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Abstract. Objective. The data scarcity problem in emotion recognition from
electroencephalography (EEG) leads to difficulty in building an affective model
with high accuracy using machine learning algorithms or deep neural networks.
Inspired by emerging deep generative models, we propose three methods for
augmenting EEG training data to enhance the performance of emotion recognition
models. Approach. Our proposed methods are based on two deep generative
models, variational autoencoder (VAE) and generative adversarial network
(GAN), and two data augmentation ways, full and partial usage strategies.
For the full usage strategy, all of the generated data are augmented to the
training dataset without judging the quality of the generated data, while for
the partial usage, only high-quality data are selected and appended to the
training dataset. These three methods are called conditional Wasserstein GAN
(cWGAN), selective VAE (sVAE), and selective WGAN (sWGAN). Main results.
To evaluate the effectiveness of these proposed methods, we perform a systematic
experimental study on two public EEG datasets for emotion recognition, namely,
SEED and DEAP. We first generate realistic-like EEG training data in two
forms: power spectral density and differential entropy. Then, we augment the
original training datasets with a different number of generated realistic-like EEG
data. Finally, we train support vector machines and deep neural networks
with shortcut layers to build affective models using the original and augmented
training datasets. The experimental results demonstrate that our proposed data
augmentation methods based on generative models outperform the existing data
augmentation approaches such as conditional VAE, Gaussian noise, and rotational
data augmentation. We also observe that the number of generated data should be
less than 10 times of the original training dataset to achieve the best performance.
Significance. The augmented training datasets produced by our proposed sWGAN
method significantly enhance the performance of EEG-based emotion recognition
models.
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1. Introduction

Emotion plays a significant role in how people
think, behave, and communicate. Artificial emotional
intelligence, which is also known as emotion AI or
affective computing, focuses on developing devices
and systems that can automatically recognize human
emotion and has attracted considerable attention very
recently (Somers 2019, Smith & Burke 2019). For
example, integrating emotion assessment in human-
computer interaction systems with emotion recognition
can make machines more intelligent and provide more
humanized interactions. Moreover, studies have shown
that some mental diseases, such as depression and
autism, are relevant to emotions (Bocharov, Knyazev
& Savostyanov 2017). The introduction of emotion AI
to these studies can create a high potential for treating
psychiatric diseases. Because emotion AI has many
potential applications, attention is being focused on
the possibility of recognizing emotions from different
behavioral cues, such as facial expression (Liu, Min,
Cao, Chen, Xu, Zhang, Zhou & Mao 2017), posture
(Garber-Barron & Si 2012), voice (Tanja, Didier &
Scherer 2009), and neurophysiological signals (Samara,
Menezes & Galway 2017). Among these signals,
electroencephalography (EEG) has been demonstrated
as one of the most reliable signals due to its high
accuracy and objective benefits. In recent years, EEG-
based emotion recognition has attracted widespread
attention from academics and industries (Wang, Nie
& Lu 2014, McFarland, Parvaz, Sarnacki, Goldstein
& Wolpaw 2016, Meneses Alarco & Fonseca 2017,
Craik, He & Contreras-Vidal 2019, Fourati, Ammar,
Sanchez-Medina & Alimi 2020). Researchers have
made considerable progress in feature extraction and
model construction. However, these studies are faced
with a problem: the lack of training data.

Compared with visual and audio signals, which
can be easily accessed from standard datasets, data
acquisition is still one of the bottlenecks in EEG-
based emotion recognition tasks. There are mainly
five reasons: a) The price of EEG acquisition devices
for research is quite high. b) These experiments
cannot last for a long time because the subjects
may feel uncomfortable wearing EEG acquisition
devices. c) The raw EEG data are usually mixed
with noise and various artifacts, and researchers
have to discard some bad channels and data, which
aggravates the data scarcity problem. d) It is difficult
to collect precisely labeled data since the subjects
may not evoke emotion well in emotion recognition
experiments. e) There are only a few public EEG-based
emotion recognition datasets, such as SEED‡ (Zheng
& Lu 2015, Zheng, Liu, Lu, Lu & Cichocki 2019),

‡ http://bcmi.sjtu.edu.cn/∼seed/index.html

DEAP§ (Koelstra, Mühl, Soleymani, Lee, Yazdani,
Ebrahimi, Pun, Nijholt & Patras 2012), DREAMER
(Katsigiannis & Ramzan 2018), MAHNOB-HCI‖
(Soleymani, Lichtenauer, Pun & Pantic 2012), and
MPED (Song, Zheng, Lu, Zong, Zhang & Cui 2019).
Moreover, the scales of these datasets are much smaller
than those of public image datasets (e.g., ImageNet).
These factors limit the quantity of labeled training data
for EEG-based emotion recognition and hinder the
performance of emotion recognition models trained by
machine learning algorithms and deep neural networks.

It is common sense that a machine learning
model will be more accurate when it can access more
training data. For example, the release of the trillion-
word corpus by Google improves text-based models
(Halevy, Norvig & Pereira 2009). Machine learning
models can be more robust and reliable when learning
more effective features from sufficient training data,
especially for deep learning models that need a vast
quantity of training data. Deep learning models
have recently achieved remarkable results in the fields
of computer vision, speech recognition, and natural
language processing due to the accessibility of large
datasets (Zhang, Yang, Chen & Peng 2018).

In the field of EEG-based emotion recognition,
Zheng and Lu used deep neural networks to recognize
three emotions and reached a compelling accuracy
(Zheng & Lu 2015). In their work, they only applied a
two-layer deep belief network. The achievements in
the image, speech, and natural language processing
fields indicate that there is considerable room for
further studying the problem of EEG-based emotion
recognition by leveraging the ability of deeper neural
networks. However, compared with shallow layer
models, deep-layer models use more parameters and
require a large number of labeled training data
to explore the potentials of deep neural networks.
Consequently, the primary issue that should be
addressed in EEG-based emotion recognition is to
acquire sufficient and high-quality training data.

Generating artificial data by applying a transfor-
mation from the original data is one of the conventional
solutions to solving the data scarcity problem. This ap-
proach is called data augmentation. Recently, various
data augmentation methods have been applied to gen-
erate EEG data (Krell & Kim 2017, Lotte 2015, Wang,
Zhong, Peng, Jiang & Liu 2018). Some researcher-
s have generated EEG data by applying a geometric
transformation to the original data and reported the
performance of classifiers improved by adding the gen-
erated data. Other researchers have focused on us-
ing deep generative models to generate artificial EEG
data (Hartmann, Schirrmeister & Ball 2018). Com-

§ http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
‖ https://mahnob-db.eu/hci-tagging/
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pared with signal-level transformation through geomet-
ric transformation, the deep generative model could
learn the representation of the real distribution at a
deeper level. However, the performance of the clas-
sifier after data augmentation were not demonstrated
(Hartmann et al. 2018). In our previous study, we
generated realistic-like EEG features by taking advan-
tage of GANs (Luo & Lu 2018). Then, we compared
the performance of affective models without and with
appending the generated data to the training dataset.
The experimental results demonstrated that the GAN-
based data augmentation method could improve the
performance of affective models. In this paper, we fur-
ther explore the generative methods based on the above
achievement.

It is common for classifiers to handle the high-
level features of EEG data in EEG-based emotion
recognition tasks. Therefore, this work focuses
on generating power spectral density (PSD) and
differential entropy (DE) features, which are two
commonly used features in emotion recognition tasks
(Zheng & Lu 2015, Duan, Zhu & Lu 2013, Yang, Wu,
Zheng & Lu 2018).

Original training data Generated data Augmented training data

(a) All of the generated data are used to augment the training
dataset.

Original training data Generated data Augmented training data

(b) The generated data with high quality are selected to
augment the training dataset.

Figure 1. Illustration of two data augmentation strategies used
in this work.

