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Abstract Online object tracking under complex environments is an important but chal-
lenging problem in computer vision, especially for illumination changing and occlusion
conditions. With the emergence of commercial real-time depth cameras like Kinect, depth
image-based object tracking, which is insensitive to illumination changing, gains more and
more attentions. In this paper,wepropose anonline depth image-basedobject trackingmethod
with sparse representation and object detection. In this framework, we combine tracking and
detection to leverage precision and efficiency under heavy occlusion conditions. For tracking,
objects are represented by sparse representations learned online with update. For detection,
we apply two different strategies based on tracking-learning-detection and wider search win-
dow approaches. We evaluate our methods on both the subset of the public dataset Princeton
Tracking Benchmark and our own driver face video in a simulated driving environment. The
quantitative evaluations of precision and running time on these two datasets demonstrate the
effectiveness and efficiency of our proposed object tracking algorithms.

Keywords Object tracking · Depth image · Sparse representation · Object detection

1 Introduction

Online object tracking plays a critical role in many computer vision applications such as
activity recognition, human-computer interaction and automated surveillance [29,36]. While
muchprogress has been achieved in recent years, online object tracking is still an important but
challenging task, especially under complex environments. The difficulties of object tracking
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account for intrinsic (e.g., nonrigid object structure, complex shapes and pose variation) and
extrinsic factors (e.g., illumination changing and heavy occlusions) [36].

To address these issues, numerous approaches have been proposed [1,7,31]. Basically,
object tracking contains two important components: the appearance modeling and target
searching. Tracking algorithms use the appearance models to discriminate the target object
and the background and adaptively update the appearance models online. For the appear-
ance modeling, it is very important to balance the invariance and the discrimination. The
appearance modeling should be adaptive to the intrinsic variations such as pose changes and
shape changes and robust to the extrinsic variations such as varying illumination and heavy
occlusions. For target searching, the computation complexity should be considered to find
the sampled candidates that best match to the target object in real-time.

Most of visual object tracking are based on color images for their rich information, which
is helpful to represent target objects. Generally speaking, there are four types of common
visual features extracted from color images: color, edges, optical flow and texture [2,6,
16,20,21]. Various algorithms based on these features perform well in some constrained
situations. Pérez et al. introduced a Monte Carlo tracking technique within a probabilistic
framework using the principle of color histogram distance [20]. The RGB (red, green, blue)
color space is usually used to represent color. However, the differences between the colors
in the RGB space do not correspond to the color differences perceived by humans [18].
Moreover, color features are easily influenced by illumination. Object boundaries often locate
the areas where image intensities strongly change. Paragios et al. proposed the variational
framework for detecting and trackingmultiple moving objects using edge detection approach
[17], which uses a statistical method based on a mixed model. This framework is robust
to illumination changes, but when occlusions occur, the edge based method would lose
target.

Projection of the 3D world on a 2D image causes loss of information [36]. The per-
formance of the color image-based tracking methods usually decreases a lot with varying
complex illumination. Meanwhile, with the emergence of commercial depth sensors, such as
Microsoft Kinect and PrimeSense, it is easier to collect depth images. Unlike color image,
the pixel of depth image represents the distance between the points of object and camera,
instead of intensity. Depth images can provide additional valuable information for improving
the performance of tracking and detection. Moreover, depth images are insensitive to varying
illumination, which bypass the drawbacks of color images. Depth image-based approaches
gain more and more attention in recent years. In [3], Cai et al. developed a regularized maxi-
mum likelihood deformable model fitting algorithms for face tracking. Cao and Lu proposed
an online depth image based face trackingmethod for driving fatigue detection on the assump-
tion that face shape is an ellipse [4]. In order to standardize uniform evaluation criteria for
comparing different kinds of algorithms, Song and Xiao constructed one unified benchmark
dataset called Princeton Tracking Benchmark (PTB) [25]. Another publicly available RGBD
People Dataset [26] contains one sequence with 1,132 frames with people moving. In this
paper, we focus on depth image-based object tracking to tackle the problem of illumination
changing.

Another critical challenge for object tracking is occlusion. To address the challenges of
occlusion is technically difficult in various applications of computer vision [14,34,35]. This
difficult is mainly due to the unpredictable nature of the error incurred by occlusion [28].
It can corrupt the representations of the target and introduce unpredictable noise. Numerus
approaches are proposed to address this problem [14,34,35]. Among these approaches, the
sparse representation based methods have advantages in efficiency and robustness [28,32,
33,37]. The basic idea of sparse representation is that a test image can be represented as a
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linear combination of basis images (dictionary), while the weights are relatively sparse. The
sparse representation of an occluded test image is a sparse linear combination of basis images
plus errors due to occlusion, which can separate the occlusion components from the identity
components.

