
ReguIarization of Inverse Kinematics for
Manipulators Using Neural Network Inversions

Bao-Liang Lul and Koji Ito 'y2

'Bio-Mimetic Control Research Center, RIKEN
3-8-31 Rokuban, Atsuta-ku, Nagoya 456, Japan

2Dept. of Info. and Computer Sciences, Toyohashi Univ. of Tech.
1- 1 Hibarigaoka, Tempaku-cho, Toyohashi 441, Japan

lbl@nagoya.bmc.riken.go.jp ; koji@system.tutics.tut .ac.jp

ABSTRACT
This paper presents a new approach to regularizing the inverse kinematics problem for redun-

dant manipulators using neural network inversions. This approach is a four-phase procedure.
In the first phase, the configuration space and associated workspace are partitioned into a set of
regions. In the second phase, a set of modular neural networks is trained on associated training
data sets sampled over these regions to learn the forward kinematic function. In the third
phase, the multiple inverse kinematic solutions for a desired end-effector position are obtained
by inverting the corresponding modular neural networks. In the fourth phase, an "optimal"
inverse kinematic solution is selected from the multiple solutions according to a given criterion.
This approach has an important feature in comparison with existing methods, that is, both the
inverse kinematic solutions located in the multiple solution branches and the ones that belong
to the same solution branch can be found. As a result, better control of the manipulator using
the optimum solution than that using an ordinary solution can be achieved. This approach is
illustrated with a three-joint planar arm.

1. Introduction

The forward kinematic function for a robot manip-
ulator is a nonlinear mapping, h : Q E R" +. P C
R" , which maps a set of joint-angle variables from
the configuration space, Q, to the workspace, P.
When m < n, the manipulator is called a redun-
dant manipulator. The inverse kinematics problem
for redundant manipulators is to find some joint-
angle values g E Q such that h(q) is a desired
end-effector position p E P . This problem is an ill-
posed problem because the inverse kinematic map-
ping, h-' : P C Rm 4 Q s R" , is an one-tu
many mapping. In general, this problem is locally
ill-posed in the sense that it has no unique solution
and globally ill-posed because there are multiple
solution branches [2], and hence, there is no closed-
form direct expression for the inverse kinematic
mapping.

In the last few years, several approaches to solv-
ing the inverse kinematics problem using neural net-
works have been proposed [a, 3 , 4 , 91. Two popular
methods are the direct inverse approach [4] and
the distal learning approach [3]. The direct inverse
approach learns the inverse kinematic mapping di-
rectly using supervised learning algorithms. This
approach suffers two main drawbacks that limit

its usefulness. First, when the inverse images are
nonconvex, the inverse kinematic solution can not
be obtained by this approach because any super-
vised learning algorithm is unable to learn an one-
temany mapping. Second, the multiple solution
branch probIem is not considered, and hence, only
one inverse solution q can be found for a desired
end-effector position p . The distal learning ap-
proach is a two-phase procedure. In the first phase,
a network called Netf is trained to approximate
the forward kinematic mapping, Q -+ P. After the
training is completed, all the parameters of Netj
are fixed. In the second phase, a particular inverse
solution is obtained by placing another network
called Neti and Netj in series and learning an iden-
tity mapping across the composite network formed
from Neti and Netf. Although the distal learning
approach can overcome the nonconvex problem en-
counted by the direct inverse approach, the multiple
solution branch problem is still unsolved.

Furthermore, a global regularization approach
has been studied in [2]. The basic idea of this
approach is that the configuration space is parti-
tioned into regions using unsupervised learning al-
gorithms such that the forward kinematic functions
over these regions are invertible, and then the in-
verse kinematic mapping on each of the partitions is

mailto:lbl@nagoya.bmc.riken.go.jp

approximated using supervised learning algorithms.
But, at the present stage, this approach can only
deal with the inverse kinematics problem for 3-link
manipulators with one excess degree of freedom.

This paper presents a new approach to regu-
larizing the inverse kinematics problem for redun-
dant manipulators using neural network inversions.
This approach is a four-phase procedure. In the
first phase, the configuration space and associated
workspace are partitioned into a set of regions. In
the second phase, a set of modular neural networks
is trained on associated training data sets sampled
over these regions to learn the forward kinematic
function. In the third phase, the multiple inverse
kinematic solutions for a desired end-effector posi-
tion are obtained by inverting the corresponding
modular neural networks. In the fourth phase,
an “optimal” solution is selected from the multi-
ple solutions according to a given criterion. This
approach has an important feature in comparison
with existing methods, that is, both the inverse
kinematic solutions located in the multiple solution
branches and the ones that belong to the same so-
lution branch can be found. As a result, better
control of the manipulator using the optimum so-
lution than that using an ordinary solution can be
achieved.

