2) Cross-Session TL: Data from previous sessions (the
source domains) are used to facilitate the calibration of
a new session (the target domain). For example, data
from previous days are used in the current calibration.
Usually, the subject, task, and EEG device are the same
across sessions.

3) Cross-Device TL: Data from one EEG device (the source
domain) are used to facilitate the calibration of a new
device (the target domain). Usually, the task and subject
are the same across EEG devices.

4) Cross-Task TL: Labeled data from other similar or rele-
vant tasks (the source domains) are used to facilitate the
calibration for a new task (the target domain). For exam-
ple, data from left- and right-hand MI are used in the
calibration of feet and tongue MI. Usually, the subject
and EEG device are the same across tasks.

Since cross-subject TL and cross-session TL are essentially
the same, this article combines them into one category: cross-
subject/session TL. Generally, cross-device TL and cross-task
TL are more challenging than cross-subject/session TL; hence,
they were less studied in the literature.

The above simple TL scenarios could also be mixed to
form more complex TL scenarios, e.g., cross-subject and
cross-device TL [26], cross-subject and cross-task TL [50], etc.

III. TL IN MI-BASED BCIs

This section reviews recent progress in TL for MI-based
BCIs. Many of them used the BCI competition data sets. !

Assume there are S source domains, and the sth source
domain has Ny EEG trials. The nth trial of the sth source
domain is denoted by X" € RE*T, where E is the number
of electrodes and 7T is the number of time-domain samples
from each channel. The corresponding covariance matrix is
C" € REXE| which is symmetric and positive definite (SPD)
and lies on a Riemannian manifold. For binary classification,
the label for X7 is y§ € {—1, 1}. The nth EEG trial in the target
domain is denoted by X', and the covariance matrix is denoted
by C}'. These notations are used throughout this article.

A. Cross-Subject/Session Transfer

Dai et al. [51] proposed the transfer kernel CSPs (TKCSPs)
method, which integrates kernel CSPs (KCSPs) [52] and
transfer kernel learning (TKL) [53] for EEG trial spatial fil-
tering in cross-subject MI classification. It first computes a
domain-invariant kernel by TKL and then uses it in the KCSP
approach, which further finds the components with the largest

1 http://www.bbci.de/competition/

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on November 02,2022 at 03:55:39 UTC from IEEE Xplore. Restrictions apply.



WU et al.: TL FOR EEG-BASED BCIs: REVIEW OF PROGRESS MADE SINCE 2016

energy difference between two classes. Note that TL was
used in EEG signal processing (spatial filtering) instead of
classification.

Jayaram et al. [45] proposed a multitask learning frame-
work for cross-subject/session transfers, which does not need
any labeled data in the target domain. The linear decision
rule is y = sign(ulXp,,), where p, € RE*! are the chan-
nel weights and p,, € R7*! are the feature weights. p, and
I, are obtained by minimizing

S Ny
. 1 -
mip |} 2 S labm

s=1 n=1

S
+D QW iy Tw) + D (et g Ea)] (1)

s=1 s=1

where a; € RE€*! are the channel weights for the sth source
subject, wy € RT*! are the feature weights, A is a hyperparam-
eter, and Q (ws; u,,, X)) is the negative log prior probability of
w, given the Gaussian distribution parameterized by (u,,, Xy ).
I, and X, (u, and X,) is the mean vector and covariance
matrix of {ws}f:1 ({as}le), respectively.

In (1), the first term requires oz and wg to work well for the
sth source subject; the second term ensures that the divergence
of wy from the shared (p,,, X, ) is small, i.e., all the source
subjects should have similar wg values; and the third term
ensures that the divergence of a; from the shared (u,, L) is
small. u, and u,, can be viewed as the subject-invariant char-
acteristics of stimulus prediction, and hence used directly by
a new subject. Jayaram et al. demonstrated that their approach
worked well on cross-subject transfers in MI classification and
cross-session transfers for one patient with amyotrophic lateral
sclerosis.

Azab et al. [54] proposed weighted TL for cross-subject
transfers in MI classification as an improvement of the above
approach. They assumed that each source subject has plenty
of labeled samples, whereas the target subject has only a
few labeled samples. They first trained a logistic regression
classifier for each source subject by using a cross-entropy
loss function with an L2 regularization term. Then, a logis-
tic regression classifier for the target subject was trained so
that the cross-entropy loss of the few labeled samples in the
target domain is minimized, and its parameters are close to
those of the source subjects. The mean vector and covariance
matrix of the classifier parameters in the source domains were
computed in a similar way to that in [45], except that for each
source domain, a weight determined by the Kullback—Leibler
divergence between it and the target domain was used.

Hossain et al. [55] proposed an ensemble learning approach
for cross-subject transfers in multiclass MI classification. Four
base classifiers were used, all constructed using TL and active
learning: 1) multiclass direct transfer with active learning
(mDTAL), a multiclass extension of the active TL approach
proposed in [56]; 2) multiclass aligned instance transfer with
active learning, which is similar to mDTAL except that only
the source-domain samples correctly classified by the corre-
sponding classifier are transferred; 3) most informative and

aligned instances transfer with active learning, which trans-
fers only the source-domain samples correctly classified by
its classifiers and near the decision boundary (i.e., the most
informative samples); and 4) most informative instances trans-
fer with active learning, which transfers only source-domain
samples close to the decision boundary. The four base learners
were finally stacked to achieve more robust performance.

Since the covariance matrices of EEG trials are SPD and lie
on a Riemannian manifold instead of in the Euclidean space,
Riemannian approaches [21] have become popular in EEG-
based BCIs. Different TL approaches have also been proposed
recently.

Zanini et al. [57] proposed a Riemannian alignment (RA)
approach to centre the EEG covariance matrices {C}j}gi | in
the kth domain with respect to a reference covariance matrix
Ry specific to that domain. More specifically, RA computes
first the covariance matrices of some resting trials in the kth
domain, in which the subject is not performing any task, and
then calculates their Riemannian mean Rj. Ry is next used as
the reference matrix to reduce the intersubject/session variation

@)

where 5’,: is the aligned covariance matrix for C}. Equation (2)
centers the reference state of different subjects/sessions at the
identity matrix. In MI, the resting state is the time window
during which the subject is not performing any task, e.g., the
transition window between two MI tasks. In ERP, the nontar-
get stimuli are used as the resting state, requiring that some
labeled trials in the target domain must be known. Zanini et al.
also proposed improvements to the minimum distance to the
Riemannian mean (MDRM) [58] classifier and demonstrated
the effectiveness of RA and the improved MDRM in both MI
and ERP classifications.

