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Abstract - This paper presents a modified Gaus-
sian zero-crossing (GZC) discriminant function with
a restricted receptive field width for realizing emer-
gent on-line learning. An important advantage of the
GZC function over existing linear discriminant func-
tions is its locally tuned response characteristics. By
using the GZC discriminant function, both incorrect
interpolation and incorrect extrapolation of trained
networks can be significantly prevented by adjusting
two threshold limits of networks. We demonstrate
that the trained networks based on the GZC discrim-
inant function have the proper capability for rejecting
unknown inputs.

I. Introduction

On-line learning [8] is a popular method for train-
ing neural networks in which network parameters are
updated -after the presentation of each training exam-
ple. In comparison with batch learning, on-line learning
methods require less storage and computation time and
also represent a more natural method for learning non-
stationary tasks.

In our previous work [4], [6], we proposed an alter-
native on-line learning paradigm called emergent on-line
learning. The basic idea behind emergent on-line learn-
ing is twofold. First, at each time step, an on-line learn-
ing task is decomposed into a reasonable number of lin-
early separable subproblems. These subproblems serve
to discriminate the currently presented training exam-
ple from previously learned training examples. Second,
rather than directly solving the original on-line learning
task, solutions to an on-line learning task are obtained
by combining the solutions of linearly separable subprob-
lems according to two emergent laws. Figure 1 shows a
block diagram of the emergent on-line learning paradigm
in a supervised fashion. The emergent on-line learning
paradigm closely follows the divide-and-conquer strategy.
In the emergent on-line learning paradigm, two simple
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emergent laws are used to guide both the problem de-
composition and module combination processes.

Emergent Laws:
Minimization Principle
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Fig. 1. Block diagram of the emergent on-line learning
paradigm.

We show that the emergent on-line learning paradigm
has the following three main advantages over existing on-
line learning methods [4]. (1) Learning convergence can
be guaranteed in polynomial time because the emergent
on-line learning is performed by simply combining the
solutions of a reasonable number of linearly separable
subproblems instead of using gradient-based methods on
a differentiable error measure. (2) During learning, min-
max modular (M3) networks [1], [2] used in emergent on-
line learning grow gradually according to two emergent
laws; therefore, the user is not required to design the
networks before learning. (3) The M2 networks produced
by the emergent on-line learning paradigm are quick to
response and facilitate hardware implementation because
of their hierarchical, parallel, and modular structure.

To improve the generalization performance of trained
networks, we have proposed a Gaussian zero-crossing
(GZC) discriminant function [6]. The GZC function is
designed for solving linearly separable problems, each of
which contains only two different data. The GZC func-
tion has two different receptive field centers and the same
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receptive field width. Both the receptive field centers and
the receptive field width are directly determined by two
given training data belonging to two classes. The impor-
tant advantage of the GZC function over conventional
linear discriminant functions, such as Perceptrons, is its
locally tuned response characteristics.

In this paper, we present a modified GZC discriminant
function with a restricted receptive field width for realiz-
ing emergent on-line learning. In Section 2, the emergent
on-line learning is described. In Section 3, the weakness
of linear discriminant functions is analyzed, and a mod-
ified GZC discriminant function is presented. In Section
4, a simple example is presented to demonstrate the gen-
eralization performance of the networks using the mod-
ified GZC function. Conclusions are outlined in Section
5.

II. Emergent On-line Learning

In on-line learning, training examples from the envi-
ronment are continually presented to the network at dis-
tinct time steps. At time step ¢, on-line learning might
be regarded as an event of adding a new training exam-
ple (z, d) to the current network Net, where = and d
are the training input and desired output, respectively.
The key to emergent on-line learning is to use two emer-
gent laws to decompose an on-line learning problem into
a reasonable number of linearly separable subproblems
and to integrate the solutions of these linearly separable
subproblems into solutions to the original on-line learn-
ing problem.