2. Neural Network Inversions

The inversion problem for multilayer networks is to
find inputs which yield a desired output. There are
three common used approaches to inverting mul-
tilayer networks in the neural network literature,
i.e., the error back-propagation approach [6, 121,
the optimization approach [7, 81, and the iterative
approach based on the update of input vector [5].
In this paper, the optimization approach is used
because many inversions corresponding a desired
output can be found by this approach.

A trained three-layer network can be regarded
as a mapping from the input space to the output
space. In terms of matrix notation, this mapping
can be expressed as follows’ :

‘Note that for following the conventional notation in the
robotics and neural networks literature, we use two sets of
symbols for describing the inverse kinematics problem and
neural network inversions, respectively. The relationships
among some of the major symbols are as follows: p E q,
p i x3, n E N I , and m I N3.

W k j i is the weight connecting the ith unit in the
layer (k - 1) to the j t h unit in the layer k , f, =
[f,.~, f,z,-.~, f r N , I T , fkj(+) is the sigmoid activa-
tion function of j th unit in the layer k , bias, =
[bias,l, bias,2, bias,^^]^ E RNrl r = 2 ,3 ,
and biaskj is the bias of the j t h unit in the layer k .

For a desired output x3, the input z1 which satis-
fies Eq. (1) is called an inversion. In general, there
are an infinite number of inversions corresponding
to a desired output. Obviously, finding all of these
inversions is impossible in practical computation.
A practical strategy is to restrict ourselves to find-
ing some specific inversions. In the optimization
approach, the inversion problem is formulated as a
nonlinear programming problem [l] as follows:

Minimize g(z1) or Maximize g(z1)
Subject to

W 2 z 1 -b2 = -bias2
W3 f 2 (b2 -) = b3 - bias3 (2)

r i z l < o

where b,. = b, + bias, for r = 2,3 , b,. E RNT,
b k j is the total net input to the j t h unit in the
layer k , excluding biaskj , r = [yl , 7 2 , . . . , yN1lT ,
0 = [01,02, ..., B N ~] ~ , b3, = b3 + bias3 =
fi1(23) is given, 21 and b2 are unknown vec-
tors. The introduction of r _< 2 1 < 0 into
Eq. (2) is to limit the values of obtained inver-
sions within meaningful ranges. The objective func-
tion g(z1) can take a form: g(z1) = & Z ~ I for
1 = 1,2, . - . , or NI; g(z1) = 11 51 - c / I 2 , where
c = [cl, ea, . e , C N ,] ~ E RN1 is a given reference
point in the input space; or any one of other op-
timization criteria. Figure 1 illustrates two kinds
of network inversions [8] , namely, IMSI(1nversion
unilaterally Minimi zing or Maximizing Single In-
put variable) and INSI(1nversion Nearest the Spec-
ified Input), in the two-dimensional input space.
The IMSIs and INSIs can be obtained by solv-
ing the nonlinear programming problem defined by
Eq. (2) using the objective function g(z1) = x1i
for i = 1, 2, e - . , NI, and the objective function
g(z1) = 11 51 - c 11 , respectively.

(2) is a
no nlin ear sep am ble programmang problem. Nonlin-
ear separable programming problem refers to a non-
linear programming problem where the objective
and the constraint functions can be expressed as
a sum of functions, each involving only one vari-
able [l]. An important advantage of the nonlin-
ear separable programming problem is that it can
be approximated by a pseudo linear programming

method, a common and efficient technique for solv-
ing linear programming problems.

2

The inversion problem defined by Eq.

problem and solved by a variation of the s implex

The Inverse Image oPa Desired , output XJI

m Inverting

x11

IMSI 0 INSI o RePerence Input Point

Fig, 1:
dimensional input space.

Illustration of the lMSI and INSI in the two-

3. Learning Forward Kinematics

The forward kinematic function can be approxi-
mated by a monolithic multilayer neural network.
This strategy is commonly used for approxima-
tion of inverse kinematics in the robotics litera-
ture. However, the monolithic structure has two
drawbacks: (a) to approximate the forward kine-
matic function of a manipulator with large excess
degrees of freedom requires long training time from
the point of view of learning a function, and (b)
to invert the network becomes difficult because the
large-scale network increases complexity of the in-
version problem from the point of view of inverting
a network. In order to overcome the above disad-
vantages, a modular network scheme is introduced
in this paper.