Yair et al. [59] proposed a domain adaptation approach
using the analytic expression of parallel transport (PT) on the
cone manifold of SPD matrices. The goal was to find a com-
mon tangent space such that the mappings of C; and C; are
aligned. It first computes the Riemannian mean R; of the kth
domain and then the Riemannian mean R of all Ri. Then, each
Ry is moved to R by PT Fﬁk% 2 and CZ, the nth covariance
matrix in the kth domain, is projected to

S
no_ 2 mp2
k=R “CiRy

~ ~ 1 1
Log(R™T_4(C})R™?) = Log (Rk (IR, 2). 3)

After the projection step, the covariance matrices in different
domains are mapped to the same tangent space, so a classifier
built in a source domain can be directly applied to the tar-
get domain. Equation (3) is essentially identical to RA in (2),
except that (3) works in the tangent space, whereas (2) works
in the Riemannian space. Yair et al. demonstrated the effec-
tiveness of PT in cross-subject MI classification, sleep stage
classification, and mental arithmetic identification.

To make RA more flexible, faster, and completely unsu-
pervised, He and Wu [60] proposed a Euclidean alignment
(EA) approach to align EEG trials from different subjects in
the Euclidean space. Mathematically, for the kth domain, EA
computes the reference matrix Ry = (1/N) Zﬁlvzl X,’(’(X,’(’)T,
i.e., Ry is the arithmetic mean of all covariance matrices in
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the kth domain (it can also be the Riemannian mean, which
is more computationally intensive than the arithmetic mean),
then performs the alignment by )N(Z = Ek_(l/ 2)X,’(‘. After EA, the
mean covariance matrices of all domains become the identity
matrix. Both Euclidean space and Riemannian space feature
extraction and classification approaches can then be applied to
)N(g EA can be viewed as a generalization of Yair et al.’s PT
approach because the computation of Ry in EA is more flexi-
ble, and both Euclidean and Riemannian space classifiers can
be used after EA. He and Wu demonstrated that EA outper-
formed RA in both MI and ERP classifications in both offline
and simulated online applications.

Rodrigues et al. [61] proposed the Riemannian procrustes
analysis (RPA) to accommodate covariant shifts in EEG-based
BClIs. It is semisupervised and requires at least one labeled
sample from each target-domain class. RPA first matches
the statistical distributions of the covariance matrices of the
EEG trials from different domains, using simple geometri-
cal transformations, namely, translation, scaling, and rotation,
in sequence. Then, the labeled and transformed data from
both domains are concatenated to train a classifier, which is
next applied to the transformed and unlabeled target domain
samples. Mathematically, it transforms each target domain
covariance matrix C} into

~ 1 ~—1 __INP 1
C'=M; |:UT (M, 2C'M, 2> U}Ms2 4)
where
M, (1/2) is the geometric mean of the labeled target

domain samples, which centers the target-
domain covariance matrices at the identity
matrix;
p=(d /3)(‘/ 2) stretches the target-domain covariance matri-
ces so that they have the same dispersion as
the source domain, in which d and d are
the dispersions around the geometric mean
of the source domain and the target domain,
respectively;
U is an orthogonal rotation matrix to be
optimized, which minimizes the distance
between the class means of the source
domain and the translated and stretched tar-
get domain;
is the geometric mean of the labeled source
domain samples, which ensures that the geo-
metric mean of C} is the same as that in the
source domain.

Note that the class label information is only needed in com-
puting U. Although M, am p, and My 172 are also computed
from the labeled samples, they do not need the specific class
labels.

Clearly, RPA is a generalization of RA. Rodrigues et al. [61]
showed that RPA can achieve promising results in cross-
subject MI, ERP, and SSVEP classification.

Recently, Zhang and Wu [62] proposed a manifold embed-
ded knowledge transfer (MEKT) approach, which first aligns
the covariance matrices of the EEG trials in the Riemannian
manifold, extracts features in the tangent space, and then per-
forms domain adaptation by minimizing the joint probability

M;(l/Z)

distribution shift between the source and the target domains
while preserving their geometric structures. More specifically,
it consists of the following three steps [62].

1) Covariance Matrix Centroid Alignment (CA): Align the
centr01d of the covarlance matrlces in each domain, i.e.,
e =R P orR Y and & = RYP R 7Y,
where R (R) can be the Rlemanman mean, the
Euclidean mean, or the log-Euclidean mean of all CY
(CH). This is essentially a generalization of RA [57].
The marginal probability distributions from different
domains are brought together after CA.

2) Tangent Space Feature Extraction: Map and assem-
ble all C” (C") into a tangent space super matrix
X, € RéxNs (X, € RNt where d = E(E + 1)/2 is
the dimensionality of the tangent space features.

3) Mapping Matrices Identification: Find the projection
matrices A € R¥? and B € R¥*P, where p < d is the
dimensionality of the shared subspace such that ATX,
and BT)?t are similar.

After MEKT, a classifier can be trained on (AT)?Y, y,) and

applied to BTX, to estimate their labels.

MEKT can cope with one or more source domains and still
be efficient. Zhang and Wu [62] also used domain transferabil-
ity estimation (DTE) to identify the most beneficial source
domains, in case there are too many of them. Experiments
in cross-subject MI and ERP classification demonstrated that
MEKT outperformed several state-of-the-art TL approaches,
and DTE can reduce the computational cost to more than half
of when the number of source domains is large, with little
sacrifice of classification accuracy.

A comparison of the aforementioned EEG data alignment
approaches, and a new approach [50] introduced later in this
section, is given in Table I.

Singh et al. [63] proposed a TL approach for estimating the
sample covariance matrices, which are used by the MDRM
classifier, from a very small number of target-domain sam-
ples. It first estimates the sample covariance matrix for each
class by a weighted average of the sample covariance matrix
of the corresponding class from the target domain and that
in the source domain. The mixed sample covariance matrix is
the sum of the per-class sample covariance matrices. Spatial
filters are then computed from the mixed and per-class sam-
ple covariance matrices. Next, the covariance matrices of the
spatially filtered EEG trials are further filtered by a Fisher
geodesic discriminant analysis [64] and used as features in
the MDRM [58] classifier.