A. Emergent laws

The two emergent laws [2], [3] used in emergent on-line
learning, namely the minimization principle and the maz-
tmization principle, are described as follows.
Minimization principle
Suppose a two-class problem B is divided into P rela-
tively smaller two-class subproblems, B; fori =1, ---, P,
and also suppose that all the subproblems have the
same positive training data and different negative train-
ing data'. If the P subproblems are correctly learned
by the corresponding P individual modules, M; for i =
1, ---, P, then the combination of the P trained modules
with a MIN unit produces the correct output for all the
training inputs in B, where the function of the MIN unit
is to find a minimum value from its multiple inputs.
Maximization principle
Suppose a two-class problem B is divided into P rela-
1If the desired output of the training data is 1 — ¢, then the

training data is called positive training data. Otherwise, it is called
negative training data.
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tively smaller two-class subproblems, B; fori =1, ---, P,
and also suppose that all the subproblems have the
same negative training data and different positive train-
ing data. If the P subproblems are correctly learned
by the corresponding P individual modules, M; for i =
1, ---, P, then the combination of the P trained modules
with a MAX unit produces the correct output for all the
training input in B, where the function of the MAX unit
is to find a maximum value from its multiple inputs.
Note that the MIN and MAX units are completely
equivalent to logical AND and OR. gates, respectively,
when the values of the inputs to the units are binary.

B. Problem decomposition

Suppose that M training data belonging to K classes
have been successfully learned by the current network
Net, and also suppose that the currently presented train-
ing example is (2, d). The problem of adding (z, d) to
Net can be decomposed into a reasonable number of lin-
early separable subproblems as follows [4].
i) If « belongs to a new class, the problem of adding  to
Net can be divided into the following "% | L; linearly
separable subproblems:

a) If K > 1, then the linearly separable subproblems
are given by A

7:?}‘(’_:.)1 = {(z(iu), 1— C) u (Z(K+1’1)’ f)} (1)

where i =1,---, K, u=1, ---, L;, L; is the number
of training data belonging to class C;, and &(K+1L.1) = g,
Note that the new class Cx 41 contains only one training
data z.

b) If K = 1, then the linearly separable subproblems
are given by

7}?;';’)1 = {(QE(K"'lvl), 1— €) U (z(l,u), 6)} (2)

wherev =1, ---, Ly,

ii) f z belongs to class C, (1 < s < K and K > 1), one
of the classes that have been already learned, the task
of adding = to Net can be divided into the following
Sull Li+ ZJI-;, +1 Li linearly separable subproblems:

7;'(su'L.+1) — {(:c(i"), 1-€u (z(a,L.+1), c)} 3)
and
7;(J~L‘+1'v) - {(z(s,L.+1)’ 1— 5) U (z(i")) 6)} (4)

wherei=1,---,s—1,u=1, ---, L;,j=5s+1, ---, K,
andv=1, ---, Lj.
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C. Parallel learning

A very attractive feature of the linearly separable sub-
problems defined by (1), (2), (3), and (4) is that each of
them can be treated as a completely independent, non-
communicating problem in the learning phase. There-
fore, all of the linearly separable subproblems can be
learned in parallel.

D. Module combination

Suppose all of the linearly separable subproblems have
been solved by associated network modules, these net-
work modules can be easily added to the current network
according to the two emergent laws as follows [4].
i) For Zf(:l L; network modules trained for solving the
linearly separable problems defined by (1) or (2), the
following combination operations are performed.

a) If X > 1, then the L; trained network modules are
combined as follows:
511{14)-1r ) ME,I};”-:-)I) (5)

fori=1,.--, K

M; k41 = Max (

where M.(',u}’{14)-1 denotes both the name of the network

modules corresponding to the subproblem T,(uK’_l‘_)l and its
actual output.

The K new modules M; g4q1 produced by (5) are
merged into a modular network with (g ) existing mod-
ules and their () inversions as follows:

=Min(M;;1, My, -+, My, -+, My k41)  (6)
where i, j = 1, .-+, K + 1, i # j, Mj; = INV(M;;) for
¢ < 7, and the function of the INV unit is to invert its
single input.

b) If K = 1, then the L; modules are combined as
follows:

1,2
Mgi1,1 = Mm(MK+1 v Mgiin o

ii) For Y2321 L; +Z i=s+1 Lj new modules corresponding
to (3) and (4) the followmg combination operations are
performed.

a) The E:;ll L; new modules and existing modules
are combined as follows:

Mgiia) ()

