Disentangled Information Bottleneck

Ziqi Pan, Li Niu, Jianfu Zhang, Liqing Zhang

MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
Contents

• The trade-off problem in IB Lagrangian
 • The information bottleneck method & the IB Lagrangian
 • The trade-off problem

• Our method
 • Maximum compression
 • Consistency property on maximum compression
 • Our objective function from the perspective of supervised disentangling

• Experiments
 • Information compression
 • Supervised disentangling
The IB Lagrangian Trade-off

Theorem 1. Consider the derivable IB Lagrangian,
\[
\mathcal{L}_{IB} [q(T|X); \beta] = -I(T;Y) + \beta I(X;T),
\]
to be minimized over \(q \) with \(\beta \geq 0 \). Let \(q^*_\beta \) optimize \(\mathcal{L}_{IB} [q(T|X); \beta] \). Assume that \(I_{q^*_\beta}(X;T) \neq 0 \),
\[
\frac{\partial I_{q^*_\beta}(T;Y)}{\partial \beta} < 0 \text{ and } \frac{\partial I_{q^*_\beta}(X;T)}{\partial \beta} < 0.
\]

- For every nontrivial solution \(q^*_\beta \) such that \(I_{q^*_\beta}(X;T) \neq 0 \), \(I(T;Y) \) strictly decreases as \(\beta \) increases.
- In fact, the proof is completed by changing probabilistic mapping \(q(T|X) \) towards the aggregated distribution \(q(T) = \frac{1}{n} \sum_{i=1}^{n} q(T|x_i) \), which strictly reduces \(I(X;T) \) due to the concavity of the entropy \(H(T) \).
Maximum Compression

- Given source random variable X and target random variable Y, we expect to compress X maximally into T without reducing $I(T; Y)$, namely tackle the trade-off problem.
- Quantifying the maximum compression case (using Venn diagram):
 - Y is a deterministic function of X: $H(Y) = I(X; T)$
Given source random variable X and target random variable Y, we expect to compress X maximally into T without reducing $I(T;Y)$, namely tackle the trade-off problem.

Quantifying the maximum compression case (using Venn diagram):

- Generalized case:
Consistency Property on Maximum Compression

- The maximum compression case:
 \[I(X; T) = I(T; Y) = I(X; Y) \]
 - In case of \(Y \) is a deterministic function of \(X \), \(I(X; Y) \) becomes \(H(Y) \).
- We aim to design a cost functional \(\mathcal{L} \), such that the maximum compression case is expected to be obtained via minimizing \(\mathcal{L} \).
 - Specifically, we expect that minimized \(\mathcal{L} \) consistently satisfies \(I(X; T) = I(T; Y) = I(X; Y) \).
- The formal definition of consistency on maximum compression is given as

Definition 1 (Consistency). The lower-bounded cost functional \(\mathcal{L} \) is consistent on maximum compression, if

\[
\forall \epsilon > 0, \exists \delta > 0, \quad \mathcal{L} - \mathcal{L}^* < \delta \rightarrow |I(X; T) - H(Y)| + |I(T; Y) - H(Y)| < \epsilon,
\]

where \(\mathcal{L}^* \) is the global minimum of \(\mathcal{L} \).
Our Objective Function

• After realizing the relation between IB and supervised disentangling, we implement the IB from the perspective of supervised disentangling:

\[\mathcal{L}_{\text{DisenIB}}[q(S|X), q(T|X)] = -I(T;Y) - I(X;S,Y) + I(S;T). \]

• Encourage \((S, Y)\) to represent the overall information of \(X\) by maximizing \(I(X;S,Y)\), so that \(S\) at least covers the information of \(Y\)-irrelevant data aspect.

• Encourage that \(Y\) can be accurately decoded from \(T\) by maximizing \(I(T;Y)\), so that \(T\) at least covers the information of \(Y\)-relevant data aspect.

• Hence, the amount of information stored in \(S\) and \(T\) are both lower bounded. In such a case, forcing \(S\) to be disentangled from \(T\) by minimizing \(I(S;T)\) eliminates the overlapping information between them and thus tightens both bounds, leaving the exact information relevant (resp., irrelevant) to \(Y\) in \(T\) (resp., \(S\)).

• The maximum compression can be consistently achieved via optimizing \(\mathcal{L}_{\text{DisenIB}}\).

\textbf{Theorem 2.} \(\mathcal{L}_{\text{DisenIB}}\) is consistent on maximum compression.
Using variational approximations maximize $I(T; Y)$ and $I(X; S, Y)$:

- By introducing variational probabilistic mapping $p(y|t)$ (decoder):
 \[I(T; Y) \geq \mathbb{E}_{q(y,t)} \log p(y|t) + H(Y) \]

- By introducing variational probabilistic mapping $r(x|s, y)$ (reconstructor):
 \[I(X; S, Y) \geq \mathbb{E}_{q(x,s,y)} \log r(x|s, y) + H(X) \]

- Using density-ratio-trick to minimizing $I(S; T)$ by involving a discriminator d:
 \[\min_{q} \max_{d} \mathbb{E}_{q(s)q(t)} \log d(s, t) + \mathbb{E}_{q(s,t)} \log(1 - d(s, t)) \]

- Code is available at https://github.com/PanZiqiAI/disentangled-information-bottleneck
Experimental Results

- Behavior on *IB Plane*
Experimental Results

• Supervised disentangling (MNIST)
Experimental Results

• Supervised disentangling (Sprites)
Experimental Results

- Supervised disentangling (Shapes)
Thanks for watching!

Disentangled Information Bottleneck

Ziqi Pan, Li Niu, Jianfu Zhang, Liqing Zhang

MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University