Deep learning, which has been very successful in image
processing, video analysis, speech recognition, and natural
language processing, has also started to find applications
in EEG-based BCIs. For example, Schirrmeister et al. [65]
proposed two convolutional neural networks (CNNs) for
EEG decoding and showed that both outperformed filter
bank CSPs (FBCSPs) [66] in cross-subject MI classification.
Lawhern et al. [67] proposed EEGNet, a compact CNN archi-
tecture for EEG classification. It can be applied across different
BCI paradigms, be trained with very limited data, and generate
neurophysiologically interpretable features. EEGNet achieved
robust results in both the within-subject and cross-subject
classification of MIs and ERPs.
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TABLE I
COMPARISON OF DIFFERENT EEG DATA ALIGNMENT APPROACHES

I RA [57] | PT [59] | PTA [61] | EA [60] | CA [62] | LA [50]
Applicable Paradigm || MI, ERP | MI | MI ERP, SSVEP | MI, ERP | M, ERP | MI
Online or Offline || Both | Both | Both | Both | Both | Offline
Need Labeled Target No for MI,
Domain Trials Yes for ERP ‘ No ‘ Yes ‘ No ‘ No ‘ Yes

Riemannian space
covariance matrices

Riemannian Tangent

What to Align space features

Riemannian space
covariance matrices

Euclidean space
EEG trials

Riemannian space
covariance matrices

Euclidean space
EEG trials

Riemannian mean
of all covariance
matrices in
each domain

Riemannian mean
of resting state
covariance matrices
in each domain

Reference Matrix
Calculation

Riemannian mean
of all labeled
covariance
matrices in
each domain

Riemannian,
Euclidean, or
Log-Euclidean
mean of all
covariance
matrices in
each domain

Log-Euclidean
mean of labeled
covariance matrices
in each class
of each domain

Euclidean mean
of all covariance
matrices in
each domain

. Riemannian Euclidean Riemannian Riemannian or Riemannian or Riemannian or
Classifier . . .
space only space only space only Euclidean space | Euclidean space Euclidean space
Handle Class
Mismatch between No No No No No Yes
Domains
Computational Cost || High High High | Low Low Low
Although the above approaches achieved promising cross- v
subject classification performance, they did not explicitly use L. :e:‘ 3 .
. . L]
the idea of TL. Currently, a common TL technique for deep fas oo’
Source Domain 1. Compute the mean; " th "

learning-based EEG classification [68], [69] is based on fine
tuning with new data from the target session/subject. Unlike
concatenating target data with the existing source data, the
fine-tuning process is established on a pretrained model and

of each domain, and =
the transformation
matrices

2. Re-center the mean of each
domain at the identity matrix

T K

performs iterative learning on a relatively small amount of N
target data. Although the training data involved are exactly the — s
Target Domain Oup Som

same as using data concatenation, the prediction performance
can be improved significantly.

More specifically, Wu et al. [70] proposed a parallel
multiscale filter CNN for MI classification. It consisted of
three layers: 1) a CNN to extract both temporal and spatial
features from EEG signals; 2) a feature reduction layer with
square and log nonlinear functions followed by pooling and
dropout; and 3) a dense classification layer fine tuned on a
small amount of calibration data from the target subject. They
showed that fine tuning achieved improved performance in
cross-subject transfers.

B. Cross-Device TL

Xu et al. [71] studied the performance of deep learning
in cross-data set TL. Eight publicly available MI data sets
were considered. Although the different data sets used differ-
ent EEG devices, channels, and MI tasks, they only selected
three common channels (C3, CZ, and C4) and the left-hand
and right-hand MI tasks. They applied an online prealign-
ment strategy to each EEG trial of each subject by recursively
computing the Riemannian mean online and using it as the ref-
erence matrix in the EA approach. They showed that online
prealignment significantly increased the performance of deep
learning models in cross-data set TL.

C. Cross-Task TL

Both RA and EA assume that the source domains have the
same feature space and label space as the target domain, which

1. Compute the mea
of each class in each
domain, and the
transformation matrices

< 2. Re-center each source domain
class mean at the corresponding
target domain class mean

Fig. 2. Tllustration of EA and LA [50].

may not hold in many real-world applications, i.e., they may
not be used in cross-task transfers. Recently, He and Wu [50]
also proposed a label alignment (LA) approach, which can
handle the situation that the source domains have different
label spaces from the target domain. For MI-based BClIs, this
means the source subjects and the target subject can perform
completely different MI tasks (e.g., the source subject may per-
form left-hand and right-hand MI tasks, whereas the target sub-
ject may perform feet and tongue MIs), but the source subjects’
data can still be used to facilitate the calibration for a target
subject.

When the source- and target-domain devices are different,
LA first selects the source EEG channels that are the most
similar to the target EEG channels. Then, it computes the
mean covariance matrix of each source-domain class and esti-
mates the mean covariance matrix of each target-domain class.
Next, it recenters each source-domain class at the correspond-
ing estimated class mean of the target domain. Both Euclidean
space and Riemannian space feature extraction and classifi-
cation approaches can next be applied to aligned trials. LA
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only needs as few as one labeled sample from each target-
domain class, can be used as a preprocessing step before
different feature extraction and classification algorithms, and
can be integrated with other TL approaches to achieve even
better performance. He and Wu [50] demonstrated the effec-
tiveness of LA in simultaneous cross-subject, cross-device, and
cross-task TL in MI classification.

An illustration of the difference between LA and EA is
shown in Fig. 2. To the best of our knowledge, LA is the
only cross-task TL work in EEG-based BCIs and the most
complicated TL scenario (simultaneous cross-subject, cross-
device, and cross-task TL) considered in the literature so far.

IV. TL IN ERP-BASED BCIs

This section reviews recent TL approaches in ERP-based
BCIs. Many approaches introduced in the previous section,
e.g., RA, EA, RPA, and EEGNet, can also be used here. To
avoid duplication, we only include approaches not introduced
in the previous section here. Because there were no publica-
tions on cross-task TL in ERP-based BCIs, we do not have a
“cross-task TL” section.

A. Cross-Subject/Session TL

Waytowich et al. [72] proposed unsupervised spectral
transfer method using information geometry (STIG) for
subject-independent ERP-based BCIs. STIG uses a spec-
tral metalearner [73] to combine predictions from an
ensemble of MDRM classifiers on data from individual
source subjects. Experiments on single-trial ERP classifica-
tion demonstrated that STIG significantly outperformed some
calibration-free approaches and traditional within-subject cal-
ibration approaches when limited data were available in both
offline and online ERP classifications.

