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Abstract: A novel method for inverting a mapping of
the multilayer feedforward network is proposed in this
paper. This method is based upon recursive constrained
linear equations which is constructed by a given desired
output, weights, an activation function and unknown
inputs. By solving these recursive constrained linear
equations by nonlinear and linear programming tech-
niques, we can obtain some typical network inversions
from a given output, i.e., some unseen typical inputs
corresponding to the given output. Therefore, we can
obtain some new relations between the unseen inputs and
the given output. The importance of this method lies in
the fact that it provides us a promising approach to eza-
mining generalization capability of the network, extract-
ing rules from the network, and realizing backward rea-
soning in an ezpert system based on the neural network.
Two algorithms based on this method for inverting the
mapping of the three-layer feedforward network are
derived and some ezamples are presented.

Introduction

In a multilayer neural network, once the network is
trained with a set of training examples, the mapping
from the input space to the output space is fixed, and
therefore the generalization capability is determined. In
genéral, this mapping is a many-to-one mapping, i.e.,
many inputs correspond to one output. In most cases,
we only know part of relations between the training
inputs and outputs. Hence, we don’t know whether the
trained network would have the capability to classify
correctly untested inputs of the problem. Obviously, if
all or some typical relations between the inputs and the
outputs are brought to light, then the generalization
capability is made more clear. It has been observed
that, some method of network inversion would yield an
effective tool for this task.’

In the last few years, some algorithms for inverting
the mapping of the multilayer feedforward network
have been proposed.'™ However, these algorithms have
followed a same path which is based on the error
back-propagation. They suffer from some deficiences
such as follows:

« The inversion depends on a starting point in the
input space, and only one network inversion can
be found for a starting point.

o The analytical relations among elements of each
network inversion are unable to be found.

The purpose of this paper is to present a new

method for inverting the mapping of the multilayer
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feedforward networks. This method can overcome the
above shortcomings.

One advantage of this method is that, to a given
output, a set of typical unseen inputs corresponding to
it can be found. By use of these typical unseen inputs,
some new relations between the input space and the
given output can be clarified. Another advantage of
this method is that it provides us with the analytical
relations among elements of each network inversion.

Two algorithms based on this method for inverting
the mapping of the three-layer feedforward network are
derived. The first algorithm, called IVG algorithm, is to
invert the mapping into a global input space. The
second one, called IVL algorithm, is developed to invert
the mapping into a local input space.

Network Inversion Problem

Before we discuss the network inversion problem, let
us adopt the following notation:

L number of layers,

N, number of units in the layer k, 1<k<L,

T output of the jth unit in the layer ¥ where z,;
represents the input of the jth unit,

by; total input to the jth unit in the layer &,

d; desired output of the jth unit in the
output layer,

wg; weight connecting the jth unit in the
layer (k~1) to the ith unit in the layer &,

biasy, bias weight of the jth unit in the layer &,

f nonlinear activation function,

t inverse of the activation function,

[74 6] activation range of the jth unit in the layer &.

A multilayer feedforward network with L layers con-
sists of the input layer, the output layer, and L—2 hid-
den layers. The units in the input layer serve only as
distribution points, and they perform no input summa-
tion. Each unit in the layer k, 1<k<L, receives its input
from the layer (k-1), and sents its output to the layer
(k+1).

In the multilayer feed-forward network, the inputs
are fed forward through the connections according to

N

Ty =f (X wij zeyj +biasg ),
j=1

k=23,..L, i=1,2,...,.N, (1)

We regard the feedforward network as a mapping
from an input space to an output space. In general, this
mapping is a many-to-one mapping. It can be written
as the following Eqs.(2)

