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Task Decomposition and Module Combination Based on Class
Relations: A Modular Neural Network for Pattern Classification

Bao-Liang Lu and Masami Ito

Abstract—In this paper, we propose a new method for de- knowledge and deep prior knowledge concerning the decom-
composing pattern classification problems based on the classpgsition of the problem [11]. Several modular neural-network
relations among training data. By using this method, we can gysiems have been developed based on this decomposition
divide a K-class classification problem into a series of’ ) two- method, see for instance [15], [29]. The limitation of this
class problems. These two-class problems are to discriminate class o - et : .

C; from classC; for i =1, ---, K and j = i+1, while the existence method is that sufficient prior knowledge concerning the

of the training data belonging to the other K—2 classes is ignored. problems is necessary.
If the two-class problem of discriminating classC; from classC;
is still hard to be learned, we can further break down it into a
set of two-class subproblems as small as we expect. Since each
the two-class problems can be treated as a completely separate Before learning, a problem is broken down into a set of
classification prOblem with the proposed |earning frameWOrk, Subproblems accord|ng to the |nherent Class relat|0ns among

all of the two-class problems can be learned in parallel. We yoining gata [2], [6], [12]. In contrast to the explicit decom-
also propose two module combination principles which give

practical guidelines in integrating individual trained network  POSition, this method requires only some common knowledge
modules. After learning of each of the two-class problems with concerning the class relations among training data. According
a network module, we can easily integrate all of the trained to this method, d-class problem is divided int& two-class

modules into a min-max modular (M~) network according to  problems by using the class relations. The number of training

the module combination principles and obtain a solution to data for each of the two-class problems is the same as the
the original problem. Consequently, a large-scale and complex P

K-class classification problem can be solved effortlessly and Ofiginal K-class problem.
efficiently by learning a series of smaller and simpler two-class

problems in parallel. C. Automatic Decomposition

_Index Terms—Min—max modular neural network, module com- A problem is decomposed into a set of subproblems with the
b_lr_latlon, parallel learning, pattern classification, task decompo- progressing of learning. Most of the existing decomposition
sition. . . . . .

methods fall into this category: for instance, the mixture of
experts architecture [13], [14] and the multisieving neural
I. INTRODUCTION network [18]-[20]. From computational complexity’s point of
NE OF THE most important difficulties in using artifi- View, the former two methods are more efficient than this one

cial neural networks for solving large-scale real-worlf€c@use a problem has been decomposed into subproblems

problems is how to divide a problem into smaller and Simpkgefore learning. Therefore, they are suitable for solving large-

subproblems; how to assign a network module to learn eacffle and complex problems. The advantage of this method is
of the subproblems; and how to recombine the individuHPat it is more general than the former ones because it can work

modules into a solution to the original problem. In the ladYhen any prior knowledge concerning the problem is absent.

several years, many researchers have studied modular neurdf? this paper, we addres5-class classification problems,
network learning approaches to dealing with this problem, féf€ré €ach input vector belongs to exactly onefotlasses
example see [4], [6], [13], [18], [25], [30]. Up to now, varioug€Presented by, Cz, ---, Cx, respectively. We propose a
task decomposition methods have been developed based'9ff decomposition method for dividing &-class problem

the divide-and-conquer technique [7]. These methods can'BEP & Set of relatively smaller and simpler two-class problems.
roughly classified into three classes as follows. The central idea underlying this method is to use the class

relations among training data [21], which is similar to the class
decomposition method mentioned above. Our method has two
important advantages over the class decomposition method as
Before learning, a problem is divided into a set of sulfellows.

problems by the designer who should have some domaini) The two-class problem obtained by our method is to

ol?. Class Decomposition

A. Explicit Decomposition

discriminate clas€’; from classC; for i = 1, ---, K
19!;/I§1nuscr|pt received April 15, 1998; revised March 26, 1999 and May 28, and j o= i+1, while the existence of the training
B.-L. Lu is with the Laboratory for Brain-Operative Device, RIKEN Brain data of the Othe'K_ o 2 classes is |gnored. Therefore,
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M. Ito, degeased, was with Bio-Mimetic Control Res_earch_Cent_er, thg Insti- problems is2 x N, which is independent of the number
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Fig. 1. lllustration of (a) a three-class problem and (b), (c), and (d) the related three two-class problems. In (b), (c), and (d), the desiremtresgpsiog
to the inputs in the shadow areas shouldeb®©therwise,1 — €. The three classes are represented as “1,” “2,” and “3.” The dashed lines denote desirable
boundaries among the classes. This notation will be also used in Fig. 2.

same number of training dafd. However, the two-class is active at a time [3]. Le¥ be the training set for & -class
problem obtained by the class decomposition method hamblem
to discriminate between one class and the rest classes. I
Therefore, the number of training data for each of the T ={(X, YDhl, (1)

two-class problems i& x N, which is the same as thewhereXl e R is the input vectory; € R¥ is the desired
original K-class problem. output, andZ is the number of training data.

2) If the two-class problem of discriminating claGsfrom Following the class decomposition method [2], [6], [12], a
classC; is still hard to be learned, it can be furtherg.class problem can be divided inf§ two-class problems.

divided into a number of two-class subproblems aphe training set for each of the two-class problems is defined
small as the user expects by using the decompositigp

method suggested here. However, the class decom-
position method can not be applied to decomposing
two-class problems.

We also propose two module combination principles Whiqhhereyl(i) € R! is the desired output which is defined by
give practical guidelines in integrating the individual trained P
. ; ) 1- if X lon lasg;
modules. After learning of each of the two-class problem with Y = { o T belongs to ¢ asi
a network module, we can easily integrate all of the trained 2 if X; belongs to class¢;

modules into a min-max modular () network according \yhere . is a small positive real numbe€,; denotes all the

to the proposed module combination principles and obtain Asses excep€;. It should be noted that the number of
solution to the original problem. Consequently, a Iarge—scqi%imng data for each of the two-class problems given by (2)
and complexi-class problem can be solved effortlessly angd e same as the original-class problem. Fig. 1 illustrates a

efficiently by learning a series of relatively smaller and simplep, o _cjass classification problem and its three partitions, i.e.,

two-class prf’b'ems in parallel. ) _ three two-class problems obtained by the class decomposition
The remainder of this paper is organized as follows. 'l'?Iethod 2], [6], [12].

Section Il, we present a new decomposition method. In
Section lll, we give two module combination principle

L

7= {(%, i) } for

’ L:]-va (2)
=1

(3)

If a K-class problem is a large and complex problem
q aul | K hi : e.g., K is a large number and there are a large number of
and a new modular neural-network architecture. Section Waining data for each of the classes), to learn the two-class

presents several examples and simulation results. Secnorﬂ)r\éblems defined by (2) may be still intractable. One may ask:

mentions the related work and compares the proposed mOdel/Wether can the two-class problems be further decomposed
network with other models. Finally,

Section V| conclusions are given 'hto relatively smaller and simpler two-class problems? We

ection Vl. will give an answer to this question in the remainder of this
section.

Il. TASK DECOMPOSITION

. B. Decomposition of Two-Class Problems
The decomposition of a large-scale and complex problem

into smaller and simpler subproblems is the first step toBY Using the class relations provided by training Fetthe
implement modular neural-network learning. In this sectiofflPut vectors can be easily partitioned inkd subsets in the
we present a new method for decomposing &lass classifi- 0rmM
cation problem into a series of smaller and simpler two-class

. L;
Xiz{X“)} for i=1,2--. K (4
problems. t or =544 @

=1
where L; is the number of data ot’, all of XI(Z) € &; have
the same desired outputs, apd.-, L; = L. Note that this
Suppose that grandmother cells are used as output regrarition is unique.
sentation, in whichK output units can only represeht + 1 We suggest that each of the two-class problems defined
classes of patterns at most, and one and only one output unit(2) can be further divided intd& — 1 relatively smaller

A. Decomposition ofs'-Class Problems
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C. Fine Decomposition of Two-Class Problems

’1,1‘1‘11“111;1,‘/ 3 ‘1,1‘1 Mg Even though ak-class problem can be broken down into
1 e 22 T, 1 u _ i .
,111111,11 1\\?2 ;zzzz 111“11,11 ] K x (K — 1) relatively smaller two-class problems, some
| TINGRRR2 22 ‘%\1 T11 of the two-class problems may be still hard to be learned.
)
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For example, the well-known “two-spirals” problem is a two-
class problem, but it is hard to be learned by plain three-layer
perceptrons trained by the standard backpropagation algorithm
[16]. In order to deal with this problem, we suggest that
the two-class problent/;; defined by (5) can be further
decomposed into a number of two-class subproblems as small

AERLL 1 11’2}2222 2 2722 2 as the user expects according to the class relations among
) Hﬁ??::ql’fz’é %, , 2 training data.
ittt N\ 2% 2}22:522 i 275222222 Assume that the input set; defined by (4) is partitioned
Y 1 * 2f |3 gs}"g;;:\ 2 into V; (1 < N; < L;) subsets in the form
ity 2 §@ 533&31333\\ 2 (5
:?3333 3 33 33§3333 33\\ ./‘V“ _ X(U) Li f P 1 N 6
© ) where L{’) is the number of data at;;, andU: X;; = A;.
This partition is not unigue in general. One may give a
'”1@‘ R 2 P22 2 partition randomly or by using a.prior knowle_dge concerning
] \,,‘1‘11: 1 5%%2 ) the learning problems. We will discuss two different methods
\11’11}1‘""1 2 i3 %2222 ) for impl_ementi_ng this partition and compare their performance
N 11‘: Y gt 3 a2 in Section IV in detail.
33\1"1111‘/ 332 8 335‘333\ After dividing the training input sett; into NV, subsets
) ;v‘-‘g%’gﬁ?ai % S 3 33%33 335"33 33\2\ &;; (6), the training set for each of the smaller and simpler
A 35333? PRI 3 @ el ?3 % two-class problems can be given by

(e) ®

Fig. 2. lllustration of six relatively smaller two-class problems obtained by
partitioning the two-class problem shown in Fig. 1(b), (c), and (d) according
to the proposed decomposition method.

ngu 0 _ {(Xl(iu)7 - 6)}Lf-zo ! {(Xl(jv)7 6)}L§v>

=1 =1
for w=1,---,Nyv=1 -, N,

i,j=1 -, K, and j#i 7)

(iu) : (4v) , i
two-class problems. The training set for each of the smalghere ‘,Xl € X, and X7 € A, are the input vectors
two-class problems is given by belonging to clasg; and clas¥’;, respectively. If the training

setTig’“’”) has only two different elements in the form
. Lg
T = {5, 1- 0}

. L
! X(J) J . i .
O 0, T ={ - U, 9}
for ¢ j=1---, K and j#i (5 for w=1,--, Li,v=1,---, L;
- ? (3 - 4 9 Vi
where Xl(i) e &; and Xl(j) € A; are the input vectors i,j=1,---, K, and j#i (8)

belonging to clas€; and clas€’;, respectively. It is important t{bis training set is obviously a linearly separable problem

to emphasize that the two-class problem defined by (5) is ) -
. o because any two different training patterns can always be
discriminate between clags and clas€; for, j =1, ---, K . .
S, : o separated by a hyper-plane. In Section IV, we will demon-
and: # j, and the existence of the training data of the other : :
. . : Strate how to decompose the XOR problem into four linearly
K — 2 classes is ignored. Obviously, this two-class problersne arable problems according to (8)
is much smaller than that defined by (2)Af is large and the P P g '
number of data for each of th&-classes is roughly equal.
Fig. 2 illustrates the partition of the three two-class problems
depicted in Fig. 1(b), (c), and (d) into six relatively smaller In order to implement modular learning, we have to deal
two-class problems by using the proposed task decompositigith two key problems. One is how to decompose a complex
method. learning problem into a number of independent smaller and
From (5), we see that partitioning each of the two-clasmpler subproblems. The other is how to recombine individual
problems intoK — 1 smaller two-class problem is simple andrained modules into a solution to the original problem. In
straightforward, and no domain specialists or a prior knowthis section we first introduce three integrating units. Then
edge concerning the decomposition of the learning problemve present two module combination principles and discuss
are required. Consequently, any user can easily perform thisv to reduce the number of learning problems. Finally,
decomposition if he or she knows the number of training datee present a new hierarchical, parallel, and modular neural-
belonging to each of the classes. network architecture called thmin—max modulanetwork.

. MIN—-MAX MODULAR NETWORK
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A. Three Integrating Units in Fig. 1(b)? A simple way to deal with this problem is to find
We introduce three integrating units, namely MIN, MAX minimum output values from the two individual modules. The

and INV, respectively, which are the elements of connectif§2SOn for performing thisninimizationoperation is that the
individual trained modules. training inputs corresponding to desired outplts ¢ are the

The basic function of an MIN unit is to find a minimumsSame in the two problems, while the difference between them

value from its multiple inputs. The transfer function of thdS Only the training inputs whose desired outputs aréor

MIN unit is given by example, if the regions represented as “U” in Fig. 2(a) and
(b) are classified as class “1” by the two trained modules,

g =min(p1, ---, pn) (9) i.e., high responses are generated by the two modules when

wherep: . - - are the inputs ang is the output which is the inputs from the regions are presented, these classification
the smpgl’lest ’oﬁg among the inputs.c R fori =1, -, n are correct from individual modules’ point view because there
andg € R ' 77777 exists no training data in the regions. But, from the original

problem’s point of view, these classifications are incorrect
ince the regions in the original problem should correspond to
ow response [see Fig. 1(b)]. The combination of the outputs
of the two modules through the MIN unit gives low response
g =max(p1, +*+, Pn) (10) in both the regions. From this example, we see that the MIN
unit makes the proper decision region of each module active
and the incorrect decision region of each module prohibitive.
In fact, the MIN unit implements a competition among the
individual modules. The winner is the module whose output
is the lowest. Although this example is simple, it illustrates
g=b—p (11) the essential concepts.

o ) 2) Maximization Principle: The modules, which were
whereb, p, andg are the upper limit of its input value, input, irained on the data sets which have the same training inputs
and output, respectively. _ _ . ~ corresponding to desired outputs should be integrated by

From the definitions of the three integrating units mentiongfle MAX unit.

above, we can see that the MIN, MAX, and INV units are consjder the combination of the individual network modules
similar to the logical AND, OR, and NOT gates, respectivelyynich were trained on the followingV; x N; two-class
The essential difference between the integrating units aﬁﬂ)blems defined by (7):

the logical gates is that both the inputs and outputs of the

The basic function of an MAX unit is to find a maximum
value from its multiple inputs. The transfer function of th
MAX unit is given by

wherepy, ---, p, are the inputs and is the output which is
the largest one among the inputs.

The basic function of an INV unit is to invert its single
input. The transfer function of the INV unit is given by

integrating units are real continuous values, instead of binary Ti§171> 7;21,2) Tig,l:Na')
values. 2,1) (2,2) (2, N,)
Z; Z; SR (13)
B. The Principles of Module Combination
According to (7), aK-class classification problem can be Tig»m’l) Tig»m’” Ti](»m’]\‘j).
divided into .
K K From the definition of the above two-class problems, Me
Z Z N N (12) training sets in each row of (13) have the same training inputs
Ly £ ¢ J corresponding to the desired outplts e. In contrast, theV;
=1 j=1 . . L.
ati training sets in each column of (13) have the same training

in&uts corresponding to the desired outpatsAccording to

smaller and simpler two-class problems. Suppose that eac Lo . T

€ minimization and maximization principles, thé x N;
the two-class problems has been learned by a network modulée .

Odules that were trained on ti x /V; two-class problems

completely. One may ask a question: how to recombine the . . . A
outputs of the individual trained modules into a solution to th%an be integrated into an ¥hetwork as illustrated in Fig. 3.
original problem? In this section, we will present two module ) _
combination principles which give the user a systematic wéy Reduction of the Number of Learning Problems
of integrating the individual trained modules. From (5), we see that &-class problem can be broken
1) Minimization Principle: The modules, which were down into K x (K — 1) two-class problems. In fact, among
trained on the data sets which have the same training inptitem, only (¥) two-class problems are different, and other
corresponding to desired outputs- ¢, should be integrated (%) ones can be replaced by the inverses of the former ones.
by the MIN unit. Therefore, the number of two-class problems that need to be
Let us give an explanation of the minimization princilearned can be reduced (§). For example, the probler»
ple through the two-class classification problems depicted depicted in Fig. 2(a) is the same dg depicted in Fig. 2(c)
Fig. 2(a) and (b). Suppose that the two-class problems hadm pattern classification’s point of view. The difference
been learned by two moduldsl;> and M3, respectively. between them is only their desired outputs. SupposeZhat
How can the outputs of the two individual modules be reconas been learned by a network modiME , correctly. If we
bined into a solution to the original two-class problem depicteteed to learryy;, we can get the solution by using the inverse
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1) No INV Unit: The discriminant functiong;(x) of the
M3 network which is constructed to learn thé x (K — 1)
two-class problems can be given by

gi(x) = Irﬁ’{lh“( ) a7)

p
JF
where h;;(x) is the activation function of the moduldl;;
trained on7;; (5).
In a similar way, the discriminant functiop () of the M?
network which is constructed to learn
K K

Y Nix N,

=1 j=1

Fig. 3. The M network consisting ofV; x V; individual network modules, Jj#i

N; MIN units, and one MAX unit.

of the output of My,, instead of training a new network
module onZ,;. According to the above discussion, the number
of two-class problems as given by (12) can be reduced to

K K

> > NixN;

=1 j=i+1

two-class problems can be expressed as

e I BV
gi(x) = Inln|:1{lai( |:Ilnl{1h (a:)” (18)
i

where h(k Y is the activation function of the moduIM“

(14) trained onT(" Y (7). It should be noted thahax?" , [min)’,

(" l)( )] is exactly equivalent td;;(z) if NV; = N; = 1.
2) Involving INV Units: By replacing the moduIeMSt for

Fig. 13 illustrates the proposed min—-max modular net-> ¢ with the inverse of the modul®d/,,, the discriminant
work for solving a four-class classification problem, ifunctionsg;(x) defined by (17) and (18) can be restated as

which (5) INV units are used to invert the outputs of

2

M12, Mlg, M14, Mgg, M24, andM34, reSpeCtively.

K i—1

gi{x) = min [m‘in]L hij(x), 172{1 b— h”(a:))} (29)

j=t+
and
D. Min—Max Modular Network . K N, (.0
After training of each of the modules which were assigned gi(x) = min { I_nzlf {I;?ff( {1}11{1 hij> " (x )”
to learn associated subproblems, all of the individual trained i—1 N [N .0
modules can be easily integrated into af Metwork by using min <b max {1}1_1{1 hy )} )} (20)
the MIN, MAX, or/fand INV units according to the proposed
module combination principles. Lgtdenote the actual outputrespectively, where the termst — h.;(z) and

vector of the whole M network for aK-class classification  — max}, [min}” hf,’; ’)(x)] denote the inverses of

=1

problem, let g(z) denote the transfer function of the *M hei(z) and max)" [min)V /7(”;:1)(35)], respectively, which

network. We may then write

y=g(x) = [gi(x), -+, gr(@)]”

=1
can be implemented by the INV units, denotes the upper
limit of the output value of each module. For exampleis

(15) set to one in all of the following simulations because the

standard sigmoidal activation function is used.

wherey € R¥, andg;(z) is called thediscriminant function

which discriminates the patterns of clagsfrom those of the
rest classes. The Mnetwork is said to assign an inputto

classC; if

lgi(z)—(1—€)] <6 and |g;(x)—¢| <& for

IV. EXAMPLES AND SIMULATIONS

In this section, six examples are presented. The first one is
used to illustrate how to decompose a linearly nonseparable
problem into a number of linearly separable problems. The

J#1 (16) second one is used to demonstrate how to divide a complex

two-class problem into a number of smaller and simpler two-

where 1 — ¢ and ¢ denote the high and low desired outputs;lass problems according to two different partition techniques.
respectively,é is a real number, which denotes the errofhe third and fourth ones are simulated to examine the
tolerance. For example, and § are set t00.01 and 0.5 in  generalization performance of the proposed Metwork for

the simulations of this paper.

solving real multiclass classification problems. In the fifth

In the following, we describe the discriminant functiongxample, the method for randomly dividing a problem into a
gi(x) of two kinds of M® networks: i) no INV unit is involved number of subproblems is examined on its effects on training
in integrating individual trained modules and ii) the INV unitdime and generalization performance. The last one is used to

are involved in module combination.

demonstrate the classification power and effectiveness of the
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TABLE | TABLE I
PERFORMANCE COMPARISON OF SINGLE MLQP’S AND THE PROPOSEDM? PERFORMANCE COMPARISON OF FOUR DIFFERENT RANDOM
NETWORKS EACH RESULT IS THE AVERAGE OF THREE SIMULATIONS PARTITIONS. VALUES ARE MEAN (ToP Row) AND STANDARD
DEeviaTIONS (BoTTOM Row) OVER TEN SIMULATIONS
Task Network f Modules CPU time Success rate (%)
M Total | Traini Test 4 Subtasks t Max. | § Total | Total CPU | Successfully rates (%)
ax. ota raming es
Spiral | Single | 105447 | 105147 9948 | 72.57 (Modules) | Training data | weights | time (sec.) | Training Test
: 506 | 18220 10449 100.0 94.13
Modular (ran.) 9| 1495 7888 | 100.00 | 89.46 20 06| 18
2119 0.0 0.12
Modular 9 5518 5994 100.00 | 98.00
S : [41¢ 93 .95
Modular 36 648 1439 100.00 | 98.11 51 317 27807 1998 100.0 93.95
362 0.0 0.19
Vehicle | Single 1| 134971 | 134971 99.76 | 72.34
[ ()~ BEGOR kel qQ
Modular 6| 3456 | 4567| 100.00 | 73.05 125 203 | 45625 2y 1000 93.56
1147 0.0 0.17
489 115 89487 515 100.0 93.51
TABLE 1l 151 0.0 0.11
PERFORMANCE COMPARISON OF SINGLE MLP’S AND THE PROPOSEDM?
NETWORKS ON THEIMAGE SEGMENTATION PROBLEM. VALUES ARE MEAN (TorP
Row) AND STANDARD DERIVATIONS (BoTTOM ROW) OVER TEN SIMULATIONS
TABLE IV
Network Total CPU | Success rates (%) PERFORMANCE COMPARISON OF PLAIN MLP, CLASS-SENSITIVE NEURAL
time (sec.) | Traini Test NETWORK, AND THE PROPOSEDM? NETWORK ON THE SHUTTLE DATA
fme (sec.) | Training bl SET. EACH RESULT IS THE AVERAGE OF THREE SIMULATIONS
Single (h=18) 5647 99.81 89.00
113 0.93 0.78 t Modules | CPU Time (hour) | Success rate (%)
Single (h=33) 20538 | 99.52 | 89.33 Max. Tolal | Training | Test
0 0.0 0.78 Single MLP 1{1111.1 1111.1 0 0
M? (h=1) 15.02 100 | 91.29 (no converge)
0.54 0.0 0.11 CSNN 7| 161.2 11284 95.51 | 96.90
M3 (h=2) 20.60 100 91.22 M? network 90 5.8 163.2 99.85 | 99.86
2.33 0.0 0.26

L -

proposed M network for solving large-scale and complex '

problems. o ' o |
In the following simulations, the structures of all the single i ‘
and modular networks are chosen to be multilayer percej:. &

trons (MLP’s) with one hidden layer or multilayer quadratic ®.__ .
perceptrons (MLQP’s) [17] with one hidden layer. All of the

single and modular networks are trained by the standard back- @)
propagation algorithm [27] or the modified backpropagation
algorithm [1]. The momentums are set all to 0.9. The learning
rates are selected through practical experiments. A summary of
the simulation results is shown in Tables I-IV, where “Max”
means the maximum CPU time required to train any network o - g

modules. All of the simulations were performed on a SUN - -

Ultra2 workstation. T ]

(d) ()

A. XOR Problem
; ; ; ig. 4. (&) The four training inputs for the original XOR problem. (b)
It is known that the XOR problem is a linearly nonseparab[lzdhe training inputs for7 (11 () T(12) (d) 7D, and (6)T( 2,

problem. The four training inputs for the XOR problem are d@éspectively. The black and white points represent the inputs whose desired
picted in Fig. 4(a). According to the proposed decompositiantputs are “0” and “1,” respectively, and grey represents only the background
method (8), the XOR problem was divided into four Iinearl;?f the figures. This notation will be also used in Figs. 7 and 8.

separable problemg -V 7(1:2) 721 and7(22) which

are depicted in Fig. 4(b)—(e), respectively. Four perceptrons o o

represented @B1;, P1o, Par, andPa», were selected to learn module combination principles. The responses of the four
TWY 7LD 72D and7 22, respectively. Each of the Perceptrons, their combinations, and the entiré dtwork
perceptrons was trained by the traditional perceptron learniagg shown in Fig. 6(a)—(g), respectively. Comparing Fig. 4(a)
algorithm [24]. The four trained perceptrons were integratetith Fig. 6(g), we can see that the®Nhetwork recognizes the
into an M® network as shown in Fig. 5 according to theXOR problem correctly.
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In the second simulation, the original training inputs be-
longing to clasg’; and clas<’; were divided into six training
subsets by partitioning the input variable through the axis of
abscissas into three slight overlapping intervals [21]. We call
this partition method thespace-grid partition The training
inputs of the nine subproblems were constructed from the
combinations of the above six training subsets. Similar to the
first simulation, nine MLQP’s were selected as the network
modules to learn the corresponding nine subproblems. All
of the MLQP’s were chosen to be five hidden units, except
_ _ that one module was selected to be 25 hidden units. The
Eggrh;’utatrgﬁalmqni?se’t‘g’gxeg:1Ehf,1§?§Q1Ergﬁfg;2nggere;(;:‘rge%e;‘;efgl:?”corresponding M network has the same structure as shown
network modules. in Fig. 9. The response of the entire*Metwork is shown in
Fig. 12(b).

In the third simulation, the original problem was divided
into 36 subproblems by using the space-grid partition method.
The “two-spirals” problem [16] is chosen as a benchmafe aim of this simulation is to show both the maximum

Elr:sbslenr]ota(?(rer;h:%rmlj:iyn tlg/lel_clg’isirﬁjItsh:ri]neﬁttre(;?te%thrif t\i"rl]ghd the total CPU times required for training the individual
P P ’ P P Pp odules can be reduced by dividing the original problem into

formed by each of the individual trained modules is visible. ) _
The aim of this example is to demonstrate how to divigd large number of smaller and simpler two-class problems, i.e.,
a complex two-class problem into a series of smaller afidrther decreasing the complexity of each of the subproblems.
simpler two-class problems by using two different partitiohe response of the corresponding Metwork is shown in
techniques, namely randomly partition and space-grid paig. 12(d).

tition, respectively. The 194 training inputs of the original Ajthough 100% success rates on training data were achieved

two-spirals prpblem are 'shown in Fig. 7(a). In the' fOHOW'n%y all of the three simulations mentioned above, the success
four comparative simulations were performed on this problem:.

In the first simulation, the original training inputs belonginggbate on .test ‘?'ata’ |..e., .the generalization accurgcy, obtained
to classC; and clas<» [see Fig. 7(a)] were divided into six Y the first simulation is lower than those obtained by the
training subsets randomly according to a uniform distributiofcond and third simulations. This test result can also be
in the two-dimensional space. These six training subsets afeserved directly by comparing Fig. 12(a) with (b) and (c).
shown in the panels of the top two rows of Fig. 8. Th&he reason for this result seems that the geometric relations
training inputs of the nine subproblems were constructed frqgrmong the original training data [see Fig. 7(a)] was damaged

the combinations of the above six training subsets. Thel%ea large extent by randomly dividing the original problem

training inputs are shown in the panels of the bottom three
: . into several subproblems (see the panels of the bottom three
rows of Fig. 8. The nine subproblems are represented as

T 72 U3 g 722 T3 6L 732 gnd ows of Fig. 8).In contrast to randomly partition, if the interval
T 33), respectively. Note that the subproblems in the same ré@erlapping is wide enough, the geometric relations among
of Fig. 8 have the same training inputs corresponding to thize original training data can be well preserved in each of
desired outputs “1,” i.e., the same white points. the subproblems obtained by using the space-grid partition
Nine MLQP'’s were selected as the network modules to leagRethod. We think that analysis of the randomly partition

the nine subproblems. Each of the six network modules hasy space-grid partition methods theoretically is an important
20 hidden units and each of other three network modules has

25 hidden units. After the nine subproblems had been Iearr%rgblem for the f_uture yvork. . .

by the corresponding network modules, which are represented” the fourth simulation, the original two-spirals problem
asM!l, M2, M3, M2!, M22, M23, M3, M2, andM33, Was learned by a plain MLQP with 40 hidden units. Even
respectively, the individual trained modules were integrate0000 epochs were performed, the sum of squared error
into an M® network as illustrated in Fig. 9. The responsewas still about 0.57. The network has not yet achieved the
of the individual trained modules are shown in Fig. 10(a)—(ijlesired error (0.01). The response of the network is shown in
respectively. The combination of the outputs !, M*2, Fig. 12(d).

and M*? by the MIN unit is shown in Fig. 11(a). The , . . :
combinationyof the outputs a2, M2, and?\/ﬁ?’ (b))/ the The CPU times required to train the single and modular

MIN unit is shown in Fig. 11(b). The combination of then€tworks in the above four simulations are shown in Table I.
outputs of M3!, M32, and M3 by the MIN unit is shown The generalization performance of the single and modular

in Fig. 11(c). The response of the entire’ Metwork is shown networks are examined on 1746 test inputs as shown in
in Fig. 12(a). Fig. 7(b). The test results are also shown in Table I.

MIN

5

—_— 1 MAX —
[

Pu MIN

&

B. Two-Spirals Problem
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@) (b) © (d)

(e) (® ()

Fig. 6. The responses of (811, (b) P12 (b), (c) P21, (d) P22, (e) the combination of?;; and P2, (f) the combination ofP»; and P2», and
(g) the entire M network, respectively. Black and white represent the outputs of “0” and “1,” respectively, and grey represents intermediate value.
This notation will be also used in Figs. 10-12.

C. Vehicle Classification

This real classification problem [22] is to classify a given W et e
vehicle silhouette as one of four types of vehicle by using a set e .."""-'.. '-‘
of features extracted from the silhouette. The vehicle silhou- ' :-,-' :
ettes were captured with a spatial resolution of 128128 "t 'o, ..'
pixels quantized to 64 grey levels. These silhouettes were | e e
cleaned up, binarized and subsequently processed to produced T,
18 variables intended to characterize shape. The data set was e
divided into training and test sets. Each of the two sets consists @ (®)

of 423 data. The number of attributes is 18 and the numberrdg. 7. The training inputs and test inputs for the two-spirals problem: (a)
classes is four. The original problem was decomposed(@to shows the 194 training inputs and (b) shows the 1746 test inputs, which are
; . , di{‘(ferent from the 197 training inputs.

two-class problems. Six MLQP’s were selected as the networ

modules to learn the six subproblems, respectively. All of the

MLQP’s were chosen to be four hidden units, except that tlie a similar way as described in the preceding example. The
module used to train offs was selected to be eight hidderoriginal problem was also learned by a plain MLP with 18 and
units. The six individual trained modules were integrated inf®3 hidden units, respectively. The reason of selecting 18 and
an M? network as illustrated in Fig. 13. The original problen83 hidden units for the single MLP’s is to make the related

was also learned by a plain MLQP with 24 hidden units. TH&® networks have about the same numbers of weights and

simulation results are shown in Table I. bias as the single MLP’s. Ten simulation runs were performed
with both single MLP’s and the Rinetworks. The results are
D. Image Segmentation shown in Table Il. For the single MLP with 33 hidden units,

The image segmentation problem [22] is a real prob’lemeven 200000 epochs were performed ten times with various

) . initial weights and learning rates, no successfully learning was
The instances in the problem were drawn randomly from 9 9 y g

) : o%tained, i.e., the desired error (0.05) was not achieved. From
database of seven outdoor color images. The images WEIR o I ‘we can see that the proposed Metwork is far

hand-segmented to create a classification for every pixel as_ . . ) T : .
s@uperlor to single networks in training time, and meanwhile

one of brick-face, sky, foliage, cement, window, path, ani R : .
grass. The problem consists of 210 training data and 21 % generalization performance is better than that of single
’ n%tworks.
0

test data. The number of attributes is 18 and the number
classes is seven. The original problem is decomposed@r)to
two-class problems according to the proposed decomposition PNA Problem

method (5). Each of the two-class problems consists of 60The DNA problem is a three-class classification problem
training data. Each of the 21 two-class problems was learn@®], which is to recognize the following three classes: 1)
by an MLP with one and two hidden units, respectively. Aléxon/intron (El) boundaries; 2) intron/exon (IE) boundaries;
of the 21 trained modules were integrated into ahmétwork and 3) neither (N). The DNA dataset consists of 2000 training

. . . _ __dataand 1186 test data. The number of attributes is 180 and the
1in the original data set, there are 19 attributes. Since the third attribute IS

a constant number, we delete it from the data set and use only 18 attribLRéémber of classes is three. L&t, Ay, andX; be the trammg
in the simulation. input subsets for class IE, class El, and class N, respectively.
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Fig. 9. The M network for the two-spirals problem.

modules were trained by the conventional backpropagation
algorithm [27]. The performance of the corresponding M
networks are shown in Table Ill. From the simulation results,

we see that even the DNA problem was randomly divided

into 489 subproblems, the corresponding Metwork can still
obtain better generalization performance (93.51%) than single
MLP (91.2%), C4.5 (92.4%);-NN (85.4%), and probabilistic
neural network (83.6%) [5], [23], and meanwhile the training
time can be reduced greatly.
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F. Shuttle Problem

The shuttle problem concerns the position of radiators
within the Space Shuttle of NASA. The shuttle data set [22] is
a seven-class problem and contains nine attributes all of which
are numerical. The training set consists of 43500 patterns and
the test set contains 14 500 patterns. In order to investigate the

classification power and effectiveness of thé Metwork and

Fig. 8. Randomly partition of the two-spirals problem. The panels in the td® compare it with the conventional MLP and class-sensitive
two rows show the 97 training inputs corresponding to desired output “1” amgeural network (CSNN) [2], [6], [12], in Iearning of Iarge-

97 training inputs corresponding to desired output “0” are randomly divid
into three parts, respectively. The panels in the bottom three rows show

ﬁ%ale and complex pattern classification problems, the shuttle

nine subproblems constructed from the combinations of the training inputsG@ta set is learned by the following three kinds of networks: i)
the panels of the top two rows.

single MLP; i) CSNN; and iii) the M network. The MLP is
trained by the standard backpropagation algorithm [27], while

The numbers of data iy, A, and X5 are 464, 485, and both CSNN and the Knetwork were trained by the modified
1051, respectively. In the simulationd; for ¢ = 1, 2, and backpropagation algorithm [1]. In the simulations, training was
3 are randomly divided into several roughly equal subsestopped when no training patterns remained misclassified or
The following four kinds of partitions are performed: 1)the total number of epochs was reached to 20 000.

Ny = Ny =2, anng = 5; 2) Ny = Ny =3, anng =7,

1) Single MLP: The shuttle problem was first learned by

3) Ny = N, =5andN3; = 10; and 4)N; =9, N, = 10, and a single MLP with one hidden layer. We investigated the
N3 = 21. According to (14), the total numbers of subproblem®llowing hidden layer sizes for the MLP’s: 30, 60, 90, 120,
for the above four partitions are 20, 51, 125, and 48350, and 180. Unfortunately, no successfully learning was
respectively. The maximal numbers of training data for each obtained. Since the smallest sum of squared error is still about
the subproblems belonging to the above four partitions are 5@378, no any training data and test data can be correctly
317, 203, and 115, respectively. In the simulations, for eachrafcognized by the trained single MLP’s, i.e., the successfully
the four kinds of partitions, the original dataset was randomigtes on both training data and test data are O!

divided into a number of subproblems ten times. Three-layer2) CSNN: According to class decomposition method [2],
MLP’s with four different numbers of hidden units, i.e., 1) fivg6], [12], the original shuttle problem was divided into seven
hidden units; 2) three hidden units; 3) two hidden units; andio-class problems each of which contains 43500 training
4) one hidden unit, were selected as network modules for thata. Seven MLP’s with one hidden layer are selected to learn
above four kinds of partitions, respectively. All the networithe seven two-class problems. We investigated the following
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(@) (h) 0]
Fig. 10. The responses of (AI'!, (b) M'2, (c) M'3, (d) M2, (e) M?2, (f) M?3, (g) M3!, (h) M32, and (i) M3, respectively.

@) (b) ©

Fig. 11. The intermediate responses of thé Meitwork illustrated in Fig. 9:
(a) shows the combination of the outputsMf' ', M2, andM '3, (b) Shows
the combination of the outputs d¥12!, M?2, and M23. (c) Shows the
combination of the outputs dM3', M32, and M?33,

hidden layer sizes for the MLP’s: 30, 60, and 90. The best
learning accuracy was obtained with 60 hidden units. All of
the seven two-class problems could not be learned completely.
The simulation results are summarized in Table IV.

3) TheM® Network: In this simulation, the training set (©) (d)
belonging to clas; is randomly divide into ten SUbsetsFig. 12. The responses of the*Metworks and single network: (a) Shows
each of which contains about 3410 patterns, and the trainithg response of the Mnetwork illustrated in Fig. 9, where the original

i i ivi i _ problem is divided into nine subproblems randomly. (b) Shows the response
set belonging to clasé, is randomly divided into two sub of the M? network with nine modules, where the original problem is divided

sets each of which contains 3374 patterns. After performifgy nine subproblems by partitioning the input variable through the axis of

these partitions, the total number of two-class subproblenisscissas. (c) Shows the response theridtwork with 36 modules, where
becomes 90 the original problem is also divided into 36 subproblems by partitioning the

. input variable through the axis of abscissas. (d) Shows the response of a plain
Each of the 90 two-class problems is learned by an ML{fiop with 40 hidf‘j’en units. @ P P

with a single hidden layer. The numbers of hidden units for

the MLP’s are selected within the range from 12 to 36. Afteshown in Table IV. Although there exist 17 hard two-class
training of the 90 modules, the 90 trained modules weralbproblems which could not be learned completely, success
integrated into an N network. The simulation results arerate on the training data set is near to 100%.
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known aslinearly separable In addition, Duda and Hart [8]
gave the definition of thpairwise linearly separabl@roblem.
However, the classification capabilities of the linear machine
and piecewise linear machine limit their usefulness because
almost all the real classification problems such as the vehicle
and shuttle problems mentioned in the preceded section are
nonlinearly separable. Nevertheless, both the linear machine
and the piecewise linear machine can be considered as special
cases of the N network.

B. Pairwise Classifier

The idea of using maximizing operation to make final deci-
sion is well-known in statistical pattern recognition literature
and has a long theoretical background [8], [10]. Friedman re-
cently proposed an alternative statistical classification method
called pairwise classifierfor solving K-class classification
problems [9]. The basic idea behind pairwise classifier is
to cast aK-class problem into a series @ff) two-class
problems based on statistic theory and use the maximizing
operation to select the final decision boundary from thgse
decision boundaries. The common feature between the M
network and Friedman’s method is thatf&-class problem
is divided into a series off) two-class problems and each

The results of Table IV show that the *Mnetwork is of the two-class problems is learned independently, although
superior to CSNN’s in the aspects of convergence speedmpletely different techniques are used. On the other hand,
learning accuracy, and generalization performance. The otligs combination mechanisms used in thé Metwork and
advantage of the ®1network over CSNN's is that to getthe pairwise classifier are completely distinct. In the pairwise
absolute 100% success rate on the training data set or to redsig€sifier, the final decision boundary is selected from(the
the CPU time required for training each of the modules can lggcision boundaries by performing the maximizing operation,
efficiently achieved with the Mnetwork by directly applying but in the M network, the() trained network modules are
the task decomposition method to leIdIng each of the haﬁﬁtegrated byK MIN units. A most remarkable difference
two-class subproblems into a set of smaller and simpler twgetween the M network and the pairwise classifier is that fine
class subproblems, while to obtain 100% success rate @&composition of two-class problems into a series of smaller

training data by CSNN's is quite difficult because it is hard tand simpler two-class problems can not be carried out with
achieve completely learning of each of the seven large twpriedman’s method.

class problems by the modified backpropagation algorithm [1]
and the large two-class problems can not be further divided
into a set of relatively smaller and simpler two-class problem&. CSNN

CSNN was first proposed by Chen and You [6], and
V. RELATED WORK rediscovered also by Ishihara and Nagano [12], and Anand and
There is a variety of ties that can be made between the l\nIS coIIeagues_ [2]. The Dasic idea of CSNN IS to splika
Irelss problem intd< two-class problems as defined by (2). A

network and related work in machine perception, statistic%SNN for aK-class problem consists 6f network modules

pattern classification, modular neural networks, and fuzz ) : o
! . ) d theith network module is used to discriminate the patterns
neural systems. In this section, we discuss some of these I?SI < f th it fth t ol In oth d
and compare the Kinetwork with other models. 0 cgs : rom Ihe patlerns ot the rgs cgsses. no e.r words,
the ith network module for clas§; is trained onZ; defined
by (2). Even if the number of patterns for each#fclasses
is roughly equalZ; may contain much more training patterns
In [26], Nilsson presented a genetgkclass classifier archi- belonging toC; than those belonging t6;. Such a two-class
tecture that consists d& individual discriminant calculators. classification problem is called ambalancedclassification
The basic ideas behind this architecture are to divide-eass problem [1]. Anancet al.[1] have pointed out that the standard
classification problem intd< individual two-class problems backpropagation algorithm [27] converges slowly for learning
and select the largest output as a solution to the origirthlese imbalanced two-class problems, and have developed
problem from theK individual discriminant calculators. By a modified backpropagation algorithm for dealing with the
applying this architecture to constructing multiclass classifieligybalanced two-class problems. They have shown that their
he also proposed tHaear machineand piecewise linear ma- modified algorithm is faster than the standard one. However,
chinefor solving a class of multiclass classification problemas we mentioned in Section I, if A-class problem is a large

Fig. 13. The M network for the vehicle problem, a four-class problem.

A. Multiple Discriminant Calculators
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and complex problem, to learn each of the related two-clagerformance of the proposed modular network is about the
problems defined by (2) is still intractable. same as the single networks. The simulation results also show
that the proposed min—max modular network is superior to
the class-sensitive neural network [2], [6], [12] in convergence

D. Fuzzy Min—Max Neural Networks v ‘
speed and learning accuracy. The importance of the proposed

Various fuzzy neural networks involved minimizing (inter-

modular learning framework lies in the fact that it provides us

section) and maximizing (union) operations have been prgy eficient approach to solving large-scale, real-world pattern

posed for different purposes. Although the functions of t
MIN and MAX units used in the M network are, respec-
tively, the same as the minimizing and maximizing operations
involved in the fuzzy neural networks, the essential purposes of
the MIN and MAX units in the M network are very different
from those of the minimizing and maximizing operations i
the fuzzy neural networks. For example, there are two esse
differences between the ¥hetwork and two kinds ofuzzy
min—max(FMM) neural networks [28], [31].

e

1) The MIN and MAX units in the M network are not
involved in the learning process and are only used to
connect each of trained modules after learning, while
the minimizing and maximizing operations in the FMM
networks are the weighting operations and performed i
both learning and recognition processes.

The structure of the Rnetwork is modular, while that
of the FMM networks is nonmodular.

Ty

2)
[2]

[3]
VI.
. . . d[4]
A fundamental modularity design paradigm for a broa
variety of problems is the divide-and-conquer technique. The
research on applying this technique to neural networks is
of extreme importance because it enables a broaden use [8f
neural networks. In this paper, we have proposed a new ta
decomposition method, two module combination principles,
and a new modular neural-network architecture. The centrél]
idea underlying the task decomposition method is based
the class relations among training data. For a gi¥ewlass
classification problem, we can divide the problem into a set off]
smaller and simpler two-class problems by using the propos&@l
task decomposition method. Several attractive features of this
method can be summarized as follows. (1]

CONCLUSIONS

1) We can break down a problem into a set of subprob]
lems as small as we expect even though we are not
domain specialists or we have no any prior knowledgés3]
concerning the decomposition of the problem.
Training of each of the two-class problems can be great[ly
simplified and achieved independently.

Different network structures or different learning allts!
gorithms can be used to learn each of the problems.
The proposed module combination principles give us 6]
systematic method for integrating the individual trained
modules into a modular network by use of the threp7]
integrating units.

The simulation results (see Tables I-IV) show several signif-
icant advantages of the modular network suggested here ol}&}
single networks such as easily designing network structure,
faster training, and high learning accuracy. The generalization

2)

3)

Ngassification problems.
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