Wu [74] proposed weighted adaptation regularization
(WAR) for cross-subject transfers in ERP-based BClIs in both
online and offline settings. Mathematically, wAR learns the
following classifier directly:

Ny Ni
arg;nin Z wWie(f(XT). y5) +w Z wie(f(X7). 57)

n=1 n=1

+ o IfII% + ApDy k (Ps(Xs), Pi(X)))
+ oDy g (Ps(Xslys), Pr(Xily0)) (5)

where £ is a loss function, w; is the overall weight of target
domain samples, K is a kernel function, and o, Ap, and Ag
are nonnegative regularization parameters. w; and w} are the
weights for the nth sample in the source domain and the target
domain, respectively, to balance the number of positive and
negative samples in the corresponding domain.

Briefly, the five terms in (5) minimize the fitting loss in the
source domain, the fitting loss in the target domain, the struc-
tural risk of the classifier, the distance between the marginal
probability distributions Ps(Xs) and P;(X;), and the distance
between the conditional probability distributions Ps(X;|ys) and
P:(X:|y:). Experiments on single-trial visual evoked poten-
tial classification demonstrated that both online and offline
wAR algorithms were effective. Wu [74] also proposed a

source-domain selection approach, which selects the most
beneficial source subjects for transferring. It can reduce the
computational cost of wAR by ~50% without sacrificing the
classification performance.

Qi et al. [75] performed cross-subject TL on a P300 speller
to reduce the calibration time. A small set of ERP epochs
from the target subject was used as a reference to compute
the Riemannian distance to each source ERP sample from an
existing data pool. The most similar ones were selected to
train a classifier and were applied to the target subject.

Jin et al. [76] used a generic model set to reduce the cali-
bration time in P300-based BCIs. Filtered EEG data from 116
participants were assembled into a data matrix, the principal
component analysis (PCA) was used to reduce the dimension-
ality of the time domain features, and then 116 participants
were clustered into ten groups by k-means clustering. A
weighted linear discriminant analysis (WLDA) classifier was
then trained for each cluster. These ten classifiers formed the
generic model set. For a new subject, a few calibration sam-
ples were acquired and an online linear discriminant (OLDA)
model was trained. The OLDA model was matched to the
closest WLDA model, which was then selected as the model
for the new subject.

Deep learning has also been used in ERP classification.
Inspired by generative adversarial networks (GANs) [77],
Ming et al. [78] proposed a subject adaptation network (SAN)
to mitigate individual differences in EEGs. Based on the
characteristics of the application, they designed an artificial
low-dimensional distribution and forced the transformed EEG
features to approximate it. For example, for two-class visual
evoked potential classification, the artificial distribution is
bimodal, and the area of each modal is proportional to the
number of samples in the corresponding class. Experiments
on cross-subject visual evoked potential classification demon-
strated that SAN outperformed a support vector machine
(SVM) and EEGNet.

B. Cross-Device TL

Wu et al. [26] proposed active wAR (AwAR) for cross-
device TL. It integrates wAR (introduced in Section IV-A),
which uses labeled data from the previous device and handles
class imbalance, and active learning [24], which selects the
most informative samples from the new device to a label. Only
the common channels were used in wAR, but all the channels
of the new device can be used in active learning to achieve
better performance. Experiments on single-trial visual evoked
potential classification using three different EEG devices with
different numbers of electrodes showed that AWAR can sig-
nificantly reduce the calibration data requirement for a new
device in offline calibration.

To the best of our knowledge, this is the only study on
cross-device TL in ERP-based BClIs.

V. TL IN SSVEP-BASED BCIs

This section reviews recent TL approaches in SSVEP-based
BCIs. Because there were no publications on cross-task TL in
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SSVEP-based BCIs, we do not have a “cross-task TL” sec-
tion. Overall, many fewer TL studies on SSVEPs have been
performed compared with MI tasks and ERPs.

A. Cross-Subject/Session TL

Waytowich et al. [79] proposed compact-CNN, which
is essentially the EEGNet [67] approach introduced in
Section III-A, for 12-class SSVEP classification without the
need for any user-specific calibration. It outperformed state-
of-the-art hand-crafted approaches using canonical correlation
analysis (CCA) and combined-CCA.

Rodrigues et al. [61] proposed RPA, which can also be used
in cross-subject transfer of SSVEP-based BCIs. Since it has
been introduced in Section III-A, it is not repeated here.

B. Cross-Device TL

Nakanishi et al. [80] proposed a cross-device TL algorithm
for reducing the calibration effort in an SSVEP-based BCI
speller. It first computes a set of spatial filters by channel
averaging, CCA, or task-related component analysis and then
concatenates them to form a filter matrix W. The average trial
of class ¢ of the source domain is computed and filtered by
W to obtain Z.. Let X; be a single trial to be classified in the
target domain. Its spatial filter matrix W, is then computed by

E (©)

W, (XtXtT )_lXtZCT . Then, Pearson’s correlation
coefficients between WCT X; and Z. are computed as rgl), and
canonical correlation coefficients between X; and computer-
generated SSVEP models Y, are computed as r£2>. The two

feature values are combined as

2
. N\ 2
b= Ysien() - ()
i=1

and the target class is identified as argmax, 0.
To the best of our knowledge, this is the only study on
cross-device TL in SSVEP-based BCls.

W, = argmin”ZC — WTX,
w

ie.,

(7

VI. TL IN ABCIs

Recently, there has been a fast-growing research interest
in aBClIs [34]-[37]. Emotions can be represented by discrete
categories [81] (e.g., happy, sad, and angry) and by continuous
values in the 2-D space of arousal and valence [82] or the
3-D space of arousal, valence, and dominance [83]. Therefore,
there can be both classification and regression problems in
aBClIs. However, the current literature focused exclusively on
classification problems.

Most studies used the publicly available DEAP [84] and
SEED [9] data sets. DEAP consists of 32-channel EEGs
recorded by a BioSemi ActiveTwo device from 32 subjects
while they were watching minute-long music videos, whereas
SEED consists of 62-channel EEGs recorded by an ESI
NeuroScan device from 15 subjects while they were watching
4-min movie clips. By using SEED, Zheng et al. [85] investi-
gated whether stable EEG patterns exist over time for emotion
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recognition. Using differential entropy features, they found
that stable patterns did exhibit consistency across sessions and
subjects. Thus, it is possible to perform TL in aBCls.