CH2976-9/91/0000-1349 $1.00 © 1991 IEEE



Ney
2= f( Y wpg oz biasy ), =12, N
j=1
Nes
2= (X wpggpzartbias ), 7=1,2, N
l=1
(2
Nl
Top = f( 2 Worm zlm'*'b""“mn )’ "=1)2y'-~sz
m=1
7qux"_<.6pq1 p=12,...L, 41'1»21---,1\',

where [v,,, 6,4 is the activation range of z,.. Note that,
for practical numerical computation, in order to protect
arithmetic operation from overflow and attain an effec-
tive computing, the activation range selected is nar-
rower than the theoretical one. For example, for a sym-
metric activation function of Eq.(23) shown later, the
activation range is selected as [-0.499999, 0.499999)
instead of [-0.5, 0.5].
In terms of matrix notation, we obtain

xy = F ( Wy xp_,+bias; )

xp 1= Fpy ( Wy xp_ptbiasy ;)

x; = Fp ( Wy x+biasy )

I‘PSXPSGP, p=12,..,L
where
Tp1 Tpt Op1 ]
Zp2 Tp2 0))2
L=|[.0=| | 8= |, pe12.L,
_ "'p.N TN, 9,~,

Vit W2 kLN, Wi
Wiy Wi WEa N, Wio
Wk = = y
Win WeN2 - - WENLN,, Wi,
Ny 1
(T wyyj 24y Hbiasy)
j=1
Ny
. Wy Xg_1+bias
H(B wigj 2y +biasyy) fog Xy v )
1 F(Wig Xy +biasy)
F, = . = : ,
Mia F(Wiy, Xy Hbissy)
AT win, j Zx-1,+biasy)
L j=1 J

bias; =[biasy,, biasy, . . ., biaskN.]T, k=2,3,...,L

From Egs. (3), by use of the inverse of the activation
function, we obtain the following recursive constrained
linear equations
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Wyxp , =by

Wy ixi-2 =b

(4)

W2 x; =b,
T,<x,56,, p=12,...L-1

where
bk'F-l(xk)'bi”kv F-l={f_l(2k1)v f-l(zkz)»---, f_l(”uv,)] T
k=23,...,L.

The importance of Eqs. (4) lies in the fact that it
provides us with an analytical formula for finding net-
work inversions and indicates the following property of
the multilayer feedforward network:

« The relations among elements, z,,z,...,2i,, Of each
xy(k=1,2,...,L) are linear.
From Egs. (4), the difficult nonlinear network inver-

sion problem in the multilayer feedforward network can
be partitioned into some subproblems:

« Compute b, from x, by
b,=FY(x})—bias,, k=L,L-1,..,32
« Solve the constrained linear equation
Wexpy =b;
T 1<%, 1<63 )
Thus, by calculating b, and finding the solution of
Eq.(5) recursively from the output layer to the input

layer, we can solve the network inversion problem in
the multilayer feedforward network.

Inverting Algorithms

In this section, limiting to the case of three-layer
network, we shall derive two algorithms for inverting
the mapping, and present a computing procedure for
determining boundary of the network inversions.

The numbers of units in the input, the hidden and
the output layers differ for variety of application prob-
lems. Here we consider a typical case in which
N,>N,>N,;, where N, N,, and N, are numbers of the
input, the hidden and the output units, respectively.

Inverting into a Global Input Space

Suppose that a desired output d-[dl,dQ,...,dN’]T is

given. Since x;=d, the following equations are obtained
from Eq.(4):

by =F! (d)—bias, (6)
W3 x; =bg

{r2512592 (7)

by=F ! (x, )—bias, (8)
W, x; =b,

[F1Sx1591 (9)

The objective of the inverting algorithms is to find a
set of typical x, from the above equations as large as
possible.
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If Eq.(7) have an infinity of solutions, there exist an
infinity of b,. The problem is how to select b, from
Eqgs.(7) and (8) to make Eq.(9) consistent. In general,
the number of b, which make Eq. (9) consistent is infin-
ity. Obviously, we can not find all the b, in practical
computation. We propose a computing procedure,
called IVG(InVerting into Global input space) algo-
rithm, to deal with this problem. The principal idea is
to use a nonlinear programming technique to select
typical b,.

The IVG algorithm proceeds as follows:

1) Suppose that by, by, - - ., byy, are variable.

2) Compute W3, a generalized inverse of W,.