MG = Min (M, -, M), MEE) (o

and
M;, = Max (M{, -, M{) (9)

wherei=1,---,s—landu=1,---, L;.
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TABLE 1
Number of elements of the M® network for a
two-class problem

K K
Modules Z Z L; x L;
i=1 ]—z+1
MIN
1_13 i+1
MAX Z(K =
INV 0
TABLE 11

Number of elements of the M® network for a
K-class problem (K > 2)

K K
Modules 22 Z L; x Lj
i= l] 41
MIN | K +2Z Z
i= 1] i+1
MAX 22(1{ -)[ L 11
=1 '
INV )
b) The Z i—sp1 Lj new modules and existing modules

are combmed as follows:

L, L, L,+1,L;
Mt = Mm(M‘ D Mt )) (10)

M,; = Max (M(l)

(Ls) pg(Ls+1)
35 Msj ) Msj )

(11)
where j=s+1, .-, K.

E. Complex Analysis

From the discussion of the preceding subsection, we can
see that once a K-class problem has been learned suc-
cessfully by an M3 network at time step ¢, the size of the
M2 network is uniquely determined. The numbers of the -
MIN, MAX, and INV units, and modules are shown in
Tables I and II, where [2] denotes the smallest integer
greater then or equal to z.

ITI. A Modified GZC Discriminant Function
A. Linear discriminant functions

It is well known that a linearly separable problem can
be solved by using a linear discriminant function that
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divides the feature space with a hyperplane decision sur-
face. If a linear separable problem has only two different
data, a hyperplane to separate these training data can
be easily created. A useful hyperplane is the perpendic-
ular bisector ( see Fig. 2) of the line joining two training
inputs ¢; and ¢; [7). This hyperplane can be written as

fi(2) = (e~ 'z + 5 (lall? = sy =0 (12)
where ||2]|? is the squared magnitude of the vector z.

In terms of generalization, the hyperplane defined by
(12) is an optimal hyperplane because the margin of sep-
aration between the hyperplane and the training input
is maximum. A fatal weakness of the hyperplane, how-
ever, is that it lacks locally tuned response characteris-
tics. This deficiency may lead classifiers to mistakenly
produce proper output even when an unknown input is
presented.

Fig. 2. The decision boundary for a hyperplane.

B. The GZC discriminant function

To overcome the weakness of existing linear discriminant
functions, we have proposed a Gaussian zero-crossing
function [6] for solving linearly separable problems. The
definition of the GZC discriminant function is given by

(5]
| ()

where ¢ € R" is the input vector, ¢; € R"™ and ¢ €R"
are the given training inputs belonging to class C; and
class C; (i # j), respectively, and are used as two different
receptive field centers, o = M||¢j — ¢;|| is the receptive

fij(z) =

(13)
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field width, XA is a user-defined constant (0 < ), and
the norm ||z|| is the Euclidean norm of vector z. An
important advantage of the GZC function over existing
linear discriminant functions is its locally tuned response
characteristics.

C. Restricted receptive field width

From the definition of the GZC function, we see that
the receptive field width ¢ increases in direct ratio with
the distance between the two training inputs ¢; and c;.
That is, the greater the distance between ¢; and c;, the
wider the receptive field width. From the viewpoint of
both experimental data of neurophysiology and theoreti-
cal results of artificial neural networks, the receptive field
width should be restricted within a limited value. Here,
we modify the receptive field width of the GZC function
as follows:

o = Min (Al|e; — ¢i]l, Ymax) (14)
where ypmax is a user-defined maximum receptive field
width.

The modified GZC discriminant function with a re-
stricted receptive field width has two advantages over
the original GZC discriminant function of (13). 1) It can
keep locally tuned response characteristics even for very
sparse training inputs. 2) It might lead to a fewer num-
ber of units required for updating during on-line learning.
Figure 3 illustrates the GZC discriminant functions.

D. Upper and lower thresholds

After all modules were integrated into an M3 network
using the MIN, MAX, and INV units, the output of the
network is controlled using two parameters as follows:

1 if yi(z) > 6%

Unknown if §~ < yi(z) < 6%
-1 ify(z) <0

(15)

gi(z) =

where 6% and 8~ are the upper and lower threshold lim-
its of the network, respectively, and y;(z) denotes the
transfer function of the M3 network for class C;, which
discriminates the pattern of class C; from those of the
rest of the classes.