This section reviews the latest progress on TL in aBCls.
Because there were no publications on cross-task TL in aBCls,
we do not have a “cross-task TL” section.

A. Cross-Subject/Session TL

Chai et al. [86] proposed adaptive subspace feature match-
ing (ASFM) for cross-subject and cross-session transfer in
offline and simulated online EEG-based emotion classification.
Differential entropy features were used. ASFM first performs
PCA of the source domain and the target domain separately.
Let Z; (Z;) be the d leading principal components in the
source (target) domain, which form the corresponding sub-
space. Then, ASFM transforms the source-domain subspace
to ZSZSTZ, and projects the source data into it. The target data
are projected directly into Z;. In this way, the marginal distri-
bution discrepancy between the two domains is reduced. Next,
an iterative pseudolabel refinement strategy is used to train a
logistic regression classifier using the labeled source-domain
samples and pseudolabeled target-domain samples, which can
be directly applied to unlabeled target-domain samples.

Lin and Jung [87] proposed a conditional TL (cTL) frame-
work to facilitate positive cross-subject transfers in aBCls.
Five differential laterality features (topoplots), corresponding
to five different frequency bands, from each EEG channel are
extracted. The cTL method first computes the classification
accuracy by using the target subject’s data only and performs
transfer only if that accuracy is below the chance level. Then, it
uses ReliefF [88] to select a few of the most emotion-relevant
features in the target domain and calculates their correlations
with the corresponding features in each source domain to
select a few of the most similar (correlated) source subjects.
Next, the target-domain data and the selected source-domain
data are concatenated to train a classifier.

Lin et al. [89] proposed a robust PCA (RPCA)-based [90]
signal filtering strategy and validated its performance in cross-
day binary emotion classification. RPCA decomposes an input
matrix into the sum of a low-rank matrix and a sparse matrix.
The former accounts for the relatively regular profiles of the
input signals, whereas the latter accounts for its deviant events.
Lin et al. showed that the RPCA-decomposed sparse signals
filtered from the background EEG activity contributed more
to the interday variability and that the predominately captured
EEG oscillations of emotional responses behaved relatively
consistently across days.

Li et al. [91] extracted nine types of time—frequency-domain
features (the peak-to-peak mean, mean square, variance,
Hjorth activity, Hjorth mobility, Hjorth complexity, maximum
power spectral frequency, maximum power spectral density,
and power sum) and nine types of nonlinear dynamical system
features (the approximate entropy, CO complexity, correlation
dimension, Kolmogorov entropy, Lyapunov exponent, permu-
tation entropy, singular entropy, Shannon entropy, and spectral
entropy) from EEG measurements. Through automatic and
manual feature selection, they verified the effectiveness and
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performance of the upper bounds of those features in cross-
subject emotion classification on DEAP and SEED. They
found that L1-norm penalty-based feature selection achieved
robust performance on both data sets, and the Hjorth mobility
in the beta rhythm achieved the highest mean classification
accuracy.

Liu et al. [92] performed cross-day EEG-based emotion
classification. Seventeen subjects watched six to nine emo-
tional movie clips on five different days over one month.
Spectral powers of the delta, theta, alpha, beta, and low and
high gamma bands were computed for each of the 60 channels
as initial features, and then recursive feature elimination was
used for feature selection. In cross-day classification, the data
from a subset of the five days were used by an SVM to clas-
sify the data from the remaining days. They showed that EEG
variability could impair the emotion classification performance
dramatically, and using data from more days during training
could significantly improve generalization performance.

Yang et al. [93] studied cross-subject emotion classifica-
tion on DEAP and SEED. Ten linear and nonlinear features
[the Hjorth activity, Hjorth mobility, Hjorth complexity, stan-
dard deviation, power spectral density (PSD) alpha, PSD beta,
PSD gamma, PSD theta, sample entropy, and wavelet entropy]
were extracted from each channel and concatenated. Then,
sequential backward feature selection and significance tests
were used for feature selection, and an RBF SVM was used
as the classifier.

Li et al. [94] considered cross-subject EEG emotion classifi-
cation for both supervised (the target subject has some labeled
samples) and semisupervised (the target subject has some
labeled samples and unlabeled samples) scenarios. We briefly
introduce only their best-performing supervised approach here.
Multiple source domains are assumed. They first performed
source selection by training a classifier in each source domain
and compute its classification accuracy on the labeled sam-
ples in the target domain. These accuracies were then sorted
to select the top few source subjects. A style transfer map-
ping was learned between the target and each selected source.
For each selected source subject, they performed SVM classi-
fication on his/her data, removed the support vectors (because
they are near the decision boundary and hence uncertain), per-
formed k-means clustering on the remaining samples to obtain
the prototypes, and mapped each target-domain labeled sam-
ple feature vector x} to the nearest prototype in the same class
by the following mapping:

n
. 2
min ;1 |Ax) +b—d" |5+ BlA —1IF +yIbI3 (8

where d,, is the nearest prototype in the same class of the
source domain, and B and y are hyperparameters. A new,
unlabeled sample in the target domain is first mapped to
each selected source domain and then classified by a classifier
trained in the corresponding source domain. The classification
results from all source domains were then weighted averaged,
where the weights were determined by the accuracies of the
source-domain classifiers.
Deep learning has also been gaining popularity in aBCI.

Chai et al. [95] proposed a subspace alignment autoencoder
(SAAE) for cross-subject and cross-session transfer in EEG-
based emotion classification. First, differential entropy features
from both domains were transformed into a domain-invariant
subspace using a stacked autoencoder. Then, kernel PCA,
graph regularization, and maximum mean discrepancy were
used to reduce the feature distribution discrepancy between
the two domains. After that, a classifier trained in the source
domain can be directly applied to the target domain.

Yin and Zhang [96] proposed an adaptive stacked denoising
autoencoder (SDAE) for cross-session binary classification of
mental workload levels from EEG. The weights of the shallow
hidden neurons of the SDAE were adaptively updated during
the testing phase using augmented testing samples and their
pseudolabels.