The work includes two emerging deep generative
models: variational autoencoder (VAE) (Kingma &
Welling 2014) and Wasserstein generative adversarial
network (WGAN) with gradient penalty (Arjovsky,
Chintala & Bottou 2017, Gulrajani, Ahmed, Arjovsky,
Dumoulin & Courville 2017). We propose two data
augmentation strategies: full usage of generated data
and partial usage of generated data. As illustrated
in figure 1, the basic ideas behind the full usage
strategy and partial usage strategy are to use all of the
generated data and select part of the generated data.
Since we cannot guarantee that all of the generated
data have high qualities, it is important for us to decide
how to use the generated data. For the full usage
strategy, we propose conditional Wasserstein GAN

(cWGAN) to control the category of the generated
data. Then, we append all of the generated data to
the original training dataset without considering their
quality.

For the partial usage strategy, we propose two
methods called selective VAE (sVAE) and selective
WGAN (sWGAN) to generate data. In these two
methods, the generated data are unlabeled. And
we choose the generated data with high classification
confidence and append the selected data to the original
training dataset. Unlike images, the generated EEG
features are high-dimensional data and are intractable
for humans to judge the quality of the generated data.
Therefore, these two methods are based on a simple
idea, and the generated data are regarded as high
quality when they are classified with high classification
confidence by a classifier trained by the original
dataset. We use two conventional pattern classifiers,
SVMs and deep neural networks with shortcut layers,
to train affective models on two public EEG datasets
widely used for emotion recognition: SEED and DEAP.

For a comparison study, we introduce three
conventional data augmentation methods for EEG-
based emotion recognition: conditional VAE (cVAE)
(Kingma & Welling 2014), which adopts a similar
generated strategy as cWGAN, Gaussian noise method
(Gau), which augments the datasets by adding Gussain
noise to the original data (Wang et al. 2018),
and rotational data augmentation method (RDA),
which generates new data by applying a geometric
rotation to the original data (Krell & Kim 2017).
We perform a systematic experimental study to
compare the proposed methods with these conventional
methods. We use 5-fold cross-validation to measure
the classification performance of different augmented
methods. The proposed framework is illustrated in
figure 2.

The main contributions of this paper lie in the
following aspects:

1) To the best of our knowledge, we adopt deep
generative methods to augment EEG training data
for emotion recognition for the first time.

2) We propose three methods for generating EEG
data based on different generative methods and two
different strategies for using the generated data.

3) We carry out a systematic comparison between
different features, different generative methods
and different classifiers on two EEG datasets.
The experimental results demonstrate that our
proposed methods could make the affective models
have better performance on EEG-based emotion
recognition.

The rest of the paper is organized as follows.
Section 2 provides an overview of related work
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Figure 2. Illustration of our proposed data augmentation framework. First, we extract the DE feature and PSD feature from two
EEG-based emotion recognition datasets, SEED and DEAP, respectively. Second, we use our proposed three methods to generate
realistic-like data and augment the original training dataset. Finally, we evaluate the performance of the proposed methods using
SVMs and DNNs with shortcut layers.

on generative methods, data augmentation methods
for EEG-based emotion recognition, and a brief
introduction to deep neural networks. In section 3,
we introduce different methods in detail. Section 4
describes the two datasets, SEED and DEAP, and
presents the details of our experimental settings. A
systematic comparison between different methods and
the efficiency of our proposed methods by conducting a
series of data augmentation experiments is presented in
section 5. Finally, in section 6, we present conclusions
about our work.

2. Related Work

In this section, we briefly introduce relevant work
on EEG-based emotion recognition, deep generative
methods, data augmentation methods, and deep neural
networks.

2.1. EEG-based Emotion Recognition

EEG-based emotion recognition has received consid-
erable attention. Mühl et al. introduced affective
factors into traditional brain-computer interfaces (B-
CIs) and presented the definition of affective brain-
computer interfaces (aBCIs) (Mühl, Allison, Nijholt
& Chanel 2014). Alarcao and Fonseca surveyed d-
ifferent EEG-based emotion recognition methods and
compared the main aspects involved in the recognition
process, including stimuli, feature extraction method-
s, and classifiers (Alarcao & Fonseca 2017). Jenke et
al. reviewed feature extraction and selection methods
for 33 EEG-based emotion recognition studies (Jenke,
Peer & Buss 2014). Petrantonakis and Hadjileon-
tiadis presented a novel EEG-based feature extraction
technique by employing higher-order crossings analysis
(Petrantonakis & Hadjileontiadis 2010).

Koelstra et al. developed a publicly available
EEG-based emotion dataset called DEAP by recruiting
32 subjects to watch 40 music videos. Zheng and

Lu required 15 subjects to watch 15 selected Chinese
movie clips to elicit three emotions: happy, sad, and
neutral (SEED dataset) (Zheng & Lu 2015). Then,
they performed a systematic comparison between
various feature extraction, feature selection, feature
smoothing and classification methods in a three-
category EEG-based emotion recognition task and
showed the stable patterns of EEG in this task (Zheng,
Zhu & Lu 2019).

2.2. Deep Generative Methods

Generative models aim to learn the data distribution of
a given dataset using unsupervised learning to generate
new data with some variations and have been widely
studied in the field of machine learning. Recent
advances in parameterizing these models using deep
neural networks have allowed them to scale to diverse
data, including images, text, and speech. Two of the
most promising and efficient deep generative models
are the variational autoencoder (VAE) (Kingma &
Welling 2014) and generative adversarial network
(GAN) (Goodfellow, Pouget-Abadie, Mirza, Xu,
Warde-Farley, Ozair, Courville & Bengio 2014).

As a variation in the autoencoder, VAE aims at
generating new data only based on the given data
(Kingma & Welling 2014). It solves the variational
inference problem that maximizes the marginalized
data likelihood by using a generative network (encoder)
and a recognition network (decoder). At the end of
the training, the encoder can generate realistic-like
data. VAEs have shown great potential in generating
different data (Salimans, Kingma & Welling 2015,
Kulkarni, Whitney, Kohli & Tenenbaum 2015, Gregor,
Danihelka, Graves, Rezende & Wierstra 2015).

As an emerging topic, GAN has attracted growing
interest. The idea of GAN is to sample noise from
distributions such as Gaussian and transform them
into real data distributions. GANs are based on a
mini-max game theory that aims to find the Nash
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equilibrium between the two components, generator
and discriminator. After the adversarial process, the
generator can produce high-quality faked data. GANs
have shown promise in generating realistic-like data
in specific fields. Ledig et al. proposed SRGAN
for image superresolution (Ledig, Theis, Huszar,
Caballero, Cunningham, Acosta, Aitken, Tejani, Totz,
Wang et al. 2017). Wu et al. proposed 3D-
GAN to generate 3D objects from a probabilistic
space using volumetric convolutional networks and
generative adversarial networks (Wu, Zhang, Xue,
Freeman & Tenenbaum 2016). In addition, GANs
have also been applied to the generation of dialogue
(Li, Monroe, Shi, Jean, Ritter & Dan 2017), electronic
health records (EHRs) (Choi, Biswal, Malin, Duke,
Stewart & Sun 2017), and polyphonic music (Mogren
2016). Considering that the original GAN has no
control over modes of the generated data, Mirza and
Osindero added the label as an additional parameter
to the generator and the discriminator to control the
category of the generated data (Mirza & Osindero
2014).

Although GANs have demonstrated great genera-
tion abilities, they have some problems, such as non-
convergence, mode collapse, and diminished gradien-
t. Chief among them is training stability (noncon-
vergence), which is mainly caused by the adversarial
game. Some pioneering works focus on fixing this prob-
lem. Radford et al. reported some network architec-
ture recommendations about GANs and designed a so-
phisticated network called DCGAN (Radford, Metz &
Chintala 2016). Their work made a great contribution
to solving the instability problem of GANs’ training
process. However, DCGAN is designed for image gen-
eration and requires specific design techniques, which
limits it to scale to other fields. For this reason, oth-
er researchers have focused on altering the structure
(Berthelot, Schumm & Metz 2017) or the loss function
(Qi 2017) of the original GAN to ensure training sta-
bility. Wasserstein GAN (WGAN) is one of the most
dramatic attempts to handle this problem (Arjovsky
et al. 2017). Arjovsky et al. regarded the mini-max
game as minimizing the Wasserstein distance between
the two distributions and replaced the original loss
function of GAN by the Wasserstein distance. Their
work significantly improved the stability of GAN train-
ing while maintaining the generation ability of GAN-
s. In addition, WGAN requires no extra sophisticated
network designation and can be easily applied to the
generation of different signals, such as EEG. Based on
WGAN, Gulrajani et al. proposed using a gradien-
t penalty in the training, which improved the perfor-
mance of WGAN (Gulrajani et al. 2017).