3) Compute Iy—W; W,, and obtain the general solution®
of W, x, =b, by

%, = Wrbgt(ly~ Wy Wps, IeR™™ (10)

where Iy is the N, dimensional identity matrix, s is an
. ! N
arbitrary column vector, seR .

Let b, and s be denoted by y, and y,, respectively.
Then, Eq.(10) is rewritten as

N1

x=(W5 (- Wy W) [ ,2] (11)
4) Solve the following nonlinear programming problem:
Maximize(a;y) or Minimize(ayy) , i=1,2,...,N; (12)
Subject to

W3Fy(yy) =bs

[1<Ay<6, (13)

¥,<y,<0,
where

Fy(y)=[f(yn+biasy), f(y1o+biasy),..., f(ym1+bia:2N2)]T,
ii=bay i=1,2,..; ,

Nyx(Ng+N,
A=(W5 (g~ Wy Wy)l=[ay, ay, - . S

11}
= , R
’ Y2 7€

., aNJT, A€ER

NytN,
y

Qy=[wyy, weg, - - ., wZNJ]T
=(f 1(921)—5"‘”21: r 1(922)"1"“"~"21n o f 1(amv,)—l"'“"m,}T,
B=[¥2), ¥, - - -, Ya)”

<[ (y2) - biasyy, f (v0)~bissy, . . ., f_l(7zN,)"bi“'zN,]T

Here we suppose that the inverse of activation func-
tion is monotone increasing in the activation range.
5) If the above nonlinear programming(NLP) problem
has an optimum or a feasible solution, there exits such
a b, that makes Eq.(9) consistent,
]T

FZ=y; » ""[y;'l !I;z: R y;N,v y;].v y‘zz: ] y;N,

where y* is the optimum or a feasible solution of the
NLP problem. From y*, a mnetwork inversion
corresponding to the given output d is obtained by

*

=Wy (Iy~W; W) (14)

1
y:
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6) If the NLP problem has no solution, it indicates that
Eq. (9) has no solution corresponding to the given out-
put d.

7) Go to 4), to select another b,.

The algorithm continues until all the maximum and
the minimum solutions of the objective function ay,
i=12..N,, are obtained.

The IVG algorithm has two features as follows:

« Besides the parameters of the network, only a
given output is needed for selecting b, from
Egs.(7) and (8).

« A set of b,, i.e., {b,}g, can be selected. From these
b, Bye{by}¢, a set of typical network inversions can
be obtained, and the range of each element of net-
work inversions corresponding to the given output
is known. With this range, the desired network
inversions can be searched effectively in the whole
input space.

It should be noted that if y* is a feasible solution
instead of a minimum or a maximum solution of the
NLP problem, the range of mnetwork inversions
corresponding to the given output is unable to be
obtained.

Inverting into a Local Input Space

From the above discussion, we see that, for a given
output, if we expect to obtain some typical network
inversions of which zy;, i=1,2,..,N,, is minimum or max-
imum in all the network inversions, we can use the IVG
algorithm to select a set of b,. However, in some cases,
for a given output, associated X,, B, and ¥, are known.
For example, for each of training example pairs,
<x,, d>, associated X, and b, are known. Then, the prob-
lem is that, for the given output, and the associated T,
and B,, we want to find other x;, as many as possible
besides X,. Here we propose a computing procedure,
called IVL(InVerting into Local input space) algorithm,
to solve this problem.

In general, corresponding to a given output, there
exist an infinity of network inversions. For N,>N,>N,,
in the neighborhood of X;, there exits a set of x,, {x,}y,
which makes Eq. (9) consistent, where {x,};C{x,}, and

{x2}={xz| Wsx, =by, [,<x,<6,, by=F""(d)~biass} (15)

Suppose rank(W,)<N,, then the general solution of
Eq.(7) contains r, r=N,—rank(W;), arbitrary parameters.
The general solution of Eq.(7) can be written as

X=Xpp+X2p
I<x;<8, (16)

where x,, is the general solution of the homogeneous
equation of Eq.(7) and therefore contains no constant
terms, and x,, is any particular solution of Eq.(7) and
therefore is independent of parameters.