Zheng et al. [97] presented EmotionMeter, a multimodal
emotion recognition framework that combines brain waves
and eye movements to classify four emotions (fear, sad-
ness, happiness, and neutrality). They adopted a bimodal deep
autoencoder to extract the shared representations of both EEGs
and eye movements. The experimental results demonstrated
that modality fusion combining EEG and eye movements with
multimodal deep learning can significantly enhance emotion
recognition accuracy compared with a single modality. They
also investigated the complementary characteristics of EEGs
and eye movements for emotion recognition and the stabil-
ity of EmotionMeter across sessions. They found that EEGs
and eye movements have important complementary charac-
teristics, e.g., EEGs have the advantage of classifying happy
emotion (80%) compared with eye movements (67%), whereas
eye movements outperform EEGs in recognizing fear emotion
(67% versus 65%).

Fahimi er al. [98] performed cross-subject attention classifi-
cation. They first trained a CNN by combining EEG data from
source subjects and then fine tuned it by using some calibra-
tion data from the target subject. The inputs were raw EEGs,
bandpass filtered EEGs, and decomposed EEGs (delta, theta,
alpha, beta, and gamma bands).

Li et al. [99] proposed R2G-STNN, which consists of spatial
and temporal neural networks with regional-to-global hierar-
chical feature learning, to learn discriminative spatial-temporal
EEG features for subject-independent emotion classification.
To learn the spatial features, a bidirectional long short-term
memory (LSTM) network was used to capture the intrinsic
spatial relationships of EEG electrodes within and between
different brain regions. A region-attention layer was also intro-
duced to learn the weights of different brain regions. A domain
discriminator working corporately with the classifier was used
to reduce domain shift between training and testing.

Li et al. [100] further proposed an improved bihemi-
sphere domain adversarial neural network (BiDANN-S) for
subject-independent emotion classification. Inspired by the
neuroscience findings that the left and right hemispheres of
the human brain are asymmetric to the emotional response,
BiDANN-S uses a global and two local domain discriminators
working adversarially with a classifier to learn discriminative
emotional features for each hemisphere. To improve the gen-
eralization performance and to facilitate subject-independent
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EEG emotion classification, it also tries to reduce the possi-
ble domain differences in each hemisphere between the source
and target domains and ensure that the extracted EEG features
are robust to subject variations.

Li et al. [101] proposed a neural network model for cross-
subject/session EEG emotion recognition, which does not
require label information in the target domain. The neural
network was optimized by minimizing the classification error
in the source domain while making the source and target
domains similar in their latent representations. Adversarial
training was used to adapt the marginal distributions in the
early layers, and association reinforcement was performed to
adapt the conditional distributions in the last few layers. In
this way, it achieved joint distribution adaptation [102].

Song et al. [103] proposed a dynamical graph CNN
(DGCNN) for subject-dependent and subject-independent
emotion classification. Each EEG channel was represented as
a node in the DGCNN, and differential entropy features from
five frequency bands were used as inputs. After graph filtering,
a 1 x I convolution layer learned the discriminative features
among the five frequency bands. An ReL.U activation function
was adopted to ensure that the outputs of the graph filtering
layer are nonnegative. The outputs of the activation function
were sent to a multilayer dense network for classification.

Appriou et al. [104] compared several modern machine
learning algorithms on subject-specific and subject-
independent cognitive and emotional state classification,
including Riemannian approaches and a CNN. They found
that CNN performed the best in both subject-specific and
subject-independent workload classification. A filter bank
tangent space classifier (FBTSC) was also proposed. It first
filters an EEG into several different frequency bands. For
each band, it computes the covariance matrices of the EEG
trials, projects them onto the tangent space at their mean, and
then applies a Euclidean space classifier. FBTSC achieved
the best performance in subject-specific emotion (valance and
arousal) classification.

B. Cross-Device TL

Lan et al. [105] considered cross-data set transfers between
DEAP and SEED, which have different numbers of subjects,
and were recorded using different EEG devices with differ-
ent numbers of electrodes. They used only three trials (one
positive, one neutral, and one negative) from 14 selected sub-
jects in DEAP and only the 32 common channels between
the two data sets. Five differential entropy features in five dif-
ferent frequency bands (delta, theta, alpha, beta, and gamma)
were extracted from each channel and concatenated as fea-
tures. Experiments showed that domain adaptation, particularly
transfer component analysis [106] and maximum indepen-
dence domain adaptation [107], can effectively improve the
classification accuracies compared to the baseline.

Lin [108] proposed RPCA-embedded TL to generate a per-
sonalized cross-day emotion classifier with less labeled data
while obviating intraindividual and interindividual differences.
The source data set consists of 12 subjects using a 14-channel
Emotiv EPOC device, and the target data set consists of 26
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different subjects using a 30-channel Neuroscan Quik-Cap.
Twelve of the 26 channels of Quik-Cap were first selected
to align with 12 of the 14 selected channels from the EPOC
device. The Quik-Cap EEG signals were also downsampled
and filtered to match those of the EPOC device. Five frequency
band (delta, theta, alpha, beta, and gamma) features from each
of the six left-right channel pairs (e.g., AF3-AF4, F7-F8),
four fronto-posterior pairs (e.g., AF3-O1, F7-P7), and the 12
selected channels were extracted, resulting in a 120-D fea-
ture vector for each trial. Similar to [89], the sparse RPCA
matrix of the feature matrix was used as the final feature. The
Riemannian distance between the trials of each source subject
and the target subject was computed as a dissimilarity mea-
sure to select the most similar source subjects, whose trials
were combined with the trials from the target subject to train
an SVM classifier.

Zheng et al. [109] considered an interesting cross-device
(or cross-modality) and cross-subject TL scenario in which
the target subject’s eye-tracking data were used to enhance the
performance of cross-subject EEG-based affect classification.
It is a three-step procedure. First, multiple individual emotion
classifiers are trained for the source subjects. Second, a regres-
sion function is learned to model the relationship between
the data distribution and classifier parameters. Third, a target
classifier is constructed using the target feature distribution
and distribution-to-classifier mapping. This heterogeneous TL
approach achieved comparable performance with homoge-
neous EEG-based models and scanpath-based models. To the
best of our knowledge, this is the first study that transfers
between two different types of signals.

Deep learning has also been used in cross-device TL in
aBCIs. EEG trials are usually transformed into some sort of
images before input to the deep learning model. In this way,
EEG signals from different devices can be made consistent.

