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ABSTRACT 
This paper presents a new approach to regularizing the inverse kinematics problem for redun- 

dant manipulators using neural network inversions. This approach is a four-phase procedure. 
In the first phase, the configuration space and associated workspace are partitioned into a set of 
regions. In the second phase, a set of modular neural networks is trained on associated training 
data sets sampled over these regions to learn the forward kinematic function. In the third 
phase, the multiple inverse kinematic solutions for a desired end-effector position are obtained 
by inverting the corresponding modular neural networks. In the fourth phase, an "optimal" 
inverse kinematic solution is selected from the multiple solutions according to a given criterion. 
This approach has an important feature in comparison with existing methods, that is, both the 
inverse kinematic solutions located in the multiple solution branches and the ones that belong 
to the same solution branch can be found. As a result, better control of the manipulator using 
the optimum solution than that using an ordinary solution can be achieved. This approach is 
illustrated with a three-joint planar arm. 

1. Introduction 

The forward kinematic function for a robot manip- 
ulator is a nonlinear mapping, h : Q E R" +. P C 
R" , which maps a set of joint-angle variables from 
the configuration space, Q, to the workspace, P. 
When m < n, the manipulator is called a redun- 
dant manipulator. The inverse kinematics problem 
for redundant manipulators is to find some joint- 
angle values g E Q such that h(q) is a desired 
end-effector position p E P .  This problem is an ill- 
posed problem because the inverse kinematic map- 
ping, h-' : P C Rm 4 Q s R" , is an one-tu 
many mapping. In general, this problem is locally 
ill-posed in the sense that it has no unique solution 
and globally ill-posed because there are multiple 
solution branches [2], and hence, there is no closed- 
form direct expression for the inverse kinematic 
mapping. 

In the last few years, several approaches to solv- 
ing the inverse kinematics problem using neural net- 
works have been proposed [a, 3 , 4 ,  91. Two popular 
methods are the direct inverse approach [4] and 
the distal learning approach [3]. The direct inverse 
approach learns the inverse kinematic mapping di- 
rectly using supervised learning algorithms. This 
approach suffers two main drawbacks that limit 

its usefulness. First, when the inverse images are 
nonconvex, the inverse kinematic solution can not 
be obtained by this approach because any super- 
vised learning algorithm is unable to learn an one- 
temany mapping. Second, the multiple solution 
branch probIem is not considered, and hence, only 
one inverse solution q can be found for a desired 
end-effector position p .  The distal learning ap- 
proach is a two-phase procedure. In the first phase, 
a network called Netf is trained to approximate 
the forward kinematic mapping, Q -+ P. After the 
training is completed, all the parameters of Netj 
are fixed. In the second phase, a particular inverse 
solution is obtained by placing another network 
called Neti and Netj in series and learning an iden- 
tity mapping across the composite network formed 
from Neti and Netf. Although the distal learning 
approach can overcome the nonconvex problem en- 
counted by the direct inverse approach, the multiple 
solution branch problem is still unsolved. 

Furthermore, a global regularization approach 
has been studied in [2]. The basic idea of this 
approach is that the configuration space is parti- 
tioned into regions using unsupervised learning al- 
gorithms such that the forward kinematic functions 
over these regions are invertible, and then the in- 
verse kinematic mapping on each of the partitions is 
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approximated using supervised learning algorithms. 
But, at the present stage, this approach can only 
deal with the inverse kinematics problem for 3-link 
manipulators with one excess degree of freedom. 

This paper presents a new approach to regu- 
larizing the inverse kinematics problem for redun- 
dant manipulators using neural network inversions. 
This approach is a four-phase procedure. In the 
first phase, the configuration space and associated 
workspace are partitioned into a set of regions. In 
the second phase, a set of modular neural networks 
is trained on associated training data sets sampled 
over these regions to learn the forward kinematic 
function. In the third phase, the multiple inverse 
kinematic solutions for a desired end-effector posi- 
tion are obtained by inverting the corresponding 
modular neural networks. In the fourth phase, 
an “optimal” solution is selected from the multi- 
ple solutions according to a given criterion. This 
approach has an important feature in comparison 
with existing methods, that is, both the inverse 
kinematic solutions located in the multiple solution 
branches and the ones that belong to the same so- 
lution branch can be found. As a result, better 
control of the manipulator using the optimum so- 
lution than that using an ordinary solution can be 
achieved. 