To implement the modular scheme, we need to
decompose the learning task into subtasks which
can be learned by individual modular networks.
For the forward kinematic function approximation
problem, this can be achieved by partitioning the
configuration space into a set of regions. We assume
that the configuration space is a convex polyhedron
in R" [lo]. For the simplest special case, it can be
expressed as the following form:

Q f { q E Rn [q"" 5 q 5 qmax} (3)

where q"" and qmax are constant vectors and rep-
resent lower and upper joint-angle limits, respec-
tively. In this case, the configuration space Q can
be easily partitioned into T (T 2 1) smaller convex
polyhedrons as follows:

Qi E {qa E R" I qimin 5 qi 5 qimax} (4)
fori = 1, 2, . . . , T

where qimln and qimax are also constant vectors and
represent lower and upper joint-angle limits in the
ith region Qi, respectively.

Based on the above discussion, the forward kine-

ular neural networks according to the following al-
gorithm:

Step 1 : Partition the configuration space Q into r
regions Q1, Q2, ' . . , Q, in a uniform grid or
in a non-uniform grid.

Step 2 : Gather the input-output training data sets
TI, T2, . . . , T, by sampling the correspond-
ing overlapping regions Q1, Q2, . . . , &,,
and identifying the associated points in the
workspace.

Step 3 : Memorize the ranges of unnormalized de-
sired outputs2 in TI , Tz, . . . , T,, in order to
select modular networks for inverting.

Step 4 : Train the modular neural network MN1,
MN2, a . . , M N , on T I , T2, ..., T,, respec-
tively.

It is important to emphasize that, besides over-
coming the drawbacks of the monolithic structure
mentioned above, the modular network scheme can
regularize the ill-posed inverse kinematics prob-
lem globally to certain extent. Although there is
no theoretical guarantee that all multiple solution
branches can be partitioned by dividing the con-
figuration space into a set of regions, typically, the
smaller the region is divided, the more complete
the global regularization can be achieved. Figure 2
shows the modular network scheme for learning the
forward kinematic function. c-l> Configuration

Memorizing the ranges
of unnormalized outputs

Fig. 2: The modular network scheme for learning the forward
kinematic function.

4. Regularization Using Inversions

If a forward kinematic function is approximated
precisely by a multilayer network, then solving

ZSince all of the training input and output data are nor-
malized between 0 and 1 before training, we can only dis-
tinguish the output ranges by using unnormalized data after

matic function can be learned by individual mod- training.

the inverse kinematics problem is equivalent to
inverting the multilayer network. Suppose a de-
sired end-effector position p is a point within the
workspace P . To compute the inverse kinematic
solutions associated with p , we must determine
which modular networks need to be inverted. How-
ever, it is difficult for us to make a precise choice
because, in general, P I , Pz, . . . , P, , the im-
ages of Q1, Q2, . . -, Q,, are non-convex sets and
there is no closed-form expression. In this paper,
we use a simple approach to tackling this prob-
lem, that is, whether p is within Pi is judged
according to the range of unnormalized training
outputs in Ti. For example, if p = (0.65, 0.0)
and the ranges of unnormalized training outputs
in TI and T2 are ((0.01, 0.70), (-0.40, 0.60)}
and ((-0.55, 0.53), (0.16, 0.70)}, respectively (see
Table l), then only MN1 is selected because p is
within the range of TI, while p is not included in the
range of T2. This is an approximate approach, and
therefore, more number of the modular networks
than those actually required may be selected and
there may exist no inverse solution for some mod-
ular networks that are selected incorrectly. For a
desired end-effector position p , U (1 5 U 5 T) mod-
ular networks may be selected for inverting because
some of PI, Pa, . . . , P , overlap each other.

The goal of the proposed approach is to find
different inverse kinematic solutions q as many as
possible for a desired end-effector position p. The
multiple solutions to the inverse kinematics prob-
lem can be obtained by the following algorithm:

Step 1: Determine which modular network needs to

Step 2 Select objective function g (q) 3 in Eq. (2).
Step 3: Compute an inverse kinematic solution by

solving the separable nonlinear programming
problem defined by Eq. (2).

Step 4: Repeat Steps 2 and 3 until a desired num-
ber of inverse solutions are obtained.

be inverted.

Figure 3 illustrates the scheme for computing mul-
tiple inverse kinematic solutions by inverting mod-
ular neural networks.