When a x, is given, how can we find the neighbor-
bood of xy, i.e., {x;}y, which makes Eq.(9) consistent. In
the IVL algorithm, a direct search strategy is used to
search the elements of {x,}y. The direct search strategy
operates in the following manner: The given T, is set as
a starting point, then one independent variable is
changed at a time while keeping all the others
unchanged until the search for this variable is com-
pleted. Each independent variable is changed by turns
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in the similar way.

The principal steps in the IVL algorithm are as fol-
lows:

1) Let zp,2pp, 120 , LSHSN,, i=12,..,r, correspond to r
arbitrary parameters of Eq.(20), and put i=1.

2) Let x)=x, and Az,y=—Az, i=12,.,r, Az is a selected
step size.

3) Let z,y=22,+Az,, and Zyy=23, =1,2....,r, j*i, and com-
pute z,, according to Eq. (16), k=12,....N,, k=ti, i=1,2,....r.
4) From x,, obtain b, by

by= F(x,)—bias,

5) Solve the linear programming problem

Minimize z;; or Maximize z;;, i=12,...,.N (17)
Subject to

W, x, =b,
[ I<x,<6, (18)

6) If Eq.(17) has an optimum or a feasible solution, x,,
i.e., b,, makes Eq.(9) consistent. Let xJ=x,, and go back
to 3) to search another x,.
7) If Eq.(17) has no solution, it indicates that,
corresponding to x,, Eq.(9) is inconsistent. If Az,,<0, let
x’=X, and Az,;=Az, go back to 3). Otherwise, the search
for z,, is completed. Set i=i+1, and go back to 3) until
all the independent variables have been changed to
complete the search.

Note that, in order to simplify the description, we
use a direct search strategy in the IVL algorithm. For
practical computation, we can replace the direct search
strategy by some more effective one to improve the
performance of the search.

Comparing the IVL algorithm with the IVG algo-
rithm, we see the following features of the IVL algo-
rithm:

« The procedure for selecting b, is simpler than that in
the IVG algorithm, because b, is obtained by solving
the linear programming problem.

o The IVL algorithm can complement the IVG algo-
rithm for finding the neighborhoods of X,, i.e., {x;}g.
Therefore, it is possible to find the network inver-
sions as many as possible.

Boundary of the Network Inversions

For a given output, if the corresponding network
inversions exist, by use of the IVG and the IVL algo-
rithms, we can obtain a set of b,, {by};y. For each B,,
Eq.(9) may have an infinity of solutions (network inver-
sions) or a unique solution. If Eq. (9) has an infinity of
solutions, we can not obtain all the solutions in detail.
In this case, we expect to know the boundary of the
solutions, i.e., the boundary of the network inversions.
The following procedure, called DBI(Determining the
Boundary of the network Inversions) algorithm, will

Subject to
W x, =b,
I<x;<8, (20)
From the minimum solution xj=[z};, 2}, - . . , =iy, 1T of

the above problem, ), the minimum value of z;;,, on
the boundary of the solutions is obtained: A,;=z7;.
2) Solve the linear programming problem

Maximize z;;, i=1,2,...Ny (21)
Subject to
W, x; =b,
r<x,<6,
. . . T
From the maximum solution xj=[zj), zp, ..., ziy,]

of the problem, ¢,;, the maximum value of z,;, on the
boundary of the solutions is obtained: ¢,;=z7;.

Repeating 1) and 2) until all of A;; and ¢,;, i=1,2,...,N},
are obtained, we can obtain the boundary of the net-

work inversions as follows:
W, x; =b,
{Axﬁxlsq’x (22)

T
where, A=Ay, - - AN, 17, @1=[¢11,612 - - 1.

Obviously, if Eq. (9) has a unique solution, A, is
identical with &,, i.e., A;=8,.

. r¢1N,

Examples

We now present some examples to illustrate the
IVG, the IVL, and the DBI algorithms.

