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Abstract: It is generally believed that a brain-like 
computer should possess the following essential capa- 
bilities: (a) massively parallel and distributed infor- 
mation processing; (b) real-time information process- 
ing; (c) flexible information processing; and (d) solving 
large-scale problems. However, it seems that there are 
few existing neural network models which can satisfy 
the above basic requirements currently. In this paper, 
we present a massively parallel and modular learning 
framework for brain-like computers. We narrow our 
sights to consider only pattern recognition problems 
and discuss the characteristics of the framework from 
the aspects of modularity and parallelism, responsive- 
ness, plasticity, and scalability. We demonstrate that 
the framework may provide us with a simple model for 
implementing specific brain-like computers for pattern 
recognition. 

1 Introduction 
To develop brain-like computers is one of the grand 
goals of both brain science and computer science. Vari- 
ous definitions of brain-like computers have been given 
by the researchers in different fields [ la ,  4, 131. It is 
generally believed that a brain-like computer should 
possess the following essential capabilities: (a) mas- 
sively parallel and distributed information processing; 
(b) real-time information processing; (c) flexible infor- 
mation processing; and (d) solving large-scale prob- 
lems. However, it seems that there are few existing 
neural network models which are suitable for building 
brain-like computers currently. 

In this paper we present a massively parallel and 
modular learning framework for brain-like computers. 
Figure 1 gives an overview of the proposed framework. 
We narrow our sights to consider only pat,t,ern recog- 
nition problems and discuss the characteristics of the 
fra.niework. The remainder of the paper is organized a.; 
follows. In Sect,ion 2, we present the proposed learning 

framework. In Section 3, we discuss the characteristics 
of the framework from the aspects of modularity and 
parallelism, responsiveness, plasticity, and scalability. 
Finally, the conclusion is given in Section 4. 
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Figure 1: Overview of the proposed modular massively 
parallel learning framework. 

2 Learning Framework 

2.1 Automatic task decomposition 
Let 7 be the training set for a. K-class classificat,ion 
problem, 

where z t  E R” is the input vect,or, yI E R” is the 
desired output, and N is the tot(a1 number of training 
data. 

We suggest, tlmt a, I<-cla.ss problem a.s defined by 
(1) can be divided into (F) rehtively smaller t,wo-class 
subproblems [9, lo].  Th; training set, ‘&j for ea,ch of 
the subproblems is given by 

(1) 
N 7 = {(a, Yt)Im, 

L 
lij = {(sy’, 1 - €,}?A, U { (s j j ’ ,  (2)  
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for i  = 1, . . . ,  IC and j = i + 1, . . . , IC, 

where E is a small real positive number, z$".E Xi and 
zy' E X j  are the training inputs belonging to class Ci 
and class Cj,  respectively, Xi is the training input set 
of class C i ,  and Li denotes the number of data in Xi 
for i = 1, . . . , IC. 

Assume that Xi is partitioned into Ni (1 5 N;  5 L i )  
subsets in the form 

( I )  

23 - I =  1 (3) X . .  - {zjij)}Ls 

f o r j =  l , . . . ,  N i a n d i = l ,  . . . ,  I<, 

where ur:lXij = Xi. 

classification problem can be divided into 
According to the above partition of X i ,  a IC-class 

K K  

(4) 

relatively smaller and simpler two-class subproblems. 
The training set for each of the subproblems is given 

by 

- E)}P { ( z ( j u j  L!") 
1 7 t))1=1 ( 5 )  

+v) = {(,&!4, 
83 1=1 

for U. = 1, . . . ,  Nil v = 1, . . . ,  N j ,  
i = 1, . . . ,  IC, a n d j  = i +  1, " . ,  IC, 

where z$iu) E Xi, and zp") E Xjv are the training 
inputs belonging to class Ci and class C j  , respectively. 

If the training set ~ ~ " )  has only two different ele- 
ments in the form 

7 . ! " 1 " )  23 = {($U), 1 - €) U ( z p ,  E ) }  ( 6 )  
f o r u = l ,  . . . ,  Li,  v = l , . . . , L j ,  

i = 1, . . . , K ,  and j = i + 1, . . . , IC, 

it is obviously a linearly separable problem because 
any two different training data can always be separated 
by a hyper-plane. 