After the multiple inverse solutions have been
obtained, we must select an “optimum” one from
them. The “optimum” inverse solution refers to the
best joint angles q in obtained multiple inverse kine-
matic solutions for a desired end-effector position
p . The criterion for choosing an “optimum” inverse
solution is largely dependent on the requirement of
a manipulator, and it is difficult to give a general

m Workspace

I Selecting Modular I Networks for Invertinu

Selecting an Inverse
Kinematic Solution

Fig. 3: The scheme for computing multiple inverse kinematic
solutions.

criterion. We will discuss how to choose an opti-
mum inverse solution through a simple example.

Consider, for example, a three-joint planar arm
as shown in Figure 4. The workspace contains an
obstacle. ff the manipulator needs to move from
position p to position p , we must find the cor-
responding q. According to Eq. (2), we can ob-
tain many inverse kinematic solutions by setting
the objective function in the forms: Minimize qa
or Maximize qi for i = 1,2 , OT 3. For example, two
different inverse solutions are illustrated in Figure 4
as the elbow-up and elbow-down solutions. In this
case, the movement may not be free of collisions
between the manipulator and the obstacle. In order
to avoid the obstacle we prefer to select the elbow-
up solution as an “optimal” one since the elbow-up
solution reduces the chance of a collision between
the links of the manipulator and the obstacle resting
on the workspace.

PI
3Note that for following the conventional notation in the

robotics and neural networks literature, we use two sets of
symbols for describing the inverse kinematics problem and
neural network inversions, respectively. The relationships
among some of the major symbols are as follows: q X I ,

p E x3, n E NI, and m E N3.

Fig. 4: Two different inverse kinematic solutions for a re-
dundant manipulator.

5. Simulation Results

In order to demonstrate the proposed approach, the
simulations are carried out on a three-joint planar
arm as shown in Figure 5. The configuration of the
arm is characterized by the three joint angles, q l ,
42, and 93, and the corresponding pair of Carte-
sian variables pl and p2 . Without loss of gener-
ality and for simplicity of illustration, the precise
analytic forward kinematic function of the arm is
used for generating training input-output data. It
is expressed as follows:

PI = L1 coS(ql) + L2 cOS(4l + q2) +
L3 COS(Y1-t- qz + q3)

PZ = L1 sin(q1) + L2 sin(ql+ q 2) +
L3 sin(ql+ 4 2 + 43) (5)

where L1, L2, and L3 are the manipulator link
lengths. We set L1 = 0.3, Lz = 0.25, and L3 =
0.15, and restrict the motion of the joints q1 , q2,

and 43 to the intervals [-7r/6, 2n/3], [0, 5a/6],
and [-?r/6, .rr/6], respectively.

PI

Fig. 5: A three-joint planar arm.

The configuration space Q is divided into 8 over-
lapping regions Ql, Qz, . . ., Q8, via the grid p i e
nts (-7r/6, 3a/12, 27r/3), (0, 57r/12, 5w/6), and
(-7r/6, 0, 71./6). For example, Ql is partitioned
by the intervals [-;./6, 3 ~ / 1 2] , [0, 57r/12], and
[-.rr/6, 01. Over each of the regions, a set of
216 (6 x 6 x 6) training input-output data is sam-
pled using Eq. (5) in a non-uniform grid. Ta-
ble 1 shows the ranges of unnormalized outputs
of T I , T2, - - - , T8, respectively. Eight modular
networks are used for approximating the forward
kinematic function. Each of them is a three-layer
network with 3 input, 10 hidden and 2 output units,
and is trained by the backpropagation learning al-
gorithm [ll].

To compute multiple inverse kinematic solutions,
we select the objective function g (q) in Eqs. (2)

Table: 1: The ranges of unnormalized outputs in T, for i =
1. 2. e... 8

PYfX .70 .53 .61 .18 .70 .53 .59 .02

p y .MI .70 .57 .58 .60 .69 .52 .59
p y ” -.40 .16 .13 -.I6 -.35 .11 .04 -.17

as: g(q) = f q i for i = 1, 2, or 3. This objec-
tive function allows us to minimize or maximize
the movement of the ith link. Let us compute
the inverse kinematic solutions for the desired end-
effector position p = (-0.4, 0.2). Since the desired
end-effector position p is located in the ranges of
the training outputs of T2, T4, T6 and Ts, M N z ,
MN4, MN6, and MNg are selected for inverting.
However, only four distinct inverse solutions, which
are shown in Table 2 and illustrated in Figure 6, are
obtained by inverting MN4 and MNg, and there
exists no any inverse solution in MN2 and MNG.
The reason for this situation is that p = (-0.4, 0.2)
is within the training output ranges of T2 and Tc,
but it doesn’t locate in the actual output areas of
M N z and MN6.