Recently, sparse representation is considered as an efficient solution to object tracking
problems. The sparse representation approach can be categorized into three classes: (1)
appearance modeling based on sparse coding (AMSC); (2) target searching based on sparse
coding (TSSR); (3) the combination of both. Jia et al. proposed a structural local sparse
coding model [12]. Mei and Ling solved most challenges like occlusion through a set of
positive and negative trivial templates [15].By transferring object tracking problem to a sparse
approximation problem, they proposed a robust algorithm. Wang et al. proposed an online
object tracking algorithm with sparse prototypes. Their approach accounts explicitly for data
and noise [27]. The existing studies mentioned above have demonstrated that sparse coding
is a good solution to color image based object tracking. However, to our best knowledge,
limited studies about depth image based tracking using sparse representation are reported
in the literature. In this study, we apply sparse representation method to depth image based
tracking algorithm in order to tackle the problems of occlusion.

There have been several methods proposed for depth image-based object tracking and
detection in the literature. For example, Colombo et al. proposed a feature-based approach
to detect salient face features, such as eyes and nose, through an analysis of the curvature
of the surface [5]. To handle the noisy input depth data, Cai et al. developed a regularized
maximum likelihood deformable model fitting algorithm for 3D deformable face tracking
[3]. Xia et al. presented an approach for human detection using a 2D head contour model
and a 3D head surface model. They utilized both the edge information and the depth change
information in depth images [30].

In this paper, we propose a general object tracking method based on single depth image,
which is robust to occlusion and illumination changes. In comparison with color image
based methods, our algorithm is less influenced by illumination changes. With sparse cod-
ing representation, we can keep tracking the target object until the occlusion area reaches
50% of the whole target object. This study is the extension of our previous work [23]. We
introduce the tracking-learning-detection (TLD) framework to our methods by restarting
with detection when failing the track. Moreover, we design a simulated driving environ-
ment and collect the driver face videos. We evaluate our methods on both the subset of
the benchmark dataset and our own dataset with measures of precision and response time.
The promising results demonstrate the efficiency of our methods in real-world applications.
Compared with the existing studies, this paper has three major contributions. First, unlike
the existing ways proposed for face tracking or detection, we do not assume that the track-
ing targets are specific. The proposed approach can achieve superior results for generic
object tracking. Second, the proposed models in this paper can be updated and trained adap-
tively, rather than base on some heuristical prior knowledge. Third, most of these previous
studies cannot deal with the occlusion situations. On the contrary, we introduce a sparse
representation method and employ different update strategies to tackle the occlusion prob-
lems.

The rest of this paper is organized as follows. In Sect. 2, we give a detailed descriptions
about our tracking method. In Sect. 3, we present qualitative and quantitative results of our
tracker on the subset of the public available dataset called Princeton Tracking Benchmark as
well as the face videos we collected from a simulated driving environment. Finally we make
a conclusion of this paper in Sect. 4.
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Fig. 1 Workflow of our proposed depth image-based tracking algorithmwith sparse representation and object
detection

2 Object Tracking with Sparse Representation and Object Detection

Here, we present a novel general framework for object tracking with sparse representation
and object detection. Figure 1 shows the workflow of our object tracking algorithm. Firstly,
we initialize the tracker by manually calibrating target position, computing PCA bases and
setting other parameters such as patch size and bases number. Secondly, we sample the
original depth image according to sampling parameters. The samples are size-adjustable to
suit for demand of object front-back moving. To speed up the proposed tracking algorithm,
we transfer all the samples to the same size patches. By evaluating every patch, we find
the patch with the highest posterior probability and return its location as the target. During
the process, we compute the occlusion rate by using coefficients of trivial templates. If the
occlusion rate exceeds the upper bound, we discard the result and regard it as losing target.
Then we startup the detection module with two different strategies: the TLD approach and
wider search window approach. If not, we update the PCA bases and go to the next loop.