From (2) and ( 5 ) ,  we can see that dividing a K- 
class problem into a number of two-class subproblems 
is simple and straightforward, and no domain special- 
ists or a prior knowledge concerning the decomposi- 
tion of the problem are required. Consequently, the 
task decomposition can be performed automatically. 

2.2 Massively Parallel Learning 
An important feature of the proposed task decompo- 
sition inet,hod is t,hat each of t,he two-class subprob- 
lems obtained can be treated as a completely separate 
classification problein i n  the learning phase. Coiise- 
quently, all of the subproblems can be learned in par- 
allel. 

Let N be the total number of training data for a 
IC-class classificat,ion problem, then 

N = IC x L ,  

where for simplicity of description, the assumption we 
made is that ea.ch of the classes has the sa.me number 
of training clatfa. L.  

If a IC-class problem is decomposed into (:) two- 
class subproblems, the number of training data for 
each of the subproblems is 2 x L .  If a IC-class problem 
is decomposed into C,",lC,"=,+l Ni x Nj two-class 
subproblems, the number of of training data for each 
of the subproblems is about 

( 7 ,  

r~mi + rL/Nji, (8) 

where rtl denotes the smallest integer greater than or 
equal to t. Since [L/Nil + [ L / N j ]  << K x L for a 
large IC, i.e., the number of training data for each of 
the two-class subproblems is much less than the orig- 
inal K-class problem. Our experiences indicate that 
to learn each of the subproblems by using a small net- 
work module is much faster than to learn the original 
large problem by using a large single network [lo]. 

2.3 Min-Max Modular Network 
After training each of the modules which were assigned 
to learn associated subproblems, all of the individual 
trained modules can be easily integrated into a min- 
max modular (M3) network by using the MIN, MAX, 
or/and INV units according to the module combina- 
tion principles [9]. Figures 2(a) and 2(b) illustrate the 
M3 networks for a three-class and a four-class pattern 
classification problems, respectively, where the three- 
class problem is decomposed into (;) two-class sub- 
problems and the four-class problem is decomposed 
into (4) two-class subproblems according to (2). 

Let y denote the actual output vector of the M3 
network for a IC-class classification problem, and let 
g(z) denote the transfer function of the M3 network. 
We may then write 

Y = d z )  = [gi(z) ,  " ' 9  ~ K ( z ) ] ~  (9) 

where y E RK, and gi(z) E R is called the dis- 
criminant function, which discriminates the patterns 
of class Ci from those of the rest classes. 

By replacing the module M,, for s > 1 with the 
inverse of the output of the module Mt,, the discrimi- 
nant functions si(.) of the M3 network which is used 
to learn the (:) two-class subproblems can be given 
by 

1 i-1 
hi j (z) ,min(b r = l  - h,,.i(z)) 

where the term 6 - h r i ( z )  denotes the inverseof h , i ( z ) .  
which can be implemented by t,he INV unit,, 6 denotes 
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the upper limit of the output value of each module, 
and h i j ( z )  is the activation function of the module 
Mij trained on xj as defined in (2). 

Similarly, the discriminant function g i ( z )  of the M3 
network which is used to  learn CL, Ni x Nj 
two-class subproblems can be expressed as 

where the term b - rnaxfgl [minzl h!f”)(z)]  denotes 
the inverse of maxf;, [minzl  h $ ” ) ( z ) ] )  and h$”) is 
the activation function of the module M$”’’ trained on 
Ti”’). Figure 2 shows the M3 network for the DNA 
problem, which is decomposed into 24 two-class sub- 
problems with N I  = 2, Nz = 2, and N3 = 5 according 
to  ( 5 ) .  

Figure 2: The M3 networks: (a) for a. three-class prob- 
lem and (b )  for a four-class problem. 

Figure 3: The M3 network for the DNA problem 

3 Characteristics 

3.1 Modularity and Parallelism 

A neural network is said to be modular if it consists 
of two or more modules (subnetworks) that operate 
on distinct inputs without communicating with each 
other. An output of the modular network is generated 
by combining the outputs of related modules with in- 
tegrating units. The function of the integrating unit 
is to  decide which module should output [14]. 

According to  the above definition, the M3 network 
is a typical modular network. Figures 4(a) and 4(b) 
represent the structures of the M3 networks for imple- 
menting gi(z) of (10) and Si(.) of (11), respectively. 

The degree of parallelism is the number of sub- 
tasks available. According to the task decomposi- 
tion method presented in Section 2, it is easy to see 
that any pattern cladlcat ion problem ca.n be di- 
vided into a number of completely independent, non- 
communicating subtasks. This is ideal case called com- 
pletely  parallelizable in parallel computing literature 
[l, 61, since learning algorithms can achieve linear (i.e., 
proportional to  processing elements) speedup as pro- 
cessing elements (PES) a.re added. 
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Figure 4: The tree structures of the M3 networks: (a) the tree for the discriminant function as defined in (10) and 
(b) the tree for the discriminant function as defined in ( lo) ,  where open circles denote the MIN or MAX units, and 
dashed circles denote network modules. 

3.2 Responsiveness 
Responsiveness is very important because brain-like 
computers should have rapid response or real-time re- 
sponse as the human brain [15]. Let us analyze the 
responsiveness of the M3 networks. 

Case 1: If a IC-class classification problem is just 
divided into (t) two-class subproblems, the topology 
of the M3 network for the discriminant function g i ( x )  
of (10) is a tree with two levels as depicted in Fig. 
4(a). The running time for recognizing an input x is 
given by 

where P, is the maximum response time among the 
IC-1 individual modules and log (I<- 1) is the running 
time for finding the minimal value from IC - 1 terms 
with K ( K  - l ) / 2  PES [ 5 ] .  

Case 2: If a IC-class classification problem is di- 
vided into E:, E,",,,, Ni x Nj relatively smaller and 
simpler two-class problems, the topology of the M3 
network for the discriminant function si(.) of (11) is a 
tree with four levels as depicted in Fig. 4(b). Suppose 
that all the MIN and MAX units are implemented in 
parallel. The running time for recognizing an input 2 
is given by 

Pi = P, + log (IC - 1) (12) 

Pi = P,, + 2 log ( N o )  + log (IC - 1) (13) 

where N ,  is the maximal value among N I ,  . . . , N K .  

3.3 Plasticity 
One of the most important advantages of the humaa 
bmiii over existing artificial neural network models is 
its playticitmy [ l G ] .  Although much progress has been 
made in understanding of the plasticity of synapses of 
biological neurons [16, 21, few artificial neural network 

models that have plasticity have been reported in the 
literature [3, ?]. The ability of a network that can 
be modified and extended efficiently during or after 
learning is called plasticzty [Il l .  

Two aspects of the plasticity of a neural network 
can be considered: local pla3ticity and global plasticity. 
The adjustments of connection weights during learn- 
ing can be understood as one kind of local plasticity of 
a network. Almost all of existing research on the plas- 
ticity of biological and artificial neural networks in ex- 
perimental and computational neurosciences remains 
at  the local plasticity level. The global plasticity of 
a network means the ability of a network whose ar- 
chitecture can be changed efficiently after it had been 
trained. In this subsection we focus on the global plas- 
ticity of the M3 networks. 

Suppose that training set 7 had been successfully 
learned by an M3 network, namely n e t T .  For some 
new requirements, I may be modified. Let U be a set 
of new classes of data. 

where z: E RP is different from any input vectors in 
7, and y: E RN(N > IC).  We discuss the problem of 
how to add U to previously trained network n e t T .  

According to the task decomposition method and 
the structures of the M3 net,works mentioned above, 
the problem of adding U to netT  can be solved by 
training modular networks on the following two-class 
problems and adding the trained modules to ? z e f T .  
These two-class problem can be defined as 
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and 

U:. 83 = {(zii), 1 - U {(zy’, t)}k, (16) 
f o r i = I i ,  . . . ,  N a n d j = l ,  N a n d j f i  

Classifiers 

LeNet 

The number of two-class problems defined in Eqs. 
(15) and (16), which a.re different from those in Eq. 
( 2 ) ,  is given by 

N x (N  - 1) - K x (A’ - 1) = ~ ( 2  x A’ + - 1) (17) 

Error rates (%) CPU time (sec.) 
Tra.ining Test, Max. Total 

1 .1  4.3 259200 259200 

and the number of two-class problems that need to be 
learned is 

1 (18) 
a ( 2 K  + cr - 1)  

2 
where cr = N - I( .  

For example, suppose that ne tT  is a trained M3 net- 
work for a three-class problem as shown in Fig. 2(a). 
In order to add one new class of data to n e t T ,  six mod- 
ules need to  be added to n e t T .  The extended network 
( n e t T u )  for a new four-class problem is shown in Fig. 
2(b). Comparing netT with n e t T u ,  we can see that 
ali of the trained modules in netT , i.e., MIZ, M13, and 
M23, are reused in netTV in their original condition. 

Since MIN, MAX, and INV units do not need to  be 
trained and the number of fan-in of MIN and MAX 
units can be increased easily in both software and 
hardware, adding new data to the trained network can 
be achieved efficiently. The main cost is to  learn new 
two-class problems as defined in Eq. (18). 

M3 

3.4 Scalability 

48 9401 0.0 5.0 

The simplest definition of scalability is that the perfor- 
mance of a computing system increases linearly with 
respect to the number of PES used for a given appli- 
cation [6]. However, most of existing neural network 
models face the scaling problem,  i.e., training neural 
networks become intractable as problem sizes get large 

The M3 network is able to achieve scalable perfor- 
mance as the learning problem size increases because 
any problem can be divided into a number of sub- 
problems as small as a user expects and each of the 
subproblems can be treated as a completely separate 
problem. Consequently, the proposed learning frame- 
work can overcome the scaling problem. 

PI. 

4 Simulation Results 
In order to  show the effectiveness of the proposed 
learning framework, we carry out simulations on the 
handwritten digit recognition problem [7]. 

The training set a.nd test set for the handwritten 
digit recognition problem consist of 7291 and 2007 
data, respectively. Figure 5 shows ten handwritten 
numerals that were segmented from the handwritaten 

Ta.ble 1:  Performance comparison of LeNet and the 
M3 network on the handwritten digit problem. Note 
that the CPU time of LeNet was measured on SUN 
SPARCstation 1 [2], while the CPU time of the M3 
network was measured on SUN Ult,ra 30. 

zip codes. The image for each handwritten ZIP code 
data contains 16 pixel rows by 16 pixel columns, for a 
total 256 pixels. Each image corresponds to  a vector 
2 E R256 with each component value varying from 0 
(white) t o  1 (blank) determined by the gray level in 
the corresponding pixel. 

Figure 5: Digits that were segmented from handwrit- 
ten ZIP codes. 

In [7], LeCun, et al., reported that three days were 
required for training a five-layer feedforward neural 
network (LeNet) on the handwritten digit recognition 
problem’. In this simulation, the original problem is 
decomposed into 9514 subproblems randomly. The 
number of training data in each of the subproblems 
is about 100. To learn these subproblems, 9514 three- 
layer MLPs are selected. Each of the MLPs has five 
hidden units. All of the MLPs were trained by the 
conventional backpropagation algorithm. The num- 
bers of iterations and CPU times (sec.) required for 
training the 9514 modules are shown in Figs. 6(a) and 
6(b), respectively. From Fig. 6(b), we see that each of 
7372 subprobIems can be learned within two seconds. 
The maximum CPU time (see Table 1) for learning a 
single subproblem is about 48 seconds. This means 
that to  solve the handwritten digit recognition prob- 
lem requires only 48 seconds, instead of three days, if 
a complete parallel computer is used. The total CPU 
time used for learning all 9514 subproblems and the 
performance of the M3 are also shown in Table 1. 

5 Conclusions 
In this pa.per we have presented a massively pa.ralle1 
and modular learning framework for brain-like com- 
puters. The advantages of the framework over the 

’In [7],  7291 handwritten digits and 2549 printed digit,s were 
used as training data, while only 7291 hanclwrit,ten digits were 
used here. 

V -336 



1000 2 0 0 0  3000 4000 

Number of subproblems 

(4 

6260 

I 
1000 2000 3000 4000 5 0 0 0  6000 

... .- .... . . . -. ~ . .. . 
Number of subproblems 

Figure 6:  The numbers of iterations (a) and CPU 
times (b) required for training the 9514 three-layer 
MLPs. 

existing neural network models are its high modu- 
larity and parallelism, good responsiveness, plasticity, 
and scalability. We have demonstrated that the pro- 
posed framework may provide us with a simple model 
for building specific brain-like computers for pattern 
recognition. The theory, architecture, and learning 
algorithms for brain-like computers are still in their 
infancy. In the future work, we would like to investi- 
gate the framework theoretically, perform simulations 
on real-world, large-scale problems, and implement the 
framework in hardware. 
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