2. Neural Network Inversions 

The inversion problem for multilayer networks is to 
find inputs which yield a desired output. There are 
three common used approaches to inverting mul- 
tilayer networks in the neural network literature, 
i.e., the error back-propagation approach [6, 121, 
the optimization approach [7, 81, and the iterative 
approach based on the update of input vector [5]. 
In this paper, the optimization approach is used 
because many inversions corresponding a desired 
output can be found by this approach. 

A trained three-layer network can be regarded 
as a mapping from the input space to the output 
space. In terms of matrix notation, this mapping 
can be expressed as follows’ : 

‘Note that for following the conventional notation in the 
robotics and neural networks literature, we use two sets of 
symbols for describing the inverse kinematics problem and 
neural network inversions, respectively. The relationships 
among some of the major symbols are as follows: p E q, 
p i  x3, n E N I ,  and m I N3. 

W k j i  is the weight connecting the ith unit in the 
layer (k - 1) to the j t h  unit in the layer k ,  f, = 
[f,.~, f,z,-.~, f r N , I T ,  fkj(+) is the sigmoid activa- 
tion function of j th  unit in the layer k ,  bias, = 
[ bias,l, bias,2,  bias,^^]^ E RNrl r = 2 ,3 ,  
and biaskj is the bias of the j t h  unit in the layer k .  

For a desired output x3, the input z1 which satis- 
fies Eq. (1) is called an inversion. In general, there 
are an infinite number of inversions corresponding 
to a desired output. Obviously, finding all of these 
inversions is impossible in practical computation. 
A practical strategy is to restrict ourselves to find- 
ing some specific inversions. In the optimization 
approach, the inversion problem is formulated as a 
nonlinear programming problem [l] as follows: 

Minimize g(z1) or Maximize g(z1) 
Subject to 

W 2 z 1  -b2  = -bias2 
W3 f 2  (b2 - ) = b3 - bias3 (2) 

r i z l < o  

where b,. = b, + bias, for r = 2,3 ,  b,. E RNT, 
b k j  is the total net input to the j t h  unit in the 
layer k ,  excluding biaskj , r = [yl , 7 2 ,  . . . , yN1lT  , 
0 = [01,02, ..., B N ~ ] ~ ,  b3, = b3 + bias3 = 
fi1(23) is given, 21 and b2 are unknown vec- 
tors. The introduction of r _< 2 1  < 0 into 
Eq. (2) is to limit the values of obtained inver- 
sions within meaningful ranges. The objective func- 
tion g(z1) can take a form: g(z1) = & Z ~ I  for 
1 = 1,2,  . - . ,  or NI; g(z1) = 11 51 - c / I 2 ,  where 
c = [cl, ea, . e , C N , ] ~  E RN1 is a given reference 
point in the input space; or any one of other op- 
timization criteria. Figure 1 illustrates two kinds 
of network inversions [8] , namely, IMSI(1nversion 
unilaterally Minimi zing or Maximizing Single In- 
put variable) and INSI(1nversion Nearest the Spec- 
ified Input), in the two-dimensional input space. 
The IMSIs and INSIs can be obtained by solv- 
ing the nonlinear programming problem defined by 
Eq. (2) using the objective function g(z1) = x1i 
for i = 1, 2, e - . ,  NI, and the objective function 
g(z1) = 11 51 - c 11 , respectively. 

(2) is a 
no nlin ear  sep am ble programmang problem. Nonlin- 
ear separable programming problem refers to a non- 
linear programming problem where the objective 
and the constraint functions can be expressed as 
a sum of functions, each involving only one vari- 
able [l]. An important advantage of the nonlin- 
ear separable programming problem is that it can 
be approximated by a pseudo linear programming 

method, a common and efficient technique for solv- 
ing linear programming problems. 
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The inversion problem defined by Eq. 

problem and solved by a variation of the s implex  
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Fig, 1: 
dimensional input space. 