Siddharth et al. [110] performed multimodality (e.g.,
EEG, ECG, face, etc.) cross-data set emotion classification,
e.g., training on DEAP and testing on the MAHNOB-HCI
database [111]. We only briefly introduce their EEG-based
deep learning approach here, which works for data sets with
different numbers and placements of electrodes, different sam-
pling rates, etc. The EEG PSDs in the theta, alpha, and beta
bands were used to plot three topographies for each trial.
Then, each topography was considered a component of a color
image and weighted by the ratio of alpha blending to form
the color image. In this way, one color image representing the
topographic PSD was obtained for each trial, and the images
obtained from different EEG devices can be directly com-
bined or compared. A pretrained VGG-16 network was used
to extract 4096 features from each image, whose number was
later reduced to 30 by PCA. An extreme learning machine was
used as the classifier for the final classification.

Cimtay and Ekmekcioglu [112] used a pretrained state-of-
the-art CNN model, Inception-ResNet-v2, for cross-subject
and cross-data set transfers. Since Inception-ResNet-v2
requires the input data size to be (Ni, N, 3), where N1 > 75
is the number of EEG channels and N > 75 is the number of
time-domain samples, when the number of EEG channels is
less than 75, they increased the number of channels by adding
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noisy copies of them (Gaussian random noise was used) to
reach N1 = 80. This process was repeated three times so that
each trial became an 80 x 300 x 3 matrix, which was then
used as the input to Inception-ResNet-v2. They also added
a global average pooling layer and five dense layers after
Inception-ResNet-v2 for classification.

VII. TL IN BCI REGRESSION PROBLEMS

There are many important BCI regression problems, e.g.,
driver drowsiness estimation [38]-[40], vigilance estima-
tion [11], [12], [113], and user reaction time estimation [41],
which were not adequately addressed in previous reviews. This
section fills this gap. Because there were no publications on
cross-device and cross-task TL in BCI regression problems,
we do not have sections on them.

A. Cross-Subject/Session TL

Wau et al. [40] proposed a novel online wAR for regression
(OwARR) algorithm to reduce the amount of subject-specific
calibration data in EEG-based driver drowsiness estimation
and a source-domain selection approach to save approxi-
mately half of its computational cost. OWARR minimizes the
following loss function, similar to wAR [26]:

N N
min 3 (% = ()" + w307 £ ()
n=1 n=1

+ Md(Py(Xy), Pi(X) + d(Ps(Xslys), Pr(Xilyo)]
— yP(,f(X)) 9)

where A and y are nonnegative regularization parameters
and w; is the overall weight for target domain samples.
#(y, f(X)) approximates the sample Pearson correlation coef-
ficient between y and f(X). Fuzzy sets were used to define
fuzzy classes so that d(Ps(Xs|ys), Pr(X¢|y;)) can be effi-
ciently computed. The five terms in (9) minimize the fitting
error in the source domain, the fitting error in the target
domain, the distance between the marginal probability dis-
tributions, the distance between the conditional probability
distributions, and the estimated sample Pearson correlation
coefficient between y and f(X). Wu et al. [40] showed
that OWARR and OwARR with source-domain selection can
achieve significantly smaller estimation errors than several
other cross-subject TL approaches.

Jiang et al. [39] further extended OWARR to multiview
learning, where the first view included theta band powers from
all channels and the second view converted the first view into
dBs and removed some bad channels. A TSK fuzzy system
was used as the regression model, optimized by minimizing (9)
for both views simultaneously and adding an additional term to
enforce the consistency between the two views (the estimation
from one view should be close to that from the other view).
They demonstrated that the proposed approach outperformed
a domain adaptation with a model fusion approach [114] in
cross-subject TL.

Wei et al. [115] also performed cross-subject driver drowsi-
ness estimation. Their procedure consisted of three steps.

1) Ranking: For each source subject, it computed six dis-
tance measures (Euclidean distance, correlation distance,
Chebyshev distance, cosine distance, Kullback-Leibler
divergence, and transferability-based distance) between
his/her own alert baseline (the first ten trials) power dis-
tribution and all other source subjects’ distributions and
the cross-subject model performance (XP), which is the
transferability of other source subjects on the current
subject. A support vector regression (SVR) model was
then trained to predict XP from distance measures. In
this way, given a target subject with a few calibration
trials, the XP of the source subjects can be computed
and ranked.

2) Fusion: A weighted average was used to combine the
source models, where the weights were determined from
a modified logistic function optimized on the source
subjects.

3) Recalibration: The weighted average was subtracted by
an offset, estimated as the median of the initial ten cal-
ibration trials (i.e., the alert baseline) from the target
subject. They showed that this approach can result in
a 90% calibration time reduction in driver drowsiness
index estimation.

Chen et al. [116] integrated feature selection and an adap-
tation regularization-based TL (ARTL) [48] classifier for
cross-subject driver status classification. The most novel part
is feature selection, which extends the traditional ReliefF [88]
and minimum redundancy maximum relevancy (mRMR) [117]
to class separation and domain fusion (CSDF)-ReliefF and
CSDF-mRMR, which consider both the class separability
and the domain similarity, i.e., the selected feature subset
should simultaneously maximize the distinction among dif-
ferent classes and minimize the difference among different
domains. The ranks of the features from different feature selec-
tion algorithms were then fused to identify the best feature set,
which was used in ARTL for classification.

Deep learning has also been used in BCI regression
problems.

Ming et al. [118] proposed a stacked differentiable neural
computer and demonstrated its effectiveness in cross-subject
EEG-based mind load estimation and reaction time estima-
tion. The original LSTM network controller in differentiable
neural computers was replaced by a recurrent convolutional
network controller, and the memory-accessing structures were
also adjusted for processing EEG topographic data.

Cui et al. [38] proposed a subject-independent TL approach,
feature weighted episodic training (FWET), to completely
eliminate the calibration requirement in cross-subject transfers
in EEG-based driver drowsiness estimation. It integrates fea-
ture weighting to learn the importance of different features and
episodic training for domain generalization. Episodic training
considers the conditional distributions P(y,|f(X;)) directly and
trains a regression network f that aligns P(y|f(Xs)) in all the
source domains, which usually generalizes well to the unseen
target domain D;. It first establishes a subject-specific fea-
ture transformation model fy_ and a subject-specific regression
model fy for each source subject to learn the domain-specific
information, then trains a feature transformation model f that
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model.

Attack strategies to different components of a machine learning

makes the transformed features from subject s still perform
well when applied to a regressor f,/,j trained on subject j
(j # s). The overall loss function of episodic training, when
subject s’s data are fed into subject j’s regressor, is:

3

Ls.j

0o (5()))

1

=

g

+ X::K(y?,fwj(ff* (X?)))

