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Abstract. In this paper, we propose a subject-independent approach
with deep transfer learning to evaluate the last-night sleep quality using
EEG data. To reduce the intrinsic cross-subject differences of EEG da-
ta and background noise variations during signal acquisition, we adopt
two classes of transfer learning methods to build subject-independent
classifiers. One is to find a subspace by matrix decomposition and regu-
larization theory, and the other is to learn the common shared structure
with the deep autoencoder. The experimental results demonstrate that
deep transfer learning model achieves the mean classification accuracy of
82.16% in comparison with the baseline SVM (65.74%) and outperforms
other transfer learning methods. Our experimental results also indicate
that the neural patterns of different sleep quality are discriminative and
stable: the delta responses increase, the alpha responses decrease when
sleep is partially deprived, and the neural patterns of 4-hour sleep and
6-hour sleep are more similar compared with 8-hour sleep.
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1 Introduction

Sleep quality evaluation has remarkable value in both scientific research and
practical applications. Sufficient sleep is of great importance to human daily life,
and the study of sleep mechanisms is an important part of brain science. An
objective and effective measurement of sleep quality is quite valuable in trans-
portation, medicine, health care, and neuroscience. For example, the tiredness of
the drivers due to insufficient sleep imposes a severe threat to the public safety
in the transportation industry.

Methods like polysomnography, actigraphy and smart bands have been shown
as efficient approaches for evaluating sleep quality. However, these approaches
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require the subjects to wear equipments such as EEG cap, eye sensors, nose
sensors, elastic belt sensors during the whole sleep procedure. The whole-process
signal acquisition requirement limits their feasibility in real-world applications.

In this paper, we propose an objective EEG-based approach to classify last-
night sleep quality into three categories: poor, normal and good, which excludes
whole-process physiological signal acquisition and expert knowledge. Rather
than building subject-specific models, which require the collection of labeled
data for each subject and thus is time-consuming and unfeasible in practice, we
build a subject-independent model and then make inference on the new subjects.
The performances of conventional algorithms, when applied to the cross-subject
classification tasks, are unsatisfactory because of the intrinsic cross-subject d-
ifferences and background noise variations. The cornerstone assumption of tra-
ditional machine learning methods is that the training data and test data are
identically distributed, which is seldom satisfied if not never in sleep quality e-
valuation due to the variability of cross-subject and cross-session. Our previous
work [10] only considers the total sleep time in the experiment setup and the
subject-dependent evaluations. In this paper, we refine the experiments by tak-
ing deep sleep into consideration and apply transfer learning methods to deal
with the cross-subject variations.

Transfer learning approaches have been proved to have the capability to re-
duce the differences of EEG data across subjects and sessions recently [11] [12].
In this paper, we explore two categories of subject-to-subject transfer learning.
One is to find a subspace in Reproducing Kernel Hilbert Space (RKHS) in which
the EEG data distributions of different subjects are drawn closer when mapped
into this subspace. TCA [7] and ARRLS [5] belongs to this class. The other
is to learn the common shared, higher-level structure underlying different cate-
gories of sleep quality among different subjects while eliminate the influences of
background noise with deep learning, which refers to TLDA [13].

2 Transfer Learning Methods

2.1 TCA-based Subject Transfer

Transfer Component Analysis (TCA) [7] aims to find a set of transfer compo-
nents across different subjects in a RKHS. In the new space spanned by the
transfer components, the data distributions of different subjects are drawn clos-
er, while the data variance properties within each subject are preserved. TCA
assumes that there is a kernel function that can simultaneously adapt marginal
distribution and conditional distribution. Under this assumption, the transfer
components are found by minimizing the Maximum Mean Discrepancy (MMD)
between training subject and test subject.

2.2 ARRLS-based Subject Transfer

Adaptation Regularization based Transfer Learning using Regularized Least
Squares (ARRLS) [5] simultaneously optimizes the structural risk, the joint dis-
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tribution and the manifold consistency of two subjects based on the structural
risk minimization principle and the regularization theory.

Suppose that f = wTφ(x) is the prediction function where w is the classifier
parameters and φ : X 7→ H is the kernel function that projects the original
feature space into a RKHS space HK . The prediction function f is learnt by

f = min
f∈HK

n∑
i=1

`(f(xi), yi) + σ‖f‖2K + λDf,K(Js, Jt) + δMf,K(Ps, Pt). (1)

whereK is the kernel function induced by φ(·),
∑n
i=1 `(f(xi), yi)+σ‖f‖2K denotes

the structural risk minimization of training subject, and Df,K(Js, Jt) represents
the minimization term of marginal distribution and conditional distribution. AR-
RLS measures the marginal distribution difference with MMD as same as TCA.
Since there are no labels in the test subject, the conditional distribution adap-
tion is achieved by the trick of pseudo target labels. The manifold regularization
term Mf,K(Ps, Pt) is computed by normalized graph Laplacian matrix. And σ,
λ and δ are corresponding regularization parameters.