2.3. Data Augmentation

Data augmentation aims at generating new data of
the given dataset by applying transformations to
the original data while preserving the label (van
Dyk & Meng 2001). This method is commonly
applied to reduce overfitting and improve classification
performance (Krizhevsky, Sutskever & Hinton 2012)
since the generated data have a similar data
distribution to the original data and can be used
to increase the quantity of training data. In
the field of image classification with small data
size, this technique has been successfully adopted
(Perez & Wang 2017). It is common to generate
additional images by applying different distortions,
scaling, or moving window/pixel shifts to the real
images (Simard, Steinkraus & Platt 2003). A similar
technique has also been adopted to generate EEG
signals. Krell and Su proposed rotational distortions
that were similar to affine/rotational distortions of
images to generate artificial EEG signals (Krell &
Kim 2017). Lotte generated artificial EEG trials
by the relevant combinations and distortions of the
original trials (Lotte 2015). Wang et al. generated
EEG features by directly adding different Gaussian
noises to the original feature and applied deep neural
networks to verify the effect (Wang et al. 2018). All
of the abovementioned methods reported that the
performance of the classifiers was improved by data
augmentation.

Some pioneering works have focused on augment-
ing data by GANs, which demonstrated great genera-
tive ability. Zheng et al. adopted DCGAN to generate
images and used artificial images for person reidentifi-
cation tasks (Zheng, Zheng & Yang 2017). Their re-
sults presented the feasibility of GAN-based data aug-
mentation. They also reported that the classifier was
less prone to overfitting by adding generated training
samples. By applying a CycleGAN to augment the
training dataset, Zhu et al. improved the classification
accuracy of the emotion recognition task based on im-
ages (Zhu, Liu, Li, Wan & Qin 2018). For EEG signal
generation, Hartmann et al. proposed EEG-GAN to
generate raw EEG signals (Hartmann et al. 2018). In
their work, they presented a series of evaluation met-
rics to demonstrate the potential for GANs to gen-
erate EEG data. However, they did not report the
performance of the classifier when adding the gener-
ated EEG data to the training dataset. In our pre-
vious work, we extended the GAN-based augmenta-
tion method to EEG-based emotion recognition (Luo &
Lu 2018). The experimental results demonstrated the
efficiency of our data augmentation method for EEG-
based emotion recognition.



Data Augmentation for Enhancing EEG-based Emotion Recognition with Deep Generative Models 7

2.4. Deep Neural Networks

Deep neural networks have been widely applied to
the fields of computer vision (Hinton & Salakhutdinov
2006, Simonyan & Zisserman 2014), natural language
processing (Mikolov, Chen, Corrado & Dean 2013) and
speech recognition (Dahl, Yu, Deng & Acero 2011).
Although deep neural networks obtain exciting results
in these fileds, they still suffer from problems such as
the curse of depth. It is difficult to train a neural
network effectively with too many layers. To solve
this problem, He et al. proposed a residual learning
framework called Resnet (He, Zhang, Ren & Sun 2016),
which had shortcuts between layers to transform the
information. Inspired by this, we apply the deep neural
network (DNN) with shortcut layers as one of our
classifiers.

3. Method

In this section, we first give a brief introduction to VAE
and WGAN. Then, we present our three deep genera-
tive models, cWGAN, sVAE, and sWGAN. Next, we
describe three conventional data augmentation meth-
ods, cVAE, Gau, and RDA. Finally, we briefly describe
DNN with shortcut layers.

3.1. VAE

The VAE is a latent variable generative model that
consists of an encoder and a decoder. This model
combines variational inference with the conventional
autoencoder framework. The encoder encodes x into a
latent representation space z, where x represents a real
datapoint and has weights and biases λ. We denote the
encoder qλ(z|x). The decoder outputs the probability
distribution of real data given the latent representation
z. It has weights and biases φ, which is denoted by
pφ(x|z).

The generative model aims to maximize the
probability of each x in the training set according to

p(x) =

∫
p(x|z)p(z)dx. (1)

However, this integral requires exponential time
to compute. In practice, p(x|z) will be nearly zero for
most z, which contributes almost nothing to estimate
p(x). The VAE attempts to sample z, which is likely to
produce x, by approximating the posterior p(z|x) with
qλ(z|x). It uses the Kullback-Leibler (KL) divergence,
which measures the distance between two distributions:

KL(qλ(z|x)||p(z|x)) = Ez∼q[log(qλ(z|x))− log(p(z|x))]

= Ez∼q[log(qλ(z|x))− log(p(x|z))
− log(p(z))] + log(p(x)). (2)

The goal of KL divergence is to find the parameter
λ to minimize this divergence. However, it is still

impossible to compute the KL divergence directly since
p(x) appears in the formula, which is intractable as
mentioned above. We can define the following function:

ELBO = − Ez∼q[log(qλ(z|x))− log(p(x|z))
− log(p(z))], (3)

where ELBO represents the evidence lower bound.
Combining equations (3) with the KL divergence and
rewrite, p(x) can be rewritten as

log(p(x)) = ELBO +KL(qλ(z|x)||p(z|x)). (4)

Note that the KL divergence is always greater
than or equal to zero according to Jensen’s inequality.
Therefore, minimizing the KL divergence is equivalent
to maximizing ELBO.

Now, we can decompose the ELBO into a sum
where each term depends on a single datapoint since
no datapoint shares its latent z with another datapoint
in VAE. We can write the ELBOi for a single datapoint
i (the ith datapoint) as

ELBOi = −Ez∼q[log(qλ(z|xi))− log(p(xi)|z))
− log(p(z))] + log(p(xi))

= Ez∼q[log(pλ(xi|z))]−KL(qλ(z|xi)||p(z)), (5)

where the first term is the expected log-likelihood and
the second term is the negative KL divergence between
the encoder distributions qλ(z|xi) and p(z). The first
term forces the decoder to learn to reconstruct the data
from latent representation, and poor reconstruction
results in a large cost in this loss function. The
second term can also be viewed as a regularizer, which
measures how much information is lost when using
qλ(z|xi) to represent p(z). The encoder receives a
penalty if it outputs latent representations z that are
different from those from p(z). This term maintains
the diversity of the latent representation.

In VAE, the choice of p(x|z) is often a Gaussian
distribution. Then, the first term of ELBOi can also
be viewed as the reconstruction loss. The VAE assumes
p(z) = N(0, I) and qλ(z|xi) = N(µ(xi),Σ(xi)), where
N represents a Gaussian distribution. Therefore, the
second term of ELBOi can be formalized as:

KL(qλ(z|xi)||p(z)) = KL(N(µ(xi),Σ(xi))||N(0, I))

=
1

2
(tr(Σ(xi)) + µ(xi)

Tµ(xi)

− k − log(det(Σ(xi)))), (6)

where k is the dimension of the Gaussian distribution
and tr(xi) is the trace function. We define Σ(xi) as a
diagonal matrix, so the formula can be rewritten as

KL(qλ(z|xi)||p(z)) =
1

2

∑
k

[Σ(xi) + µ2(xi)− 1

− logΣ(xi)]. (7)
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D

Figure 3. The network of cWGAN. Here, xr, yr, xg , z, G, and
D represent one real sample, real label, generated sample, noise,
generator, and discriminator, respectively.

In practice, we use logΣ(xi) instead of Σ(xi) since it is
more numerically stable to take the exponent. Hence,
the final goal of VAE is

max
λ,φ

ELBO =
∑
i

ELBOi

=
∑
i

∑
k

[(xi − x̂i)2 +
1

2
(Σ(xi) + µ2(xi)

− 1− logΣ(xi))], (8)

where x̂i is the reconstructed data, and µ(xi) and
logΣ(xi) are both calculated by the neural network.

3.2. WGAN

A typical GAN consists of two competing parts, which
are both parameterized as deep neural networks. A
generator G produces synthetic data given a noise
variable input, while a discriminator D attempts to
identify whether a sample comes from the real data
distribution Xr or the generated data distribution
Xg. In other words, the discriminator is trained to
estimate the probability of a given sample from the
real data distribution. The generator is optimized
to trick the discriminator to offer a high probability
for the generated data. The two parts are optimized
simultaneously to find a Nash equilibrium. More
formally, the procedure can be expressed as a mini-
max function:

min
θG

max
θD

L(Xr, Xg) = Exr∼Xr [log(D(xr))]

+ Ez∼Z [log(1−D(G(z)))]

= Exr∼Xr [log(D(xr))]

+ Exg∼Xg [log(1−D(xg))], (9)

where θg and θd represent the parameters of the
generator and discriminator, respectively, and Z can
be a uniform noise distribution or a Gaussian noise
distribution.

The function is optimized in two steps: (i)
Maximize it by fixing G and Xg, and obtain the
optimum of D; (ii) Minimize the function by the
optional D, and then minimize the Jensen-Shannon
divergence between Xr and Xg. The game achieves
equilibrium if and only if Xr = Xg.

Although GAN has shown great success in
realistic data generation, it suffers from some major
problems, such as nonconvergence, mode collapse and
diminished gradient. Researchers believed that the
Jensen-Shannon divergence could lead to vanishing
gradients, which was the main reason for the GAN’s
instability. In real-world tasks such as image
generation, the distribution of real images always lies
in low-dimensional manifolds, and the distribution
of generated images also rests in low-dimensional
manifolds. The two distributions are almost certainly
disjoint and have no overlaps. In this situation,
the Jensen-Shannon divergence between the two
distributions is a fixed number, which cannot provide
useful gradients for GAN training.

Arjovsky et al. (Arjovsky et al. 2017) adopted
the Wasserstein distance, which is also called the earth
mover’s distance (EM distance), in GAN training to
solve the instability problem. The distance formula for
the continuous probability domain is

W (Xr, Xg) = inf
γ∼Π(Xr,Xg)

E(xr,xg)∼γ [||xr − xg||], (10)

where Π(Xr, Xg) is the set of all possible joint
probability distributions between Xr and Xg. For the
Wasserstein distance, even if the two distributions have
no overlaps, it can still provide useful and smooth
gradients for GAN training. However, it is difficult
to implement the infimum of equation (10). An
alternative method for calculating the Wasserstein
distance in reality is to apply its Kantorovich-
Rubinstein duality:

W (Xr, Xg) =
1

K
sup

||f ||L≤K
Exr∼Xr [f(xr)]

− Exg∼Xg [f(xg)], (11)

where f denotes the set of 1-Lipschitz functions and K
is a constant number. In realistic implementations, f is
replaced by discriminator D and ||f ||L ≤ K is replaced
by ||D||L ≤ 1.

There are many methods for realizing the 1-
Lipschitz constraint in WGAN. One possible method
is to restrict the parameters of the discriminator in
a limited range, such as -0.1 to 0.1. However, this
weight-clipping method will introduce some problems.
The model may produce poor quality data and does
not converge since clipping reduces the capacity of the
model. Another method is to use gradient penalty
(Gulrajani et al. 2017). In this method, an extra
penalty term is added to the loss function:

min
θG

max
θD

L(Xr, Xg) = Exr∼Xr [D(xr)]

− Exg∼Xg [D(xg)]

− λEx̂∼X̂ [(||∇x̂D(x̂)||2 − 1)2], (12)

where λ is a hyperparameter controlling the trade-off
between the original objective and gradient penalty,



Data Augmentation for Enhancing EEG-based Emotion Recognition with Deep Generative Models 9

and x̂ denotes the data points sampled from the
straight line between the real distribution Xr and the
generated distribution Xg:

x̂ = αxr + (1− α)xg,

α ∼ U [0, 1], xr ∼ Xr, xg ∼ Xg. (13)

3.3. cWGAN

In this paper, we propose the cWGAN and apply it to
EEG-based emotion recognition. As shown in figure 3,
we can generate data with specified categories by using
cWGAN. This method is based on the gradient penalty
version of WGAN. The cWGAN is formulated as

max
θD

L(Xr, Xg, Yr)

= Exr∼Xr,yr∼Yr [D(xr|yr)]
− Exg∼Xg,yr∼Yr [D(xg|yr)]
− λEx̂∼X̂,yr∼Yr [(||∇x̂|yrD(x̂|yr)||2 − 1)2], (14)

min
θG

L(Xg, Yr) = −Exg∼Xg,yr∼Yr [D(xg|yr)], (15)

where Yr represents the category distribution of the
real data, and x̂ is defined in equation (13). In this
work, λ is set to 10 because we find that this value
could make the training procedure more stable in our
preliminary experiment. The last term in equation
(14) penalizes the model if the gradient norm moves
away from its target norm. The Lipschitz constraint
is realized, and the model almost loses no capacity.
Thus, cWGAN can generate data with high quality
and converge quickly. Since the discriminator loss
(D-loss) is the The Wasserstein distance between the
two conditional distributions can represent the training
procedure for cWGAN.

3.4. sVAE and sWGAN

In cWGAN, we append all of the generated data
to the training dataset. Here, we consider another
strategy in which partially generated data are adopted
to enlarge the training dataset in sVAE and sWGAN.
These two methods are based on the observation that
the generated data have different qualities, and only
generated data with high quality are selected as new
training data. This procedure has two steps: a) we
generate some data by VAE or WGAN; b) we choose
the generated data with high quality to enlarge the
dataset. We repeat the above two steps until we obtain
enough training data.

In this work, we use the classification confidence
to examine data quality. We first train a classifier with
the original training dataset and then use the trained
classifier to classify the generated data, and only data
with high classification confidence (higher than the

Algorithm 1 The work flow of sVAE and sWGAN

Input: Real dataset Xr = {xir}mi=1 and corresponding
labels Yr = {yir}mi=1 and thre hold

Output: Generated data Xg = {xig}ni=1 and corre-

sponding labels Yg = {yig}ni=1

1: Xg, Yg = Null,Null
2: repeat
3: Xall g = sVAE(Xr, noise) or Xall g =

sWGAN(Xr, noise)
4: Xtr, Ytr = Xr ∪Xg, Yr ∪ Yg
5: model = classifier train(Xtr, Ytr)
6: Yall g, class conf = classifier test(model, Xall g)

7: for i in Xall g do
8: if class conf[i] > thre hold then
9: Xg, Yg = Xg ∪Xall g[i], Yg ∪ Yall g[i]

10: end if
11: end for
12: until len(Xg) == n
13: return Xg, Yg

μ

Σ
Enc Dec

Figure 4. The network of cVAE. Here, xr, yr, xg , µ,Σ, z, Enc,
and Dec represent one real sample, real label, generated sample,
mean value, standard deviation, resampled noise, encoder, and
decoder, respectively.

thre hold) are appended to the training dataset. We
train a new classifier with the appended dataset and
repeat the two steps mentioned above until we have
enough generated data. We present the algorithm in
Algorithm 1.

3.5. cVAE

In this method, we aim to generate data with the
specified category. As shown in figure 4, to control
the generated category, an extra label is added to
the encoder and decoder. We first feed the training
data point and the corresponding label to the encoder,
then we concatenate the hidden representation with
the corresponding label and feed it to the decoder to
train the network. Then, we can generate data with
the specified label by feeding the decoder with the
noise sampled from the Gaussian distribution and the
assigned label after the training process. Therefore,
the cVAE (Kingma & Welling 2014) can be formulated
as,

max
λ,φ

ELBO

=
∑
i

ELBOi
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=
∑
i

∑
k

[(xi − x̂i)2

+
1

2
(Σ(xi|yi) + µ2(xi|yi)− 1− logΣ(xi|yi))]. (16)

3.6. Gaussian noise

One of the straightforward augmentation methods is
adding Gaussian noise (Gau) to the original training
data, whose probability density function obeys a
Gaussian distribution:

pG(z) =
1

σ
√

2π
e−

(z−µ)2

2σ2 , (17)

where z is a random variable, µ means expectation
and σ is the standard deviation. In our experiment,
µ is set to 0 and σ is set to 0.001. Intuitively, more
training data can be generated while preserving the
characteristics of the original data by adding Gaussian
noise.

3.7. Rotational Data Augmentation

Rotational data augmentation (RDA) was proposed
by Krell and Su (Krell & Kim 2017), which aims to
create data with strong spatial robustness, since there
might be spatial shifts of EEG caps within sessions and
between sessions during the experiments. To address
this problem, RDA generates artificial data associated
with the electrodes’ new positions by adding rotations
on three coordinates. According to their result (Krell
& Kim 2017), augmentation around the y-axis and z -
axis increased the performance, especially around the
z -axis. Therefore, we choose to perform the rotations
around the z -axis. Specifically, we set an angle between
12◦ and 24◦ over all subjects and calculate the new data
by interpolation based on radial basis functions.

3.8. Classifier

In this paper, we implement two kinds of classifiers:
SVMs and deep neural networks.

The deep neural network is a neural network with
multiple hidden layers. Here, we randomly add some
residual functions between two layers. The idea of
the residual function is borrowed from Resnet (He
et al. 2016). The residual function is a way to avoid
the problem of vanishing gradients, and it does this by
using shortcuts to jump over some layers. Because the
numbers of different nodes are different, the dimensions
of input and output are different. Therefore, we can
use a linear projection to match the dimensions. This
function can be expressed as follows:

y = F (x) +Wsx, (18)

where x and y are the input and output vectors,
respectively, F (x) = W2σ(W1x), which means two

fully connected layers and a ReLU function, σ, between
them, and Ws is the linear projection to change the
dimension. The output should go through another
ReLU function before it is passed to the next layer.

4. Experimental Settings

In this section, we describe the details about the two
datasets, data preprocessing, performance evaluation,
and hyperparameters. For reproducing the results
of this paper and enhancing the cooperation in
related research fields, the datasets and codes used
in this study will be freely available to the academic
community.

4.1. Dataset Description

The SEED dataset (Zheng & Lu 2015) contains the
EEG signals of 15 participants. They were required
to watch 15 well-prepared video clips that can elicit
exactly one of the three kinds of emotion: positive,
neutral, and negative. The criteria of film clip selection
ensure that Each clip is well-edited to create coherent
emotion eliciting and maximizing emotional meanings.
In addition, each clip can explicitly elicit one exact kind
of emotion, and the time of the clips is enough but
not too long to elicit the participants’ corresponding
emotion sufficiently. The order of presentation is
arranged so that two film clips targeting the same
emotion are not shown consecutively. Each participant
took part in the experiment three times with an
interval of at least 7 days. The signals were sampled
at a rate of 1,000 Hz with an ESI NeuroScan System
from a 62-electrode headset.

The DEAP dataset(Koelstra et al. 2012) contains
the EEG and peripheral physiological signals of
32 participants as they watched 40 one-minute-
long excerpts of music videos. The music videos
were selected from 120 one-minute extracts of music
videos rated from an online self-assessment by 14-16
volunteers based on valence, dominance, arousal, like,
and familiarity. Valence, arousal, dominance and like
were rated directly after each trial on a continuous
9-point scale using a standard mouse self-assessment.
The signals were sampled at 512 Hz with 48 channels.
(32 EEG channels, 12 peripheral physiological channels
including galvanic skin response and temperature, 3
unused channels and 1 status channel). The signals
from EEG channels are sampled according to an
international 10-20 system.

4.2. Data Preprocessing

Previous works have shown that the DE feature of EEG
signals is efficient for EEG-based emotion recognition
(Zheng & Lu 2015, Zheng, Zhu & Lu 2019, Yang
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et al. 2018). Therefore, we generate DE features to
augment the datasets. We also generate the PSD
feature, which is a conventional feature for EEG-based
emotion recognition, to verify our method. Since both
the SEED and DEAP datasets have been preprocessed,
we use the short-time Fourier transform (STFT) with
a 1-s-long nonoverlapping overleaping Hanning window
to extract the PSD feature of the EEG signal from the
two datasets directly. For the Gaussian distribution,
the DE feature is defined as

h(X) = −
∫ ∞
−∞

1√
2πσ2

exp
(x− µ)2

2σ2
log

1√
2πσ2

exp
(x− µ)2

2σ2
dx =

1

2
log 2πeσ2, (19)

whereX represents the Gaussian distributionN(µ, σ2),
and π and e are constants. Shi et al. (Shi, Jiao &
Lu 2013) demonstrated that the value of DE is equal
to the logarithmic spectral energy for a fixed-length
EEG sequence in a certain band. According to their
result, we extracted the DE feature from the prepro-
cessed EEG signal of the two datasets.

Considering the dynamic characteristics of EEG-
based emotion recognition tasks, we employ the linear
dynamic system approach to filter the PSD and DE
features, which has also been adopted in previous
works (Zheng & Lu 2015, Zheng, Zhu & Lu 2019).

PSD and DE features are extracted from five
frequency bands: δ: 1-3 Hz, θ: 4-7 Hz, α: 8-13 Hz,
β: 14-30 Hz, and γ: 31-50 Hz for the SEED dataset
(Zheng & Lu 2015). Therefore, both of these features
have 310 dimensions (62 channels × 5 frequency
bands). For each experiment, there were 3,394 labeled
samples. In this work, we viewed the SEED dataset as
a three-category classification problem.

We also extracted PSD and DE features for the
DEAP dataset. Since the δ band was filtered in this
dataset, we only computed the two features of four
frequency bands: θ, α, β, and γ. In this time, both
features had 128 dimensions (32 channels× 4 frequency
bands). Each experiment had 2,400 labeled samples.
Here, we adopted a four-category emotion model using
valence and arousal values: high valence (level > 5)
and high arousal (level > 5), high valence (level > 5)
and low arousal (level ≤ 5), low valence (level ≤ 5) and
high arousal (level > 5), and low valence (level > 5)
and high arousal (level > 5).

4.3. Evaluation Details

We adopted 5-fold cross-validation, which has been
applied in the existing study (Zheng, Zhu & Lu 2019),
for each experiment on the two datasets. For each
time, 4 folds of the dataset were selected as the original
training data and 1 fold was selected as the test data.

The division of each dataset was the same as Zheng et
al.’s work.

Moreover, we added different numbers of the arti-
ficial sample generated by different data augmentation
methods to each original training dataset. And the test
data which only contained the real data was the same
for each data augmentation experiment. In a word, we
trained 5 recognition models and computed the average
recognition accuracy of the five models as the recogni-
tion accuracy of each data augmentation experiment.
Each model had the same hyperparameters.

For a specific generated number and data
augmentation method, we regarded the average
accuracy of all data augmentation experiments as the
final accuracy and the standard deviations of these
experiments as the final standard deviation. For the
SEED dataset, there were 45 experiments and nearly
678 samples for each fold. For the DEAP dataset, there
were 32 experiments and 480 samples for each fold.

4.4. Hyperparameter Details

The hyperparameter settings of Gau and RDA
methods have been mentioned above.

For cVAE method, to optimize the network
structure, we performed a random search on the
number of network layers. The number of layers was
searched from 2 to 4 for both encoder and decoder. The
number of hidden nodes for each layer was randomly
searched. The dimensions of auxiliary labels were 3 for
SEED and 4 for DEAP. For sVAE method, we had a
similar search strategy as cVAE.

For cWGAN method, we also performed a random
search on the number of network layers. The number of
layers was searched from 3 to 5 for both generator and
discriminator. The number of hidden nodes for each
layer was randomly searched. And the dimensions of
auxiliary labels were 3 for SEED and 4 for DEAP. For
sWGAN method, we had a similar search strategy as
cWGAN.

For sVAE and sWGAN methods, the thre hold in
Algorithm 1 was randomly searched from 0.4 to 0.99.

In the SVM classifier, we used the linear kernel.
The parameter c was searched from 2−10 to 210 to find
the optimal value.

We performed a random search on the number of
network layers and size of batches of classifier of deep
neural network. The number of layers was searched
from 4 to 8. The size of batches was randomly selected
from 128, 256 and 512. Both networks with residual
functions and without residual functions were searched.
For the network with residual functions, the residual
functions were applied every two layers. The input
dimension was determined by the corresponding input
feature, and the dimension of the output label was 3 for
the SEED dataset and 4 for the DEAP dataset. The
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number of hidden nodes for each layer was randomly
searched. The ReLU activation function was used for
all hidden layers. We normalize PSD and DE features
before feeding them to the networks.

In addition, we applied Adam optimizer to
optimize all the networks mentioned above. And
the initial learning rate was randomly selected from
0.00001 to 0.001.

5. Experiments and Results

In this section, we first perform a systematic
experimental study to evaluate the effectiveness and
generalization ability of our methods. We augmented
different EEG-based emotion datasets by different
features generated by our methods. We apply different
classifiers to evaluate the performances of these
generative methods. We also compare our proposed
methods with conventional generative methods. Then,
we visualized the generated data to show why our
proposed methods work. Finally, we discuss the
characteristics of the proposed methods and future
work.

5.1. Different Number of Appended Training Data

We first conducted data augmentation experiments on
the SEED dataset and use the SVM as the classifier.
Each experiment had 3,394 samples. We generated
0, 200, 500, 1000, 3,000, 5,000, 10,000, 15,000 and
20,000 artificial samples of the two features and added
them to the original training datasets. Here, ‘0’
indicates that we only use the original training dataset
without data augmentation. We did not generate
more samples because we found that most of the
experiments reach their peaks before 20,000 samples
were appended. The remaining experiments reached
their peaks when 20,000 samples were appended. And
the p − values between sWGAN method and the
conventional methods are all less than 0.01.

We compared the performances of different
data augmentation methods when applying the PSD
feature, as shown in table 1. The average accuracy
was 60.3% when we only used the original training set.
For conventional methods, cVAE reached its best mean
accuracy of 63.4% when 3,000 samples were appended.
Gau reached its optimal performance of 63.1% when
adding 10,000 samples into the original training set.
RDA had the best performance of 63.2% when 500
samples were appended. For our methods, cWGAN
achieved its best mean accuracy of 65.2% when 15,000
samples were appended. When 15,000 samples were
appended, sVAE reached its best mean accuracy of
63.5%. sWGAN achieved its best mean accuracy of
67.7% when 20,000 samples were appended. According
to table 1, our methods achieved better performance

than conventional methods. sWGAN had the best
performance among all the methods.

Table 2 illustrates the results of the data
augmentation methods for the DE feature. For
SVM, the baseline was 84.3%. For conventional data
augmentation methods, cVAE reached its best result of
85.2% when 1,000 sampled data points were appended.
The best accuracy for Gau was 85.1% with 3,000
augmented data points. The best mean accuracy of
RDA was 85.6% when 5,000 samples were appended.
For our methods, cWGAN reached its best mean
accuracy of 87.4% when appending 15,000 samples.
For the two selective augmentation methods, sVAE
achieved the best mean accuracy of 87.8% when 1,000
samples were appended, and sWGAN achieved the best
mean accuracy of 90.8% when 10,000 samples were
appended.

5.2. Classification with Deep Neural Networks

To increase the reliability of the performance compari-
son of different data augmentation approaches, we also
implemented deep neural networks with shortcut lay-
ers to build the affective models. Considering that the
DE feature is better for the PSD feature in emotion
recognition tasks and that the PSD feature had simi-
lar improvements in terms of the mean accuracy with
the DE feature, we only augmented the training da-
ta with the DE features when using the DNN as the
classifier. The baseline was 83.3%. For convention-
al methods, cVAE, Gau, and RDA reached the best
mean accuracy of 86.5% (3000 samples), 86.2% (10000
samples), and 85.7% (200 samples), respectively. For
our proposed methods, the best mean accuracy of cW-
GAN is 91.6% when we added 3,000 samples. The
two selective methods obtained the best mean accura-
cy of 87.5% and 93.5% when we added 1,000 samples,
respectively. The results in table 2 demonstrate that
our methods had better performance than conventional
methods. The sWGAN achieved the best performance
for both classifiers.

5.3. Generated Data with Two Different Features

For the DEAP dataset, we also used different data
augmentation methods to augment PSD and DE
features. Each experiment had 2,400 samples. We
generated the same number of samples as mentioned
above.

Table 3 shows the mean accuracies and standard
deviations of PSD data augmentation. The mean
accuracy of the 4-category emotion recognition model
was 42.7% when we only used the original training
data. For conventional methods, cVAE reached the
best mean accuracy of 44.9% when 3,000 samples were
appended. The best performance for Gau was 44.5%
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Table 1. Mean accuracies/standard deviations of SVMs on the SEED dataset and appending datasets using PSD feature generated
by different methods. ‘↑’ represents the maximize accuracy improvement of different methods and has the same meaning in tables
2, 3, and 4.

methods

No. of append
0 200 500 1000 3000 5000 10000 15000 20000 ↑

cVAE + SVM 60.3/15.9 62.7/15.7 62.8/15.4 63.4/14.6 63.4/14.8 63.3/14.3 62.5/14.8 61.8/14.8 61.6/14.5 3.1

Gau + SVM 60.3/15.9 61.4/15.6 61.7/15.5 61.7/15.7 62.5/15.4 62.5/15.6 63.1/15.0 62.7/15.5 62.8/15.4 2.8

RDA + SVM 60.3/15.9 62.6/15.7 63.2/15.4 62.9/15.8 62.0/15.6 62.1/15.2 61.5/15.8 61.9/15.9 61.1/16.3 2.9

cWGAN + SVM 60.3/15.9 62.7/15.5 63.6/15.6 63.5/15.6 64.0/15.6 64.4/15.5 65.0/15.6 65.2/15.5 64.9/15.5 4.9

sVAE + SVM 60.3/15.9 62.7/16.9 62.6/16.6 63.3/16.6 62.8/16.9 63.1/16.5 63.4/17.4 63.5/17.2 63.2/17.4 3.2

sWGAN + SVM 60.3/15.9 65.2/14.5 66.0/14.8 66.8/14.9 67.0/14.7 67.0/14.7 67.4/14.8 67.3/15.2 67.7/15.1 7.4

Table 2. Mean accuracies/standard deviations of SVMs and deep neural network (DNNs) with shortcut layers on the SEED dataset
and appending datasets using DE feature generated by different methods.

methods

No. of append
0 200 500 1000 3000 5000 10000 15000 20000 ↑

cVAE + SVM 84.3/8.7 84.8/8.7 85.2/8.6 85.2/8.6 84.9/8.5 84.9/8.5 84.5/8.9 84.0/8.9 84.0/8.9 0.9

cVAE + DNN 83.3/8.2 83.9/9.3 84.9/8.5 86.1/8.0 86.5/7.5 86.1/8.2 85.1/7.8 85.1/8.5 86.1/8.2 3.2

Gau + SVM 84.3/8.7 84.6/8.7 84.8/8.6 84.9/8.6 85.1/8.5 85.0/8.6 85.0/8.7 84.8/8.6 84.8/8.5 0.8

Gau + DNN 83.3/8.2 85.9/7.6 85.7/7.9 85.0/8.5 85.6/7.3 85.3/8.3 86.2/8.2 84.9/8.5 85.8/7.8 2.9

RDA + SVM 84.3/8.7 85.4/9.0 85.5/9.1 85.5/9.0 85.4/8.9 85.6/8.8 84.7/9.1 84.3/9.3 84.3/9.3 1.3

RDA + DNN 83.3/8.2 85.7/9.9 83.4/9.5 82.1/9.7 78.2/9.6 77.6/10.9 77.6/10.1 74.6/8.9 75.7/9.1 2.4

cWGAN + SVM 84.3/8.7 87.0/8.6 87.2/8.5 86.8/8.4 87.0/8.4 87.0/8.5 87.4/8.0 87.4/7.9 87.1/7.9 3.1

cWGAN + DNN 83.3/8.2 86.6/7.7 89.2/7.9 89.7/8.3 91.6/6.7 90.9/7.9 90.6/7.9 90.6/8.8 90.7/7.8 8.3

sVAE + SVM 84.3/8.7 87.4/7.9 87.5/7.6 87.8/7.6 86.8/8.1 86.1/8.6 85.2/8.7 84.7/8.1 84.5/8.1 3.5

sVAE + DNN 83.3/8.2 85.8/8.8 86.8/7.3 87.5/8.6 87.2/6.8 84.1/6.7 84.0/6.5 82.2/6.2 80.4/6.6 4.2

sWGAN + SVM 84.3/8.7 87.9/8.4 88.9/8.3 89.7/7.9 90.1/7.6 90.7/7.8 90.8/7.7 90.8/7.3 90.8/7.4 6.5

sWGAN + DNN 83.3/8.2 91.4/7.2 91.5/6.4 93.5/5.7 93.5/5.8 93.0/5.8 93.1/5.6 91.7/6.0 92.2/5.7 10.2

Table 3. Mean accuracies/standard deviations of SVMs on the DEAP dataset and appending datasets using PSD feature generated
by different methods.

methods

No. of append
0 200 500 1000 3000 5000 10000 15000 20000 ↑

cVAE + SVM 42.7/9.6 43.7/9.5 44.5/8.7 44.2/9.3 44.9/8.8 44.6/8.8 44.1/8.9 44.1/9.1 43.4/9.1 2.2

Gau + SVM 42.7/9.6 43.2/9.5 43.6/9.2 43.7/9.8 43.9/9.7 44.5/9.3 44.0/9.6 43.9/9.6 43.9/9.5 1.8

RDA + SVM 42.7/9.6 42.8/10.0 43.0/9.7 44.1/9.2 44.3/9.2 44.9/8.5 44.7/8.9 44.9/9.0 45.2/8.9 2.5

cWGAN + SVM 42.7/9.6 44.1/9.6 44.2/9.7 44.8/9.1 44.9/8.8 45.0/8.9 44.9/8.7 44.9/9.0 44.8/9.2 2.3

sVAE + SVM 42.7/9.6 44.7/8.4 45.1/8.1 45.6/8.5 45.6/8.3 45.8/8.3 46.1/8.2 46.1/8.5 45.9/8.7 3.4

sWGAN + SVM 42.7/9.6 45.8/10.6 45.8/11.0 46.4/10.4 46.7/10.3 46.9/10.4 47.1/10.1 47.4/10.0 47.6/9.9 4.9

when 5,000 samples were appended. RDA reached the
best mean accuracy of 45.2% when 20,000 samples were
appended. For our methods, cWGAN obtained the
best mean accuracy of 45.0% when we added 5,000
generated samples to the original training dataset.
sVAE had the best mean accuracy of 46.1% when
15,000 samples were generated. sWGAN achieved its
best mean accuracy of 47.6% when 20,000 samples
were appended. Our methods also showed better
performance, and sWGAN had the best performance

in terms of accuracy.
Table 4 presents the results of DE data augmen-

tation. For SVM, the baseline was 45.4%. For con-
ventional methods, cVAE had the best mean accuracy
of 48.1% when 10,000 samples were appended. The
best accuracy for Gau was 46.1% when we append-
ed 1,000 samples. RDA obtained the best mean ac-
curacy of 46.3% when the number of appended sam-
ples was 3,000. For our methods, cWGAN obtained
the best mean accuracy of 48.9% when 5,000 samples
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Table 4. Mean accuracies/standard deviations of SVMs and deep neural networks with shortcut layers on the DEAP dataset and
appending datasets using DE feature generated by different methods.

methods

No. of append
0 200 500 1000 3000 5000 10000 15000 20000 ↑

cVAE + SVM 45.4/8.2 46.3/8.1 46.8/8.0 47.2/7.8 47.9/7.7 47.8/7.7 48.1/7.6 48.0/7.7 47.8/7.6 2.7

cVAE + DNN 44.9/4.0 46.6/4.4 45.8/3.8 45.5/4.9 45.7/4.6 46.5/4.9 45.7/3.9 45.9/3.6 45.9/4.5 1.7

Gau + SVM 45.4/8.2 46.1/8.0 46.0/8.2 46.1/8.1 46.1/8.1 45.9/8.2 46.0/8.2 45.8/8.1 45.8/8.2 0.7

Gau + DNN 44.9/4.0 45.9/3.7 46.9/4.2 45.5/4.1 45.5/4.5 46.2/4.6 45.8/4.5 45.6/4.6 46.2/4.5 2.0

RDA + SVM 45.4/8.2 45.9/8.2 45.9/8.2 46.1/8.5 46.3/8.1 46.3/8.1 46.1/7.8 46.0/7.8 45.9/7.9 0.9

RDA+DNN 44.9/4.0 46.3/4.5 46.8/4.3 46.1/3.7 46.1/4.7 46.0/4.1 45.8/3.4 45.1/3.7 45.9/4.1 1.9

cWGAN + SVM 45.4/8.2 47.3/8.2 47.9/8.2 48.0/8.3 48.8/8.3 48.9/8.7 48.5/8.4 48.2/8.8 48.0/8.9 3.5

cWGAN + DNN 44.9/4.0 45.4/4.4 45.9/4.0 47.2/5.1 47.0/4.4 46.9/4.8 47.1/4.6 47.5/4.5 46.9/4.8 2.6

sVAE + SVM 45.4/8.2 47.6/7.1 48.3/7.1 48.2/7.3 48.3/6.8 48.4/6.8 48.1/7.1 48.2/7.0 48.1/7.1 3.0

sVAE + DNN 44.9/4.0 47.3/3.9 47.7/4.6 47.6/4.2 47.3/4.2 49.3/5.0 47.7/5.3 47.7/4.4 47.6/6.0 4.4

sWGAN + SVM 45.4/8.2 47.6/7.7 47.9/7.5 48.7/7.4 49.6/7.2 49.9/6.8 50.3/7.0 50.8/6.9 50.4/6.7 5.4

sWGAN + DNN 44.9/4.0 47.2/4.1 47.7/4.7 47.6/4.4 48.2/4.9 49.1/5.6 47.5/4.6 48.5/5.2 47.6/5.3 4.2
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Figure 5. Mean accuracies (Acc) and standard deviations (Std) of different methods on different classifiers and datasets: (a) Acc
and Std of SVMs on the SEED dataset and appending datasets using DE feature generated by different methods; (b) Acc and Std
of DNNs on the SEED dataset and appending datasets using DE feature generated by different methods; (c) Acc and Std of SVMs
on the DEAP dataset and appending datasets using DE feature generated by different methods; (d) Acc and Std of DNNs on the
DEAP dataset and appending datasets using DE feature generated by different methods.



Data Augmentation for Enhancing EEG-based Emotion Recognition with Deep Generative Models 15
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Figure 6. Topographic maps of the scalp for real and generated DE features (cWGAN) in the SEED dataset.

were appended. sVAE reached the best mean accura-
cy of 48.4% when 5,000 samples were appended, and
sWGAN obtained the best mean accuracy of 50.8%
when 15,000 samples were appended.

For DNN, the classification accuracy was 44.9%
when no data augmentation method was applied.
For conventional methods, cVAE, Gau, and RDA
reached the best mean accuracies of 46.6% (200
samples), 46.9% (500 samples), and 46.8% (500
samples), respectively. For our methods, cWAGN,
sVAE, and sWGAN achieved the best mean accuracy
of 47.5% (15,000 samples), 49.3% (5,000 samples), and
49.1% (5,000 samples). We also observed that our
methods showed better performance than conventional
methods. sWGAN had the best mean accuracy when
applying SVM as the classifier, while sVAE had the
best performance when applying DNN as the classifier.