(10)

where f,/, means that f./, is not updated during backpropaga-
tion. Once the optimal f,/, and fp are obtained, the prediction
for X; is J; = fy (fo (X1)).

VIII. TL IN ADVERSARIAL ATTACKS OF EEG-BASED
BClIs

Adversarial attacks of EEG-based BClIs represent one of the
latest developments in BCls. It was first studied by Zhang and
Wu [42]. They found that adversarial perturbations, which are
deliberately designed tiny perturbations, can be added to nor-
mal EEG trials to fool the machine learning model and cause
dramatic performance degradation. Both traditional machine
learning models and deep learning models, as well as both
classifiers and regression models in EEG-based BClIs, can be
attacked.

Adversarial attacks can target different components of a
machine learning model, e.g., training data, model parame-
ters, test data, and test output, as shown in Fig. 3. To date,
only adversarial examples (benign examples contaminated by
adversarial perturbations) targeting the test inputs have been
investigated in EEG-based BClIs, so this section only considers
adversarial examples.

A more detailed illustration of the adversarial example
attack scheme is shown in Fig. 4. A jamming module is
injected between signal processing and machine learning to
generate adversarial examples.

Table II shows the three attack types in EEG-based BCls.
White-box attacks know all information about the victim
model, including its architecture and parameters, and hence are
the easiest to perform. Black-box attacks know nothing about
the victim model but can only supply inputs to it and observe
its output and hence are the most challenging to perform.

15
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Example
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Fig. 4. Adversarial example generation scheme [42].

TABLE 11
SUMMARY OF THE THREE ATTACK TYPES IN EEG-BASED BCIs [42]

Victim Model | White-Box  Grey-Box  Black-Box
Information | Attacks Attacks Attacks
Know its architecture v X X
Know its parameters 6 v X X
Know its training data — v X
Can observe its response | — — v

A. Cross-Model Attacks

Different from the cross-subject/session/device/task TL sce-
narios considered in the previous five sections, adversarial
attacks in BClIs so far mainly considered cross-model attacks,?
where adversarial examples generated from one machine learn-
ing model are used to attack another model. This assumption
is necessary for gray-box and black-box attacks because the
victim model is unknown, and the attacker needs to construct
its own model (called the substitute model) to approximate the
victim model.

Interestingly, cross-model attacks can be performed without
explicitly considering TL. They are usually achieved by mak-
ing use of the transferability of adversarial examples [119],
i.e., adversarial examples generated by one machine learning
model may also be used to fool a different model. The funda-
mental reason behind this property is still unclear, but it does
not hinder people from making use of it.

For example, Zhang and Wu [42] proposed unsupervised
fast gradient sign methods, which can effectively perform
white-box, gray-box, and black-box attacks on deep learning
classifiers. Two BCI paradigms, i.e., MI and ERP, and three
popular deep learning models, i.e., EEGNet, Deep ConvNet,
and Shallow ConvNet, were considered. Meng et al. [43] fur-
ther showed that the transferability of adversarial examples can
also be used to attack regression models in BCIs; e.g., adver-
sarial examples designed from a multilayer perceptron neural
network can be used to attack a ridge regression model, and
vice versa, in EEG-based user reaction time estimation.

IX. CONCLUSION

This article has reviewed recently proposed TL approaches
in EEG-based BClIs, according to six different paradigms and
applications: 1) MI; 2) ERP; 3) SSVEP; 4) aBCI; 5) regres-
sion problems; and 6) adversarial attacks. TL algorithms are

2Existing publications [42], [43] also considered cross-subject attacks, but
the meaning of cross-subject in adversarial attacks is different from the cross-
subject TL setting in previous sections: in adversarial attacks, cross-subject
means that the same machine learning model is used by all subjects, but the
scheme for generating adversarial examples is designed on some subjects and
applied to another subject. It assumes that the victim machine learning model
works well for all subjects.
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grouped into cross-subject/session, cross-device, and cross-
task approaches and introduced separately. Connections among
similar approaches are also pointed out.

The
be made,

following observations and conclusions can
which may point to some future research

directions.

1y

2)

3)

4)

5)

6)

7)

Among the three classic BCI paradigms (MI, ERP, and
SSVEP), SSVEP seems to receive the least amount of
attention. Very few TL approaches have been proposed
recently. One reason may be that MI and ERP are very
similar, so many TL approaches developed for MI can
be applied to ERPs directly or with little modification,
e.g., RA, EA, RPA, and EEGNet, whereas SSVEP is a
quite different paradigm.

Two new applications of EEG-based BClIs, i.e., aBCI
and regression problems, have been attracting increasing
research interest. Interestingly, both of them are passive
BCIs [120]. Although both classification and regres-
sion problems can be formulated in aBClIs, existing
research has focused almost exclusively on classification
problems.

Adversarial attacks, one of the latest developments in
EEG-based BClIs, can be performed across different
machine learning models by utilizing the transferability
of adversarial examples. However, explicitly considering
TL between different domains may further improve the
attack performance. For example, in black-box attacks,
TL can make use of publicly available data sets to reduce
the number of queries to the victim model or, in other
words, to better approximate the victim model given the
same number of queries.

Most TL studies focused on cross-subject/session trans-
fers. Cross-device transfers have started to attract atten-
tion, but cross-task transfers remain largely unexplored.
To the best of our knowledge, there has been only one
such study [50] since 2016. Effective cross-device and
cross-task transfers would make EEG-based BCIs much
more practical.

Among various TL approaches, Riemannian geometry
and deep learning are emerging and gaining momentum,
each of which has a group of approaches proposed.
Although most research on TL in BCIs has focused
on classifiers or regression models, i.e., at the pat-
tern recognition stage, TL in BCIs can also be per-
formed in trial alignment, e.g., RA, EA, LA, and
RPA, in signal filtering, e.g., transfer kernel CSPs [51],
and in feature extraction/selection, e.g., CSDF-ReliefF
and CSDF-mRMR [116]. Additionally, these TL-based
individual components can also be assembled into a
complete machine learning pipeline to achieve even
better performance. For example, EA and LA data
alignment schemes have been combined with TL clas-
sifiers [50], [60], and CSDF-ReliefF and CSDF-mRMR
feature selection approaches have also been integrated
with TL classifiers [116].

TL can also be integrated with other machine learn-
ing approaches, e.g., active learning [24], for improved
performance [25], [26].
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