2.3 Transfer Learning with Deep Autoencoders

Deep autoencoders are effective and efficient in learning robust and higher-level
representing features. Besides the optimization of individual reconstruction error
as the ordinary autoencoders, Transfer Learning with Deep Autoencoders (TL-
DA) [13] learns a common feature representation shared by the training subject
and test subject by explicitly minimizing the symmetrized Kullback-Leibler (K-
L) divergence, which is a non-symmetric measure of the divergence between two
probability distributions, of the two subjects.

The framework of TLDA is shown in Fig. 1, which contains two encoding
layers and two decoding layers. The first encoding layer is used to learn robust
and high-level features of original EEG features and the second encoding layer
encodes the hidden features into labels, which is in fact an classifier based on
the softmax regression model. Given nonlinear activation function f (we adopt
sigmoid function in our study), for r ∈ {s, t}, ξri = f(W1x

r
i + b1) is the hidden

representations, zri = f(W2ξ
r
i +b2) is the encoded labels, and ξ̂ri = f(W

′

2z
r
i +b

′

2),

x̂ri = f(W
′

1ξ̂
r
i + b

′

1) are the corresponding reconstructions of ξri and xri .
The objective function to be minimized in TLDA can be formalized as

J = Jr(x, x̂) + αΓ (ξs, ξt) + βL(Θ, ξs) + γΩ(W, b,W
′
, b

′
), (2)

where α, β and γ are the trade-off parameters to balance between the four
different optimization terms.

The first term in Eq. (2) is the reconstruction error for both training and
test subjects, which can be calculated as Jr(x, x̂) =

∑
r∈{s,t}

∑nr

i=1 ||xri − x̂ri ||2.
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Fig. 1. The framework of TLDA. The encoding and decoding weights are shared by
both the training and test subjects. We draw individual networks for each subject
to better illustrate the idea that the distributions of two subjects are enforced to be
similar in the hidden feature space by minimizing KL divergence.

The second term measures the symmetrized KL divergence among data dis-
tributions of two subjects in the embedded space.

Γ (ξs, ξt) = DKL(Es||Et) +DKL(Et||Es) = Esln(
Es
Et

) + Etln(
Et
Es

)

Es =
E

′

s

ΣE′
s

, E
′

s =
1

ns

ns∑
i=1

ξsi , Et =
E

′

t

ΣE
′
t

, E
′

t =
1

nt

nt∑
i=1

ξti .
(3)

The third term denotes the loss function of the final softmax regression clas-

sifier. L(Θ, ξs) = − 1
ns

∑ns

i=1

∑c
j=1 sgn{ysi = j}log eΘT

j ξ
s
i

Σc
l=1eΘ

T
j ξ

s
i

, where ΘTj is the

j-th row of W2, sgn is the indicator function.

The last term is the regularization on the complexity of the model parameters
which can be formulated as Ω(W,B,W

′
, b

′
) = ||W1||2+ ||b1||2+ ||W2||2+ ||b2||2+

||W ′

1||2 + ||b′1||2 + ||W ′

2||2 + ||b′2||2.

After taking the partial derivatives of the objective Eq. 2 with respect to
W1, b1, W2, b2, W

′

1, b
′

1, W
′

2, b
′

2, we apply the the gradient descent methods to
calculate the final weight matrices.
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Fig. 2. The total sleep time and deep sleep time of all 10 subjects recorded by the
smart bands.

3 Experiments

3.1 Deep Sleep Time

According to the findings of National Sleep Foundation (NSF), 8-hour sleep
presents a high sleep quality for adults people, and a sleep time of less than 4
hours means an awful sleep quality [4]. Among whole night sleep procedure, the
deep sleep part is the period that human brain gets a full rest, thus is the main
factor that counts for sleep quality [2].

Based on the results of sleep medicine, we take 4-hour sleep, 6-hour sleep and
8-hour sleep with increasing deep sleep time as poor, normal and good in terms
of the sleep quality in our study. And the sleep time and wake up time for three
experiments are 3:00-7:00, 1:00-7:00 and 23:00-7:00, respectively.

3.2 Subjects and EEG data acquisition

Ten graduate and undergraduate students (six males and four females, age range:
21-26, mean: 23.57, std: 1.62) with self-reported healthy conditions and regular
daily routines participate in the experiments. Each subject performs 4-hour, 6-
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hour and 8-hour experiments wearing smart bands4 with an interval of two days
and declines coffee, drugs, alcohols and other medicines that may disturb human
sleep during the experiments. Fig. 2 shows the total sleep time and deep sleep
time of all subjects recorded by the smart bands. The EEG signals are recorded
for 30 minutes in each experiment with a 62-channel electrode cap according to
the international 10-20 system using the ESI NeuroScan system at a sampling
rate of 1000 Hz. During the data acquisition procedures, the subjects are required
to stare at a green dot on the screen and count numbers to keep a peaceful state.
We used the mean signals of all 62 electrodes as the reference.