Illustration of the lMSI and INSI in the two- 

3. Learning Forward Kinematics 

The forward kinematic function can be approxi- 
mated by a monolithic multilayer neural network. 
This strategy is commonly used for approxima- 
tion of inverse kinematics in the robotics litera- 
ture. However, the monolithic structure has two 
drawbacks: (a) to approximate the forward kine- 
matic function of a manipulator with large excess 
degrees of freedom requires long training time from 
the point of view of learning a function, and (b) 
to invert the network becomes difficult because the 
large-scale network increases complexity of the in- 
version problem from the point of view of inverting 
a network. In order to overcome the above disad- 
vantages, a modular network scheme is introduced 
in this paper. 

To implement the modular scheme, we need to 
decompose the learning task into subtasks which 
can be learned by individual modular networks. 
For the forward kinematic function approximation 
problem, this can be achieved by partitioning the 
configuration space into a set of regions. We assume 
that the configuration space is a convex polyhedron 
in R" [lo]. For the simplest special case, it can be 
expressed as the following form: 

Q f { q  E Rn [ q"" 5 q 5 qmax} (3) 

where q"" and qmax are constant vectors and rep- 
resent lower and upper joint-angle limits, respec- 
tively. In this case, the configuration space Q can 
be easily partitioned into T (T 2 1) smaller convex 
polyhedrons as follows: 

Qi E {qa E R" I qimin 5 qi 5 qimax} (4) 
fori  = 1, 2, . . .  , T 

where qimln and qimax are also constant vectors and 
represent lower and upper joint-angle limits in the 
ith region Qi, respectively. 

Based on the above discussion, the forward kine- 

ular neural networks according to the following al- 
gorithm: 

Step 1 : Partition the configuration space Q into r 
regions Q1, Q2, ' . . , Q, in a uniform grid or 
in a non-uniform grid. 

Step 2 : Gather the input-output training data sets 
TI, T2, . . . , T, by sampling the correspond- 
ing overlapping regions Q1, Q2, . . .  , &,, 
and identifying the associated points in the 
workspace. 

Step 3 : Memorize the ranges of unnormalized de- 
sired outputs2 in TI ,  Tz, . . . , T,, in order to 
select modular networks for inverting. 

Step 4 : Train the modular neural network MN1,  
MN2, a . . ,  M N ,  on T I ,  T2, ..., T,, respec- 
tively. 

It is important to emphasize that, besides over- 
coming the drawbacks of the monolithic structure 
mentioned above, the modular network scheme can 
regularize the ill-posed inverse kinematics prob- 
lem globally to certain extent. Although there is 
no theoretical guarantee that all multiple solution 
branches can be partitioned by dividing the con- 
figuration space into a set of regions, typically, the 
smaller the region is divided, the more complete 
the global regularization can be achieved. Figure 2 
shows the modular network scheme for learning the 
forward kinematic function. c-l> Configuration 

Memorizing the ranges 
of unnormalized outputs 

Fig. 2: The modular network scheme for learning the forward 
kinematic function. 

4. Regularization Using Inversions 

If a forward kinematic function is approximated 
precisely by a multilayer network, then solving 

ZSince all of the training input and output data are nor- 
malized between 0 and 1 before training, we can only dis- 
tinguish the output ranges by using unnormalized data after 

matic function can be learned by individual mod- training. 



the inverse kinematics problem is equivalent to 
inverting the multilayer network. Suppose a de- 
sired end-effector position p is a point within the 
workspace P .  To compute the inverse kinematic 
solutions associated with p ,  we must determine 
which modular networks need to be inverted. How- 
ever, it is difficult for us to make a precise choice 
because, in general, P I ,  Pz,  . . .  , P, ,  the im- 
ages of Q1, Q2, . . -, Q,, are non-convex sets and 
there is no closed-form expression. In this paper, 
we use a simple approach to tackling this prob- 
lem, that is, whether p is within Pi is judged 
according to the range of unnormalized training 
outputs in Ti. For example, if p = (0.65, 0.0) 
and the ranges of unnormalized training outputs 
in TI and T2 are ((0.01, 0.70), (-0.40, 0.60)} 
and ((-0.55, 0.53), (0.16, 0.70)}, respectively (see 
Table l), then only MN1 is selected because p is 
within the range of TI, while p is not included in the 
range of T2. This is an approximate approach, and 
therefore, more number of the modular networks 
than those actually required may be selected and 
there may exist no inverse solution for some mod- 
ular networks that are selected incorrectly. For a 
desired end-effector position p ,  U (1 5 U 5 T) mod- 
ular networks may be selected for inverting because 
some of PI, Pa, . . . , P ,  overlap each other. 

The goal of the proposed approach is to find 
different inverse kinematic solutions q as many as 
possible for a desired end-effector position p. The 
multiple solutions to the inverse kinematics prob- 
lem can be obtained by the following algorithm: 

Step 1: Determine which modular network needs to 

Step 2 Select objective function g ( q ) 3  in Eq. (2). 
Step 3: Compute an inverse kinematic solution by 

solving the separable nonlinear programming 
problem defined by Eq. (2). 

Step 4:  Repeat Steps 2 and 3 until a desired num- 
ber of inverse solutions are obtained. 

be inverted. 

Figure 3 illustrates the scheme for computing mul- 
tiple inverse kinematic solutions by inverting mod- 
ular neural networks. 

After the multiple inverse solutions have been 
obtained, we must select an “optimum” one from 
them. The “optimum” inverse solution refers to the 
best joint angles q in obtained multiple inverse kine- 
matic solutions for a desired end-effector position 
p .  The criterion for choosing an “optimum” inverse 
solution is largely dependent on the requirement of 
a manipulator, and it is difficult to give a general 

m Workspace 

I Selecting Modular I Networks  for Invertinu 

Selecting an Inverse 
Kinematic Solution 

Fig. 3: The scheme for computing multiple inverse kinematic 
solutions. 

criterion. We will discuss how to choose an opti- 
mum inverse solution through a simple example. 

Consider, for example, a three-joint planar arm 
as shown in Figure 4. The workspace contains an 
obstacle. ff the manipulator needs to move from 
position p to position p ,  we must find the cor- 
responding q. According to Eq. (2), we can ob- 
tain many inverse kinematic solutions by setting 
the objective function in the forms: Minimize qa 
or Maximize qi for i = 1,2 ,  OT 3. For example, two 
different inverse solutions are illustrated in Figure 4 
as the elbow-up and elbow-down solutions. In this 
case, the movement may not be free of collisions 
between the manipulator and the obstacle. In order 
to avoid the obstacle we prefer to select the elbow- 
up solution as an “optimal” one since the elbow-up 
solution reduces the chance of a collision between 
the links of the manipulator and the obstacle resting 
on the workspace. 

PI 
3Note that for following the conventional notation in the 

robotics and neural networks literature, we use two sets of 
symbols for describing the inverse kinematics problem and 
neural network inversions, respectively. The relationships 
among some of the major symbols are as follows: q X I ,  

p E x3, n E NI, and m E N3. 

Fig. 4: Two different inverse kinematic solutions for a re- 
dundant manipulator. 



5. Simulation Results 

In order to demonstrate the proposed approach, the 
simulations are carried out on a three-joint planar 
arm as shown in Figure 5. The configuration of the 
arm is characterized by the three joint angles, q l ,  
42,  and 93,  and the corresponding pair of Carte- 
sian variables pl and p2 .  Without loss of gener- 
ality and for simplicity of illustration, the precise 
analytic forward kinematic function of the arm is 
used for generating training input-output data. It 
is expressed as follows: 

PI = L1 coS(ql) + L2 cOS(4l + q2) + 
L3 COS(Y1-t- qz + q3)  

PZ = L1 sin(q1) + L2 sin(ql+ q 2 )  + 
L3 sin(ql+ 4 2  + 43)  (5) 

where L1, L2, and L3 are the manipulator link 
lengths. We set L1 = 0.3, Lz = 0.25, and L3 = 
0.15, and restrict the motion of the joints q1 ,  q2,  

and 43 to the intervals [-7r/6, 2n/3], [0, 5a/6], 
and [-?r/6, .rr/6], respectively. 

PI 

Fig. 5: A three-joint planar arm. 

The configuration space Q is divided into 8 over- 
lapping regions Ql, Qz, . . ., Q8, via the grid p i e  
nts (-7r/6, 3a/12, 27r/3), (0, 57r/12, 5w/6), and 
(-7r/6, 0, 71./6). For example, Ql is partitioned 
by the intervals [-;./6, 3 ~ / 1 2 ] ,  [0, 57r/12], and 
[-.rr/6, 01. Over each of the regions, a set of 
216 (6 x 6 x 6) training input-output data is sam- 
pled using Eq. (5) in a non-uniform grid. Ta- 
ble 1 shows the ranges of unnormalized outputs 
of T I ,  T2, - - - ,  T8, respectively. Eight modular 
networks are used for approximating the forward 
kinematic function. Each of them is a three-layer 
network with 3 input, 10 hidden and 2 output units, 
and is trained by the backpropagation learning al- 
gorithm [ll]. 

To compute multiple inverse kinematic solutions, 
we select the objective function g ( q )  in Eqs. (2) 

Table: 1: The ranges of unnormalized outputs in T, for i = 
1. 2. e... 8 

PYfX .70 .53 .61 .18 .70 .53 .59 .02 

p y  .MI .70 .57 .58 .60 .69 .52 .59 
p y ”  -.40 .16 .13 -.I6 -.35 .11 .04 -.17 

as: g(q)  = f q i  for i = 1, 2, or 3. This objec- 
tive function allows us to minimize or maximize 
the movement of the ith link. Let us compute 
the inverse kinematic solutions for the desired end- 
effector position p = (-0.4, 0.2). Since the desired 
end-effector position p is located in the ranges of 
the training outputs of T2, T4, T6 and Ts, M N z ,  
MN4, MN6,  and MNg are selected for inverting. 
However, only four distinct inverse solutions, which 
are shown in Table 2 and illustrated in Figure 6, are 
obtained by inverting MN4 and MNg, and there 
exists no any inverse solution in MN2 and MNG. 
The reason for this situation is that p = (-0.4, 0.2) 
is within the training output ranges of T2 and Tc, 
but it doesn’t locate in the actual output areas of 
M N z  and MN6. 

From the above simulation results, we see that 
the inverse kinematic solutions in multiple solu- 
tion branches can be found by inverting the cor- 
responding modular networks. This demonstrates 
that our approach can regularize the inverse kine- 
matics problem globally, and furthermore, distinct 
solutions in the same solution branch can also be 
obtained by solving the optimization problem de- 
fined in Eq. (2) with different objective functions. 

After the multiple inverse kinematic solution 
have been obtained, we can select an optimum so- 
lution from them according to requirement of the 
manipulator. For example, in order to avoid the 
obstacle resting on the workspace, the elbow-up so- 
lution q = (96.0, 87.9, 29.9) as shown in Figure 6 
is selected as an optimum solution from four inverse 
solutions as shown in Table 2. 

6. Conclusion 

In this paper, we have presented a new approach 
to solving the inverse kinematics problem for re- 
dundant manipulators. This approach is based on 
modular neural network scheme and network inver- 
sion techniques. This approach has an important 
feature in comparison with existing methods, that 
is, both the inverse kinematic solutions located in 
multiple solution branches and ones that belong to 
the same solution branch can be found by inverting 
the corresponding modular neural networks. There- 
fore, an optimum inverse kinematic solution can be 
found and better control of the manipulator can be 
achieved. As future work we will develop efficient 



Table: 2: The Inverse Kinematic Solutions for pi = -0.4 
and pz = 0.2, and the Corresponding Actual Positions 

No. Inverse Kinematic Solutions Positions 
41 42 43 P1 P2 

MN4 Min(q1) 92.3 101.6 0.0 -0.400 0.204 
Max(q1) 95.5 110.7 -29.9 -0.403 0.198 [8] 

MNB Min(q1) 93.4 100.9 0.0 -0.405 0.201 
Maxlai) 96.0 87.9 29.9 -0.405 0.198 

approach to selecting modular networks for invert- 
ing and perform simulations on manipulators with 
large excess degrees of freedom. 

Fig. 6: Four different inverse kinematic solutions obtained 
by inverting MN4 and MNa for the desired end-effector 
position pl = -0.4 and pz = 0.2. Note that two of solutions 
are quite near and overlapped in the figure. 
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