In our examples, we use the well known back-
propagation algorithm® to train the network. The
activation function is a symmetric sigmoid function,’
ie.,

1 1
e " Y (23)
1+exp{~( Y wpqj zp—1,7t+bias,, )}
i=1

where p=2,3, and ¢=1,2,...,N,. For numerical computa-
tion, the activation range is selected as
[-0.499999,0.499999]. That is, for k=123, TI,=—0,,
©,=[0.499999, 0.499999,..., 0.499999]7.

We treat the "two-or-more clumps” problem.® The
desired output is 0.5 if there are two or more clumps of
0.5’s in the input and —0.5 otherwise. We use a three-
layer network, with 5 input units and one output unit.
The hidden layer contains 3 units, which are fully con-
nected to the input and the output layers. The training
inputs, desired outputs, and the actual outputs are
shown in Table 1.

The parameters of the network after training are as
follows:

meet our expectation. 0.757632 0.301185 0.866417 2.731681 4.010859
For each B,, ,€{b,}y, depending upon the activation W,=| 0.359501 0.548825 0.304895 2.091348 4.418867 (24)
range T, and ©,, we can determine the boundary of the 0.335742 —0.152064 0.379951 1.209941 5.575029
solutions as follows: W= [4.227584 4.870978 7.014191] (25)
1) Solve the linear programming problem 1536189
Minimize z);, i=12,.,N, (19) bias,= [1.065805 | , biasy=[-0.047802] (26)
0.786672
1352 IECON’91



Table 1 Training Examples and Actual Outputs
No. Training Desired Actual
Inputs Output Output
Fu | T2 | B3| e | Tys d Z31
1 - - - - - - -0.499273
2 - + - - - -0.498758
3 - - + - + + 0.498634
4 - + - - - - -0.499098
5 - + - - + + 0.497997
6 - + + - - - -0.498275
7 - + + — + + 0.498990
8 + - - -— - — -0.498818
9 + - - - + + 0.498589
10 + - + - + + 0.499167
11 + + - - - -0.498357
12 + + + - + + 0.499318

Note that — and + represent -0.5 and +0.5 respectively.

In the following numerical experiments, we suppose
that the given output d is [0.498634]. The known input

corresponding to 0.498634 is [-0.5, -0.5,05, —05,05] as
shown in the row No.3 of Table 1.

Inverting into the Global Input Space

For the given output d=[0.498634], b, is obtained as,
b;=6.642304 from Eq.(6). Then, W,x, =b, is written as

4.22758425,44.87097825,+7.014191 2,,=6.642304

From Eq.(24), w;, a generalized inverse of W,, and
In~- W5 W, are obtained to be

0.446109 -0.567151 0.125170
~0.608144 1.285744 —0.587999

W; =| 0.682845 —0.955666 0.260403 (27)
0.342056  0.184567 -0.388010

-0.169749
(In=Wy W)=

0.091320 0.228521

0.823880  0.195939 —0.261211 —0.195233  0.019053
0.195939  0.388102 0.358429 —0.263319  0.035757

—0.261211 0.358429  0.600713 —0.205193  0.032413 (28)
—0.195233 —0.263319 —0.205193 0.184009 —0.024346

0.019053  0.035757 0.032413 —0.024346  0.003296

From T,, ©,, bias,, and the inverse of activation function,
¥, and Q, are obtained as

-15.351700 12.279322
¥~ [-14.881316|, ©,={12.749708 (29)
~14.602183 13.028839

Let y,=b, and y,=3, then W,Fy(y,)=b, becomes

4.227584 4.870978 7.014191
Lpe a+1838189) - 1+ ¢~ (ma1.065805) - 14 o ~(mat0T888TY)
=14.69868 (30)

By use of the revised Powell’s method, we solve the
nonlinear programming problem of Egs.(12) and (13)
with the above data, and obtain the minimum and the
maximum solutions of each objective function
ay, i=12,..5, as shown in Table 2 and Table 3. From y; and
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73, i.e., 5; and 3, we obtain a set of network inversions,
as shown in Table 4. From Table 4, we see that these net-
work inversions possess the following character:

If the inversion x, is computed from the minimum
(mazimum) solution of the objective function ay, x,; is
minimum (mazimum) in the whole input space
corresponding to the given output.