2.1 Alternative Box Sampling

In sampling stage, we aim to select the candidate patches of target object with respect to
current frame. In this paper, we apply an affine image warp to model the taget motion
between two consecutive frames. In detail, there are five parameters (x, y, α, β, θ ) of the
affine transform [19] in tracking sampling stage: x and y denote transformations in plane, α
and β are scale variations, and θ is angle rotation. Alternative boxes are uniformly distributed
around the target. To adapt to the characteristics of the depth map, we set α and β a little
bigger.But too bigα andβ meanmore alternative boxes to be computed and slower processing
speed. To speed up the tracking algorithm, we transfer all the samples to the same size by
interpolation. The size of candidate patches is fixed as 32×32, which is the trade-off between
speed and accuracy. During the tracking process, the tracking sampling alternative boxes are
adjustable. Figure 2 shows the candidate patches in the sampling stage.
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Fig. 2 The candidate patches in
the sampling stage
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Fig. 3 Pixel value shifts of two frames. Left top is the face far from the camera, left down is the nearer one,
and right is the pixel value difference of two patches after interpolating

2.2 Depth Image Normalization

The value of pixels in depth image represents the distance between camera and the point
on object. The whole depth image represents the shape of the target. Transformation in the
same depth can remain both the same pixel values and pattern. But once target object moves
forward or backward, the pattern is remained but the pixel values shift. The pixel values of
target objects in color images remain similar when moving forward or backward. This is why
color image based methods can utilize absolute pixel values to extract the patterns. However,
for depth image, this assumption can not be satisfied.

As shown in Fig. 3, in order to extract depth-invariant patterns, we should normalize the
patches with relative pixel values to eliminate the offset. The most common method of nor-
malization is min-max normalization. However, if there are much noises, they often deviate
from average values that are the outliers from valid values. In this case, the normalization
results are extrememinimum or maximum. The noise in depth images limits the performance
of min-max normalization. Therefore, the min-max normalization is not suitable for depth
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Fig. 4 The framework of sparse representation with subspace learning for object tracking used in this study.
Each target appearance can be represented with PCA bases and trivial templates that account for occlusion

images. Here, we adopt the sigmoid filter to normalize the images patches. The sigmoid
function is a S-type function as follows,

y = f (x) = 1

1 + e
x−μ
σ

(1)

In our method, σ equals to 1 and μ is set to the median of each patch. The reason of setting
the value of μ to the median of a patch is less sensitive to noise. The sigmoid normalization
is insensitive to outliers of the patches in depth images.

2.3 Sparse Representation with Subspace Learning for Object Tracking

Object tracking via incremental subspace learning [9,21] and sparse representation [12,15,
27] has gainedmuch progress and attractedmuch attention in recent years. However, there are
some limitationswith these two approaches. For incremental subspace learning approach such
as the incremental visual tracking (IVT)method [21], the PCA subspace based representation
scheme is sensitive to partial occlusion. For original sparse representation, it does not exploit
the rich information that can be compactly represented in subspace learning. Additionally, it
requires much computational complexity to solve �1 minimization problem, which limits the
performance of tracking. In this paper, we combine the characteristics of both incremental
subspace learning and sparse representation for modeling object appearance based on the
methods proposed by Wang et al. [27]. As shown in Fig. 4, each target appearance can be
represented with PCA bases and trivial templates that account for occlusion.

In the framework of sparse representation with subspace learning, tracking problem is
casted to finding the most likely patch among candidates by

y = Uz + e = [U I ]
[
z
e

]
= Bc (2)

where y indicates an observation vector, U denotes a matrix of basis vectors, z represents
coefficients of basis vectors, and e is the coefficient of trivial templates. As shown in Fig. 4,
the bases consist of a number of PCA basis vectors and trivial templates. We solve Eq. (2)
via �1 minimization:

min
z,e

1

2
‖ y −Uz − e ‖22 +λ ‖ e ‖1 (3)
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where ‖ · ‖22 and ‖ · ‖1 are the �2 and �1 norm forms, respectively , and λ is a tradeoff
parameter. InEq. (3), thefirst termdenotes the reconstruct error and the second term represents
the error term with arbitrary but sparse noise. For sparse approximation, we use �1-norm
instead of �0-norm to reduce the computational complexity. In Eq. (3), the coefficients for
trivial templates should be sparse, while the coefficients for PCA basis vectors are not sparse
since PCA basis vectors are orthogonal. Wang et al. [27] presented an iteration algorithm to
compute optimal z and e for each candidate.

Given eopt , the problem of Eq. (3) is equivalent to the minimization of J (z), where
J (z) = 1

2 ‖ (y − eopt ) − Uz ‖22. The solution of this least squares problem is zopt =
U�(y − eopt ). If zopt is given, the minimization of Eq. (3) is equivalent to the minimization
of G(e) = 1

2 ‖ e − (y − Uzopt ) ‖22 +λ ‖ e ‖1. The global minimization can be obtained as
eopt = Sλ(y − