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Abstract— Due to the lack of electroencephalography (EEG)
data, it is hard to build an emotion recognition model with high
accuracy from EEG signals using machine learning approach.
Inspired by generative adversarial networks (GANs), we intro-
duce a Conditional Wasserstein GAN (CWGAN) framework
for EEG data augmentation to enhance EEG-based emotion
recognition. A Wasserstein GAN with gradient penalty is adopt-
ed to generate realistic-like EEG data in differential entropy
(DE) form. Three indicators are used to judge the qualities
of the generated high-dimensional EEG data, and only high
quality data are appended to supplement the data manifold,
which leads to better classification of different emotions. We
evaluate the proposed CWGAN framework on two public EEG
datasets for emotion recognition, namely SEED and DEAP.
The experimental results demonstrate that using the EEG data
generated by CWGAN significantly improves the accuracies of
emotion recognition models.

I. INTRODUCTION

Affective brain-computer interfaces (aBCIs) that aim to
equip machines with emotional intelligence, have recently
attracted widespread attention [1]. Many researchers have
studied EEG-based emotion recognition methods and have
made significant progresses [2][3]. However, compared with
images and speech signals, the high price of EEG acquisition
devices makes it hard to collect large-scale EEG data.
Besides, it is difficult to acquire sufficient labeled data from
subjects in EEG-based emotion recognition experiments. The
highly cost nature of these experiments directly results in the
lack of EEG data, which hinders the classifier performance.

Data augmentation is one of promising ways to solve the
data scarcity problem. This approach generates the realistic-
like data by applying a transformation to the real data [4].
It is common to generate artificial images through geomet-
ric transformation (translation, rotation, scaling, horizontal
shearing) [5] in the field of computer vision. The similar
technique has also been applied to EEG-based tasks. Krell
and Su proposed rotational distortions, which were similar
to affine/rotational distortions of images, to generate EEG
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Fig. 1. The framework for EEG data augmentation.

data [6]. In [7], artificial EEG trials were generated by the
relevant combinations and distortions of the original trials.

Instead of generating data through geometric transforma-
tion, very recent generative adversarial networks (GANs)
[8] have revealed their potential in generating realistic-
like data such as images [9] by adopting an adversarial
training. Typical GANs are formulated as a two-player game
which consists of two adversarial networks called generator
and discriminator. The distribution of the generated data
is approximate to the real data when the game achieves
its equilibrium. In computer vision, GANs-based methods
have been successfully adopted to generate realistic-like
images, and the performance of classifiers has been enhanced
significantly by appending the generated images [10][11].
However, to the best of our knowledge, this technique has
not been investigated in EEG-based emotion recognition.

In this work, we introduce a Conditional Wasserstein
GAN (CWGAN) framework for EEG data augmentation to
enhance EEG-based emotion recognition. A gradient-penalty
version of Wasserstein GAN is adopted to generate artificial
EEG data in differential entropy (DE) form from noise
distribution [12][13]. Note that it is common for classifiers
to handle the high-level features of EEG data, and DE
features have been demonstrated to be suited for EEG-based
emotion recognition tasks [14]. Therefore, CWGAN is used
to generate DE data instead of raw EEG data. Besides, an
auxiliary conditional information is appended to generate
multiple emotion categories. The qualities of generated data
are evaluated by using three indicators and only high quality
data are appended to the training set. The framework consists
of two parts, namely Conditional Wasserstein GAN and
quality evaluation as illustrated in Fig. 1.

Compared with signal-level transformation through dis-
tortions [6][7], CWGAN learns the representation of the
real distribution in a deeper level, which leads to better
classification of different emotions. However, due to the
instability problems of traditional GANs’ training procedure,
the generated data sometimes have poor qualities. Unlike
visible images, it is intractable for human to judge the
qualities of the generated high-dimensional EEG data in DE



form directly. To overcome the instability problem of training
traditional GAN, Wasserstein GAN is used in this work.
To evaluate the qualities of the generated data for user’s
reference, three indicators are used to evaluate the qualities
as well. Our experimental results on two public EEG datasets
indicate that the proposed CWGAN framework significantly
improves the accuracies of emotion recognition models by
appending generated EEG data to the training sets.

II. EXPERIMENTS

A. EEG Datasets

The data in SEED1 [14] dataset were formed with 62-
channel EEG signals. 15 participants watched 15 emotional
film clips to elicit three emotions: positive, neutral, and
negative. They took part in the experiments for three times
with an interval of about one week. So there were totally 45
experiments. The original EEG signals were recorded at a
sampling rate of 1000 Hz with ESI NeuroScan System. The
experimental procedures involving human subjects described
in this experiment were approved by the Ethics Committee.

The DEAP2 [15] dataset consisted of 32 participants. Each
of them was required to watch 40 music videos and the level
of each video was rated 1-9 by the participants in terms of
arousal, valence, like, and dislike. So there were totally 32
experiments where 32-channel EEG signals were recorded by
an international 10-20 system. Besides, 8-channel peripheral
physiological signals were recorded as well.

B. Data Preprocessing

The EEG data of both datasets are preprocessed and the
DE features are extracted. For SEED dataset, DE features are
extracted per second from five frequency bands: δ: 1-3 Hz,
θ: 4-7 Hz, α: 8-13 Hz, β: 14-30 Hz, and γ: 31-50 Hz [14].
The input data of each subject thus have 310 dimensions (62
channels × 5 frequency bands). The number of sample with
label for each subject is 3394. For DEAP dataset, DE features
are extracted per second except for δ frequency due to the
fact that the low frequency band is filtered in this dataset.
The input data of each subject thus have 128 dimensions (32
channels × 4 frequency bands). The number of samples with
label for each subject is 2400. Here, we adopt two emotion
models using valence value (high valence: level > 5, low
valence: level ≤ 5) and arousal value (high arousal: level >
5, low arousal: level ≤ 5), respectively.

III. METHODS

A. Conditional Wasserstein GAN

GANs consist of two competing components which are
both parameterized as deep neural networks. Given real
data distribution Xr and generated data distribution Xg , the
generator G produces realistic-like Xg to confuse the dis-
criminator D, while the discriminator D tries to distinguish

1http://bcmi.sjtu.edu.cn/∼seed/index.html
2http://www.eecs.qmul.ac.uk/mmv/datasets/deap/

whether a sample comes from Xr or Xg . The adversarial
training procedure can be formulated as a minimax problem:

min
θG

max
θD

L(Xr, Xg) = Exr∼Xr [log(D(xr))]

+ Exg∼Xg
[log(1−D(xg))]

(1)

where θg and θd represent the parameters of the generator
and discriminator, respectively. And Xg is implicitly defined
by xg = G(xz), where xz is sampled from uniform or
Gaussian noise distribution.

The adversarial training of traditional GANs can be for-
malized with minimizing the Jensen-Shannon divergence
between the probability distribution of real data and gen-
erated data. However, the discontinuity of Jensen-Shannon
divergence makes it hard to provide useful gradient for
optimizing generator, which is one of the main causes of
GANs instability. To eliminate this issue, Jensen-Shannon
divergence is replaced with the Earth-Mover distance (EMD,
also called Wasserstein-1) in Wasserstein GANs [12]:

W (Xr, Xg) = inf
γ∼Π(Xr,Xg)

E(xr,xg)∼γ [||xr − xg||] (2)

where Π(Xr, Xg) denotes all possible joint distributions of
real distribution Xr and generated distribution Xg defined in
traditional GANs.

The EMD is continuous and differentiable almost ev-
erywhere, and thus can provide meaningful gradients for
optimizing generator, which ensures the convergence of
the GANs. Since it is difficult to implement the infimum
of Eq.(2) in reality, an alternative approach is to apply
Kantorovich-Rubinstein duality of EMD:

W (Xr, Xg) =
1

K
sup

||f ||L≤K
Exr∼Xr

[f(xr)]

−Exg∼Xg
[f(xg)]

(3)

where f denotes the set of 1-Lipschitz functions.
In realistic implementations, f is replaced by discriminator

D and ||f ||L ≤ K is replaced by ||D||L ≤ 1. In order to
make the training procedure more stable and make conver-
gence faster, Gulrajani et al. enforced Lipschitz constraint
with gradient penalty instead of weight clipping to directly
constrain the gradient norm [13]. In their approach, an extra
penalty term is appended to the loss function:

min
θG

max
θD

L(Xr, Xg) = Exr∼Xr
[D(xr)]

− Exg∼Xg [D(xg)]

− λEx̂∼X̂ [(||∇x̂D(x̂)||2 − 1)2]

(4)

where λ is a hyperparameter controlling the trade-off be-
tween original objective and gradient penalty, and x̂ denotes
the data points sampled from the straight line between real
distribution Xr and generator distribution Xg:

x̂ = αxr + (1− α)xg, α ∼ U [0, 1], xr ∼ Xr, xg ∼ Xg (5)

In order to generate data with multiple categories, an
auxiliary label Yr is feed into both discriminator and gen-
erator. In the generator, we concatenate Xz with Yr. And
in the discriminator, we concatenate both Xr and Xg with



Yr to construct a hidden representation, which controls the
categories of generated data. Then the proposed CWGAN
can be formulated by:

min
θG

max
θD

L(Xr, Xg, Yr) =

Exr∼Xr,yr∼Yr
[D(xr|yr)]− Exg∼Xg,yr∼Yr

[D(xg|yr)]
−λEx̂∼X̂,yr∼Yr

[(||∇x̂|yrD(x̂|yr)||2 − 1)2]

(6)

The losses of discriminator (maximum term) and generator
(minimum term) are optimized in an alternating procedure.
In practice, the generator loss only contains the second term
of Eq.(6). And the discriminator loss is updated for critic
times in each adversarial training iteration. The structure of
the CWGAN is shown in Fig. 2.
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Fig. 2. Illustration of the proposed CWGAN, which consists of two parts:
the generator generates realistic-like data and the discriminator distinguishes
real and generated data. An auxiliary label information is concatenated to
control the categories of the generated data.

B. Quality Evaluations

In computer vision, the qualities of generated images can
be assessed directly by users. However, the qualities of the
generated high-dimensional EEG data are impossible to be
visually evaluated. Therefore, we use three indicators to
evaluate the qualities of generated EEG data in this work.
The generated EEG data are considered to have high qualities
if their distributions are approximate to real distributions
from the following three aspects:

1) Discriminator loss: The loss of discriminator repre-
sents EMD between Xr and Xg when the network converges.
That is, the generated data are high qualities if the loss is
approximate to 0.

2) Maximum Mean Discrepancy (MMD): MMD [16] is
frequently used as a measurement of the distance between
two distributions [17]. Here we adopt it to evaluate the
distance between Xr and Xg from another point of view.

3) Two-dimensional mapping: The high-dimensional Xg

are mapped into two-dimensions by t-SNE [18]. The distri-
bution of Xg then can be visualized directly.

IV. EVALUATION DETAILS

In order to compare experimental results with those in
[14], we use the same strategy to divide the training set
and test set for each subject. For SEED dataset, the first
9 trials (2010 samples) are set to original training set and
the remaining 6 trials (1384 samples) are set to test set. And
three emotions (positive, negative, and neutral) are classified.

For DEAP dataset, the first 24 trials (1440 samples) are set to
original training set and the remaining 16 trials (960 samples)
are set to test set. The arousal model and the valence model
are classified separately. The qualities of the generated EEG
data are evaluated and only high quality data are appended
to the original training set.

To optimize the network structure, we perform grid search
on the number of network layers. The numbers of layers are
searched from 3 to 5 for both generator and discriminator.
Each hidden layer of both generator and discriminator net-
work has 512 nodes for SEED dataset and 256 nodes for
DEAP dataset. The dimensions of auxiliary labels are 3 for
SEED and 2 for DEAP. The ReLU activation function is
used for all hidden layers and the networks are optimized by
an Adam optimizer. The critic value is set to 20 and the λ
value is set to 10. The noises are sampled from a uniform
distribution U [−1, 1]. We apply an SVM with linear kernel as
the classifier. The parameter c is searched from 2−10 ∼ 210

to find the optimal value, which is also employed in [14].

V. RESULTS
In this section, we carry out experiments to evaluate the

efficiency of the proposed CWGAN framework for EEG
data augmentation. The qualities of the generated data are
evaluated by the three indicators and only high quality data
(discriminator loss and MMD are close to 0) are appended
to the training set to enlarge the dataset.

In our experiments, we find the discriminator loss quickly
converges to a small value (close to 0) along with the training
epoch for each subject. As EMD between the distributions
of real and generated data, discriminator loss converging to 0
indicates that the two distributions are similar to each other
and the generated DE data have high qualities. Besides, the
MMD curve of each subject decreases to a small value (close
to 0) along with the training epoch, which also implies that
the generated data have high qualities.

Fig. 3. Two-dimensional visualizations of the real and generated DE data
of one subject in SEED dataset. Data points with red, green and blue colors
represent three emotions of negative, neutral and positive, respectively. The
lines represent the real data and the thin points represent the generated data.

The distributions of real and generated data are visualized
by t-SNE as illustrated in Fig. 3. Data from each emotion
can be clustered in the latent space and the generated data
are close to the corresponding real data, which implies the
generated data carry enough realistic information. Besides,
the distribution of real data is sparse and the boundaries of
different categories in the data manifold are not obvious. The
generated data supplement the training data manifold, which
leads to better margins for the classifier.



Data Appended SEED DEAP-Arousal DEAP-Valence
Mean Std. Mean Std. Mean Std.

0×Dataset 0.8399 0.0972 0.6902 0.1361 0.5376 0.1308
1×Dataset 0.8696 0.1272 0.7817 0.0958 0.7389 0.1082
2×Dataset 0.8659 0.1283 0.7437 0.1227 0.6543 0.1506
3×Dataset 0.8638 0.1276 0.7479 0.1133 0.6625 0.1477
4×Dataset 0.8623 0.1275 0.7450 0.1013 0.6496 0.1504
5×Dataset 0.8600 0.1294 0.7434 0.1151 0.6467 0.1372

TABLE I
PERFORMANCE OF APPENDING GENERATED EEG DATA

We evaluate the performance of SVMs when appending
different numbers of the generated EEG data and show
the average accuracies and standard deviations of the two
datasets in Table 1. Since the performance of three indicators
demonstrate that all of the generated data have high qualities,
we append all generated data to the original dataset. The
number of the appended data is denoted with the times of the
number of real dataset. Namely, 0 (the baselines of different
datasets) represents the original real dataset while 1 repre-
sents that the number of the appended data is the same with
the real dataset. The baseline of SEED (no generated data
appended) is referenced in [14]. We can see that appending
the same number of generated EEG data to the training
sets achieves the best performance, in terms of accuracy, on
SEED, DEAP-Arousal, and DEAP-Valence tasks. With the
increment of generated data, the accuracies of the enlarged
training sets are still higher than the original datasets. This
phenomenon demonstrates that appending generated data to
training set improves the performance of the model.

Fig. 4. The confusion matrixes (SEED dataset) trained by (a) original
training set and (b) appended training set (1 time).

The confusion matrixes (SEED dataset) trained by dif-
ferent training sets are shown in Fig. 4. The rows of the
matrixes represent real emotions while the columns represent
predicted emotions. Compared with original training set, the
recognition accuracies of three emotions achieve 1%, 4%,
5% improvements when appending the generated data to
original training set. This phenomenon also indicates the
proposed framework is able to enhance EEG-based emotion
recognition by appending generated data.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a Conditional Wasserstein

GAN framework for EEG data augmentation to enhance

EEG-based emotion recognition. The proposed framework
generates realistic-like EEG data by using Wasserstein GAN
gradient penalty version. An auxiliary label information is
appended to Wasserstein GAN to generate different cate-
gories. The performance of our framework has been evaluat-
ed on two public EEG datasets for emotion recognition. By
using three evaluation indicators, we see that high-quality
EEG data are generated. The emotion recognition models
trained on appending datasets achieve 2.97%, 9.15% and
20.13% improvements on SEED dataset and DEAP dataset
for arousal and valence classifications, respectively. In the
future, we will study more quantifiable methods to evaluate
the qualities of the generated EEG data.
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