Table 2 A Set of y5, i-c., {Bs}c, Selected from the Global Input Space
No. m i ¥is
Min (s, y) 1.232224 1.111688 1.464073
Max (a, y) 1.429272 0.930166 1.541359
Min (a, y) 1.391840 0.954746 1530420
Max (az y) 1.193994 1.355389 1.329803
Min (ay y) 1.140926 1.256493 1.400663
Max (a3 y) 1.403899 0.948670 1.539202
Min (asy) 0.919280 0.891100 1.815839
Max (a,y) 1.621460 1.208073 1.280225
Min (a, y) 2.347908 1.673666 0.958825
Max (ag y) 0.380774 1.135954 1.989710
Table 3 A Set of yj, i.e., {8}q, Selected from the Global Input Space
No. ¥ Yo ¥is Y34 ¥is
Min (a, y) | -0.602464 | .0.143281 | 0.191011 0.142765 | -0.013933
Max (a, y) | 0.196999 0.079566 | -0.022171 | -0.067459 | 0.007547
Min (s, y) 0.009474 0.018766 0.017331 | -0.012732 | 0.001729
Max (a,y) | 0.133970 | 0.265358 | 0.245068 | -0.180040 | 0.024448
Min (ay y) 0.193661 | -0.265738 | -0.445367 | 0.152130 | -0.024030
Max (s, y) | 0.001587 | 0.039076 | 0.047528 | -0.024953 | 0.003575
Min (a, Y) 0.362780 0.382894 0.250234 | -0.274347 | 0.035512
Max (a,y) | -0.247285 | -0.311595 | -0.232915 | 0.219138 | -0.028833
Min (a,y) | 0.387798 | 0.178388 | 0.405260 | -0.126183 | 0.448785
Max (a5 y) | 0.412297 | -0.034961 | 0.010439 | 0.029739 | -0.003318
Table 4 Network Inversions and Their Actual Outputs
No. Network Inversion in the Global Input Space Output
n 212 Z13 Z14 s 3
z:,ﬁ' -0.499999 | -0.324164 | 0.351266 0.201362 | 0.212990 | 0.498634
2= | 0.499999 | -0.499999 | 0.466246 -0.004953 | 0.202106 | 0.498636
2z}~ | 0.280465 | -0.499999 | 0.453849 0.045751 [ 0.202387 | 0.498634
zg" 0.064363 0.499999 0.111367 | -0.037444 | 0.249431 | 0.498639
zﬁh 0.166466 | -0.172936 | -0.499999 | 0.227333 | 0.219179 | 0.498641
2} | 0.282503 | -0.499999 | 0.499999 0.033126 | 0.203638 | 0.498640
sz' 0.494781 | -0.098145 | 0.499235 | -0.499999 | 0.375797 | 0.498625
zﬁ- -0.048819 | -0.497174 | 0.053151 0.499999 | 0.098806 | 0.498633
sz‘ 0.499999 0.499999 0.499999 0.499999 | 0.004851 | 0.498621
2:" 0.098899 0.122043 | -0.427623 | -0.499999 | 0.499999 | 0.498601

Inverting into the Local Input Space

Suppose that a given B, is [1.232224, 1.111698,
1.464073] as shown in the first row of Table2. Then, the
resulting X, is [0.440945, 0.398211, 0.404715).

According to the IVL algorithm, we obtain some
neighborhoods of X,, i.e., {x;}y, as shown in Table 5.
Here, the step size Az is selected as 0.02.

Boundary of the Network Inversions

For each of x, in Table 5, which makes Eq.(9) con-
sistent, by use of the DBI algorithm, we obtain the
minimum and the maximum values of z,; as shown in
Table 6. For example, corresponding to x,=[0.420945,
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0.398211, 0.416734}, the minimum and the maximum
values of z;; in all the network inversions are 0.274614
and 0.367117, respectively.

Table 5 Neighborhoods of X,, i-e., {Xo}y
No. Independent Dependent Is Eq. (9)
variables variable .
consistent?
In Im <]
1 0.420945 | 0.398211 0.416734 Yes
2 0.400945 | 0.398211 0.428789 Yes
3 0.380945 | 0.398211 0.440843 Yes
* 0.360945 | 0.398211 0.452897 No
4 0.460945 | 0.398211 0.392625 Yes
* 0.480945 | 0.398211 0.380571 No
5 0.440945 | 0.378211 0.418569 Yes
* 0.440945 | 0.358211 0.432458 No
6 0.440945 | 0.418211 0.390791 Yes
* 0.440945 | 0.438211 0.376902 No

Table 6 Network Inversions and Their Outputs

No. Network Inversion in the Local Input Space Output
21 Z13 213 Z14 15 I3
lage | -0.499999 | -0.499999 | -0.241800 0.203737 | 0.274614 | 0.498634
lye | 0.301973 0.499571 0.499999 -0.499999 | 0.367117 | 0.498634
2)6a | -0.499999 | -0.499999 | -0.483721 0.077980 | 0.350818 | 0.498634
2utee | -0.323584 | 0.386195 0.499999 | -0.499999 | 0.432092 | 0.498634
3k | -0.499999 | -0.398571 | -0.499999 | -0.134133 | 0.439731 0.498634
3pee | -0.499999 | 0.177507 | 0.209424 | -0.499999 | 0.492406 | 0.498634
4p5. | -0.116145 | -0.499999 | 0.499999 | 0.377282 | 0.110084 | 0.498634
4ee | 0.499999 | -0.194834 | 0.499999 0.130529 | 0.138838 0.498634
5 26m 0.155850 | -0.499999 | 0.499999 | -0.064969 | 0.251571 0.498634
5 s 0.499999 | -0.329548 0.499999 -0.202794 | 0.267632 0.498634
6 i -0.394146 | -0.268077 | -0.499999 0.499999 0.169283 0.498634
Ouee | 0.499999 | 0.499999 | -0.099503 | -0.064636 | 0.240747 | 0.498634

Comparing the Table 1 with the Table 6, we see that
the network trained with the examples shown in Table 1
may generalize mistakenly on some novel inputs. For
example, in Table 6, the inputs at the rows of 1,4,, 2pgm,
3ains 4ains aDd 6,4, generate the same output, 0.498634.
Obviously, from the definition of the "two-or-more
clumps" problem, the network generalize mistakenly on
these novel inputs.

From the preceding examples, it may be clear that it
is possible to obtain some typical network inversions
from a given output by use of the IVG and the IVL
algorithms, and determine the boundary of the network
inversions by the DBI algorithm.

Discussion

We have proposed a novel method for inverting the
mapping of the multilayer feedforward network, and
have derived two inverting algorithms based on this
method. The results of the numerical experiments indi-
cate that our inverting algorithms can overcome the
shortcomings of the existing inverting algorithms. We
have shown that, combining the IVG algorithm and the
IVL algorithm, we can obtain a set of typical network
inversions associated with a given output. The relations
between these network inversions and the given output
outline the mapping from the input space to the given
output. Hence, by use of these network inversions, we
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can examine generalization capability, extract rules
from networks and realize backward reasoning in expert
systems based on the neural network.

The present results show that the multilayer feedfor-
ward network may generalize mistakenly on some novel
inputs even for a simple problem. Therefore, when we
apply a neural network to a practical problem, espe-
cially in case of real-time problem, we have to examine
carefully generalization capability of the network.

Let us consider the following question: Can all feed-
forward multilayer networks be inverted ? The answer
seems to depend upon what activation function is being
used. If the symmetric sigmoid function, as shown in
Eq. (23), is being used, then we should take care of
saturating nonlinearity of the activation function. In
other words, there is no limit of input magnitude to the
hidden and the output units. In such situations, numer-
ical computations for inversion would become almost
impossible. Thus we have to put a certain limit on the
input magnitude to every unit.

As to applicability of the present method to
recurrent networks, the authors intend to develop their
study in future work.
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