From the above simulation results, we see that
the inverse kinematic solutions in multiple solu-
tion branches can be found by inverting the cor-
responding modular networks. This demonstrates
that our approach can regularize the inverse kine-
matics problem globally, and furthermore, distinct
solutions in the same solution branch can also be
obtained by solving the optimization problem de-
fined in Eq. (2) with different objective functions.

After the multiple inverse kinematic solution
have been obtained, we can select an optimum so-
lution from them according to requirement of the
manipulator. For example, in order to avoid the
obstacle resting on the workspace, the elbow-up so-
lution q = (96.0, 87.9, 29.9) as shown in Figure 6
is selected as an optimum solution from four inverse
solutions as shown in Table 2.

6. Conclusion

In this paper, we have presented a new approach
to solving the inverse kinematics problem for re-
dundant manipulators. This approach is based on
modular neural network scheme and network inver-
sion techniques. This approach has an important
feature in comparison with existing methods, that
is, both the inverse kinematic solutions located in
multiple solution branches and ones that belong to
the same solution branch can be found by inverting
the corresponding modular neural networks. There-
fore, an optimum inverse kinematic solution can be
found and better control of the manipulator can be
achieved. As future work we will develop efficient

Table: 2: The Inverse Kinematic Solutions for pi = -0.4
and pz = 0.2, and the Corresponding Actual Positions

No. Inverse Kinematic Solutions Positions
41 42 43 P1 P2

MN4 Min(q1) 92.3 101.6 0.0 -0.400 0.204
Max(q1) 95.5 110.7 -29.9 -0.403 0.198 [8]

MNB Min(q1) 93.4 100.9 0.0 -0.405 0.201
Maxlai) 96.0 87.9 29.9 -0.405 0.198

approach to selecting modular networks for invert-
ing and perform simulations on manipulators with
large excess degrees of freedom.

Fig. 6: Four different inverse kinematic solutions obtained
by inverting MN4 and MNa for the desired end-effector
position pl = -0.4 and pz = 0.2. Note that two of solutions
are quite near and overlapped in the figure.

References

Bazaraa, M. S. and Shetty, C. W. : Nonlin-
ear Programming Theory and Algorithms, Jonn
Wiley and Sons, 1979.
Demers, D. E. : Learning t o Invert Many-io-one
Mappings, Ph. D. thesis, University of Califor-
nia, San Diego, 1993.
Jordan M. I. : “Forward models: supervised
learning with a distal teacher”, Cognitive Sci-
ence, vol. 16, pp, 307-354, 1992.
Kuperstein M. : “Adaptive visual-motor cc-
ordination in multijoint robots using paral-
lel architecture”, Proc. of 1987 IEEE Int.
Conf. Robotics and Automation, pp. 1595-1602,
Raleigh, North Carolina, 1987.
Lee, S. and Kil, R. M. : “Inverse mapping of
continuous functions using local and global in-
formation”, IEEE Trans. Neural Networks, vol.
5, no. 3, pp. 409-423, 1994
Linden, A. and Kindermann, J. : “Inversion of
Multilayer Nets”, Proc. of International Joint
Conference on Neural Networks, Washington]
vol. 2, pp. 425-430, 1989.

Lu, B. L., Kita, H. and Nishikawa, Y. : “Inver-
sion of feedforward neural networks by a separa-
ble programming”, Proc. of World Congress on
Neural Networks, vol. 4, pp. 415-420, Portland,
OR, 1993.
Lu, B. L. : Architectures, Learning and In-
version Algorithms for Multilayer Neural Net-
works, Ph. D. thesis, Dept. of Electrical Engi-
neering, Kyoto University, 1994.
fitter, H. J., Martinetz, T. M. and Schulten,
K. J. : “Topology-conserving maps for learning
visuo-motor-coordination” , Neural Networks,
vol. 2, pp. 159-168, 1989.

[lo] Schilling, R. J . : Fundamentals of Robotics:
Analysis and Control, Prentice Hall, 1994.

[ll] Rumelhart, D. E. and McClelland, J . L., Par-
allel Distributed Processing: Explorations in the
Microstructure of Cognition, vol. 1, The MIT
Press, 1986.

“Inverting a connectionist
network mapping by backpropagation of error”,

[12] Williams, R. J. :

Proc. of 8th Annual Conference of th
Science Society, Lawrence-Erlbaum,
865, 1986.

Cognitive
pp. 859-