As we can see from the above results, the
DE feature had better mean accuracies than the
PSD feature on both datasets, and the standard
deviations were smaller. These results were consistent
with previous studies (Zheng & Lu 2015, Zheng,
Zhu & Lu 2019). In addition, compared with
conventional methods, our methods were more efficient
for improving the performance of emotion recognition
models. For the SEED dataset, the mean accuracy
improved 10.2% with DE features when we used
sWGAN as the data augmentation method and
adopted DNN as the classifier. The DEAP dataset

had the highest improvement of 5.4% in terms of
mean accuracy when sWGAN was adopted as the
data augmentation method and SVM was used as the
classifier. Moreover, the data augmentation methods
were more efficient for DNN in most cases.

In addition, we observe that all the data augmen-
tation methods (both ours and conventional methods)
reached their peaks, and then their performance de-
cayed when we gradually increased the number of ap-
pended samples. However, for our methods, most of
the experiments still showed better performance com-
pared with their baselines when appending fewer than
20,000 generated samples. Although experiments with
different datasets, features, classifiers, and methods
reached different peaks, our results show that the peaks
appeared before the training datasets were enlarged 10
times.

As shown in figure 5, we plotted the mean accu-
racies and standard deviations of different methods on
different classifiers and datasets. We only shown the re-
sults of DE feature because DE feature had better per-
formance than PSD feature and the two features had
the similar tendency in terms of mean accuracy. And
the results of Gau and RDA were averaged. Compared
with the conventional methods, our methods had bet-
ter mean accuracies in the most experiments. Besides,
GAN-based methods (cWGAN and sWGAN) shown
better performance than VAE-based (cVAE and sVAE)
methods in most cases. Moreover, the selective meth-
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ods (sVAE and sWGAN) were better than conditional
methods (cVAE and cWGAN) in most of the exper-
iments. Specially, sWGAN always had better mean
accuracies than cWGAN.

Figure 7. Two-dimensional visualizations of the real and
generated DE feature (cWGAN) of one subject in the SEED
dataset. Data points with red, green and blue colors represent
three emotions of negative, neutral and positive, respectively.
The lines represent the real data, thin points represent the
generated data, and the yellow circles denote bad quality samples
generated. Note that we use solid circle to represent real data,
but it looks like lines more than circles because the real data are
very dense.

5.4. Visualization of the Generated Data

We visualize the generated data with two methods,
two-dimensional circular view of the scalp and two-
dimensional visualization using t-SNE, to show why
our proposed methods work. We selected cWGAN
as the generated method and the SEED dataset (DE
feature) to represent our results since sVAE and
sWGAN have similar vision performance.

Figure 6 depicts the two-dimensional circular view
of the scalp. The generated data have a similar data
distribution as the real data. For positive emotion,
the lateral areas of both real and generated data are
more activated in beta and gamma bands than the
other two emotions. For neutral emotion, both the
real and generated data had high alpha responses. For
negative emotion, high gamma responses at prefrontal
sites appeared in real and generated data. These
phenomena indicated that our methods can capture the
information of the real data distribution. Therefore,
the generated samples can be appended to the training
set to enhance the performance of the affective models.

As shown in figure 7, we plotted the distributions
of real and generated DE features (generated by
cWGAN) by t-SNE (Maaten & Hinton 2008). Data

from each emotion was clustered in the latent space,
and the generated data were close to the corresponding
real data, which implies that the generated data carry
enough realistic information. This phenomenon also
indicates that the data generated by our methods can
be used to augment the training dataset.

In addition, the distribution of real data was
sparse, and the boundaries of different categories in
the data manifold were not obvious. The generated
data supplemented the training data manifold, which
led to better margins for the classifier. Therefore, we
can improve the classification performance by training
the classifier with the generated data. We can also
explain this phenomenon from another point of view.
The generated data have a similar data distribution
to the real data, but they are not the real data.
Therefore, the generated data not only carry realistic
information but also have diverse information. The
classifier trained by the augmented data was more
robust. This phenomenon is also consistent with the
aforementioned classification results.

However, the possibility of generating bad quality
samples increased when we added the generating
number. This phenomenon occurs no matter what
generative methods we apply. For example, we wanted
to generate a sample of positive emotions in the SEED
dataset, but we might obtain a sample that is more
similar to a negative sample by the generative model.
We called this sample a bad quality sample. In figure
7, we can find some bad quality samples. For example,
some generated neutral samples (red points) were more
close to the real positive samples (blue lines). In this
case, the bad quality sample misled the classifier, and
the classification accuracy decreased. We can also
find a similar phenomenon in the above tables: the
accuracies decayed when too many generated data were
appended.

5.5. Discussions on Different Affective Models

The abovementioned results show that the perfor-
mance of the emotion recognition models can be im-
proved by using our proposed data augmentation meth-
ods. We achieved performance improvements in differ-
ent datasets, features, and classifiers, which demon-
strates the generalization ability and effectiveness of
our methods. Although all three proposed methods im-
proved the performance of EEG-based emotion recog-
nition tasks, they had some differences in terms of sta-
bility, accuracy and time usage.

For stability, sVAE had better performance than
cWGAN and sWGAN. Although the WGAN had good
convergence performance and was more stable than the
original GAN, it may collapse because of adversarial
training. However, VAE is more stable.

For accuracy, sWGAN had better classification
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performances than sVAE most of the time. This
phenomenon indicates that GAN can capture more
latent information than VAE. Therefore, the data
generated by GAN are more useful for building the
recognition model than those generated by VAE.
In addition, sWGAN always performed better than
cWGAN on both datasets, which indicates that the
selective methods are more efficient at improving
emotion recognition models.

For time usage, cWGAN had a quicker conver-
gence speed than sWGAN and sVAE. cWGAN uses all
of the generated data without considering their qual-
ity, while sWGAN and sVAE need to select the gen-
erated data and use the high-quality data to augment
the training set. Therefore, the two methods require
more computation time to determine the quality of the
generated data.

5.6. Future Work

Although the experimental results of this work
demonstrate that our proposed data augmentation
methods are promising ways to enhancing the
performance of emotion recognition models, there is
still room for improvement in the following aspects.
a) We did not consider the temporal dependency
when generating the EEG features. In future work,
we will study the data augmentation methods for
generating temporal raw EEG data. b) Although
we have found the affective models could achieve
the best performance when the number of the added
generated data is less than 10 times of the original
training dataset, how many generated samples should
be added to the original training dataset to achieve
the best affective models is still an open question. c)
Recently, various studies indicated that multimodal
methods could achieve appealing emotion recognition
results (Zheng, Liu, Lu, Lu & Cichocki 2019, Zhao,
Li, Zheng & Lu 2019). In our previous work, we
generated multimodal feature for enhancing EEG-
based emotion recognition and obtained 4.6% and
8.9% improvements of mean accuracies on classifying
three and five emotions, respectively (Luo, Zhu &
Lu 2019). Due to the space limitation, we did not
discuss the problem of generating multimodal feature
in this paper. In future work, we will further study the
data augmentation methods for multimodal emotion
recognition.

6. Conclusions

In this paper, we proposed three deep generative
methods for enhancing EEG-based emotion recognition
by generating training data. We generated realistic-
like PSD and DE features of EEG data with our
proposed methods: cWAGN, sVAE, and sWGAN.

We augmented the original training dataset using the
generated data to improve the accuracy of EEG-based
emotion recognition models. The experimental results
on two emotion datasets demonstrate the effectiveness
of our methods. The emotion recognition models
trained on the augmented training datasets achieved
10.2% and 5.4% improvements on the SEED dataset
and the DEAP dataset, respectively. By visualizing
the generated data, we explained the reason for
the accuracy improvements. We also studied the
performance of the classifiers when adding different
numbers of generated data to the original training set.
We observed that the classification accuracy decayed
when too many generated data were appended. Our
experimental results indicate that the number of
generated data should be less than 10 times of
the original training dataset, and then the affective
models achieved the best performance. In addition,
we carried out a systematic comparison between the
proposed methods. We find that sWGAN had the best
performance in terms of accuracy, while it cost more
time than cWGAN.
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