3.3 Feature Extraction

The raw EEG data are first down-sampled to 200 Hz and fed to a bandpass filter
(0-50 Hz). Then the Infomax [1] denoising algorithms is applied to eliminate the
noise and artifacts. We adopt DE feature [8] which is calculated in five frequency
bands (delta: 1-3 Hz, theta: 4-7 Hz, alpha: 8-13 Hz, beta: 14-30 Hz, gamma: 31-50
Hz) using a Short-Time Fourier Transform with 200-point windows. Therefore, a
310 dimensional DE vector is extracted in each second. The DE features are fur-
ther smoothed by the LDS algorithm [9] and normalized between 0 and 1 before
traininging classifiers. Finally, there are 1800 data samples for each experiment,
5400 data samples for each subject, and 54000 data samples for all subjects.

3.4 Classifier traininging Details

A leave-one-subject-out cross validation scheme is applied for the evaluation.
Each time, the 5400 samples from one subject without labels are treated as test
data and the 48600 samples from the rest 9 subjects with labels are treated
as training data. For TCA and ARRLS, it is impracticable to include all the
available data due to limits of memory and time cost. Therefore, we randomly
select 1/5 samples from 9 subjects (9720) as the traininging data each time.

We use SVM with linear kernel and C = 0.01 as the baseline. In TCA, µ = 1
and the optimal dimension is 30 by searching from 5 to 100 with step 5. We adopt
line search rather than grid search to avoid tremendous computation in ARRLS
and TLDA. The best configuration for ARRLS is p = 10, σ = 0.1, λ = 10,
γ = 1, and linear kernel. In TLDA, since the objective function is not convex,
we first run Sparse Auto-Encoder (SAE) on training and test data, and initialize
the weight matrices with the output of SAE to achieve a better local optimal
solution. The optimal parameters are k = 10, α = 5, β = 1 and γ = 10−7.

4 Results and discussion

The classification accuracies of baseline SVM, TCA, ARRLS and TLDA for
all 10 subjects are shown in Fig. 3. Accuracy means and standard deviations

4 We use Mi band 2, the website is https://www.mi.com/shouhuan2



EEG-Based Sleep Quality Evaluation with Deep Transfer Learning 7

1 2 3 4 5 6 7 8 9 10 Mean

Subjects

0

10

20

30

40

50

60

70

80

90

100

110

A
cc

u
ra

cy
 (

%
)

SVM TCA ARRLS TLDA

Fig. 3. Accuracy comparation of SVM, TCA, ARRLS and TLDA for each subject.

are 65.74%, 75.96%, 78.44%, 82.16% and 17.69%, 17.23%, 17.61%, 17.91%, re-
spectively. Firstly, all three transfer methods have promotions compared with
the baseline SVM. The promotions verify that transfer learning methods are
effective at promoting generic classifier with the capability of capturing the un-
derlying common structure shared by different subjects while eliminating sleep
quality unrelated noise.

Among the transfer methods, TLDA outperforms other approaches with the
highest accuracy of 82.16%. The reasons that TLDA achieves a better accuracy
are two folds. The first one is that TLDA learns the mapping functions and
hidden features from the traininging and test data sets with impressive fitting
capability, while TCA and ARRLS find the projection function with pre-defined
kernels, which is seldom optimal for the data sets we are dealing with. The second
reason lies in that TLDA learns the new features and classifiers altogether, while
TCA does them in two steps separately.

The DE pattern comparison for three kinds of sleep quality on five bands of
all subjects are shown in Fig. 4. The experimental results present that neural
structures of different categories of sleep quality are discriminative and stable:
the delta responses increase and the alpha responses decrease when sleep is
partially deprived. Our findings are in accord with the studies from Borbely et
al. [3] and Lorenzo et al. [6].
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Fig. 4. Neural patterns of three kinds of sleep quality: 4-hour (poor), 6-hour (normal)
and 8-hour (good).

Fig. 5 presents the confusion matrices. By examining the accuracies of differ-
ent categories of sleep quality, we find that 8-hour sleep can be more effectively
recognized with the comparatively high accuracy of 89%, while 4-hour and 6-
hour sleep are more inclined to intertwine with each other with misclassification
rates of 19% and 17%, respectively, in TLDA. This observation is consistent
in SVM, TCA and ARRLS, which indicates that the neural patterns of 4-hour
and 6-hour sleep are more similar. These findings can again be verified in Fig. 4
which shows that the DE patterns of 4-hour sleep and 6-hour sleep are much
closer than the patterns of 8-hour sleep.

5 Conclusion

In this paper, we have adopted deep transfer learning approaches to build a
subject-independent model to classify three kinds of sleep quality: poor, normal
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Fig. 5. The confusion matrices of SVM, TCA, ARRLS and TLDA for all subjects.

and good. Among the four evaluated methods (SVM, TCA, ARRLS and TL-
DA), the TLDA algorithm achieves the best performance with mean accuracy
of 82.16%. Our experimental results demonstrate that the neural structures of
different sleep quality among people are discriminative and stable: the energy
of delta bands has an increasing trend while the alpha responses are depressed
when sleep is partially deprived. The results also indicate that the neural pat-
terns of 4-hour sleep and 6-hour sleep are more similar compared with 8-hour
sleep.
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