The solutions to the original K-class classification
problem is given by

C=arg m?x{MINi} fore=1,---,K (16)

where C is the class that the M3 network has assigned to
the input.
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Fig. 3. The GZC discriminant function for two-dimensional
input and its decision regions.

IV. An Illustrative Example

An illustrative example is presented in this section to
demonstrate the generalization performance of the M3
networks using the GZC discriminant function. Consider
the two-class problem shown in Fig. 4 (a), where the
point and small open circle represent the inputs whose
desired outputs are ‘0’ (class C3) and ‘1’ (class C; ), respec-
tively. The number under the points and circles denotes
the sequence of the training inputs to be presented to the
network during on-line learning.

The process of learning the two-class problem using
the GZC discriminant function is described as follows.

b
»
Je

30

(a) (b)
Fig. 4. A two-class problem (a) and the corresponding input-

~ output mapping produced by the M3 network using the
GZC discriminant function (b).

a) Since the first four training examples P; through P,
belong to the same class C», the network needs only to
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store these training data.

b) When the 5th training example Ps is presented to
the network, four linearly separable subproblems are gen-
erated to learn Ps according to (2) since Ps belongs to a
new class C;. Four modules for solving these four linearly
separable subproblems are combined using a MIN unit
because the four linearly separable subproblems have the
same positive training data Ps and different negative
training data P;, Py, P3, and Py4.

¢) When the 6th training example P is presented to
the network, four linearly separable subproblems are pro-
duced according to (4), and the corresponding four mod-
ules are added to the current M3 network according to
(10) and (11).

d) Following the same procedure mentioned at c), the
training examples P; and Pg are learned.

e) When the 9th training example Py is presented to
the network, four linearly separable subproblems are pro-
duced according to (3) since Py belongs to the class C;
and the associated four modules are added to current
network according to (8) and (9).

Pg|Py

Psl|Ps

HEHIHHIHA

PglPg)

Fig. 5. The M?® network for solving a two-class problem.
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f) Following the same procedure as described in e),
the last training example P} is learned. The whole M3
network and its input-output mapping are shown in Figs.
5 and 4(b), respectively.

By selecting different values of upper and lower thresh-
old limits 8% and #~, we can obtain various decision re-
gions as shown in Figs. 6(a), 6(b), and 6(c). From these
figures, we can see that the interpolation and extrapo-
lation capabilities of the M3 network can be easily con-
trolled by adjusting the upper and lower threshold limits.
For example, if 1 and #~ are set to 0.7 and -0.7, respec-
tively, then the M3 network will reject almost all of the
novel inputs that are far from the training inputs { See

Fig. 6(c)).

Fig. 6. Various decision regions formed by using the GZC
discriminant functions under different upper and lower
threshold limits (a), (b), and (c), and linear discriminant
functions (d), where (a) 8% = 0.1 and = = —0.1; (b)
6t = 0.5 and §~ = —0.5; and (c) 6% = 0.7 and 6~ =
—0.7. In (a), (b) and (c), the gray denotes unknown
decision regions. In (d) the gray denotes the decision
region of class C; and the gray line denotes hyperplanes
used.

To compare the performance of the GZC discrimi-
nant function with that of conventional linear discrim-
inant functions, Fig. 6(d) illustrates the decision regions
formed by the M3 network using the linear discriminant
functions for solving the two-class problem. Looking at
Fig. 6(d), we see that the M® network based on the linear
discriminant functions will produce the same response
to a novel input regardless of the distance between this
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novel input and the training inputs that have been al-
ready learned. That is, the network lacks locally tuned
response characteristics. From Figs. 6(a), 6(b), and 6(c),
we see that this deficiency can be dealt with by using the
GZC discriminant function.

V. Coneclusions

We have presented a modified Gaussian zero-crossing
discriminant function with a restricted receptive field
width for emergent on-line learning. We have demon-
strated that the networks using this discriminant func-
tion have locally tuned response characteristics and their
interpolation and extrapolation capabilities can be eas-
ily controlled by adjusting the upper and lower threshold
limits of networks.
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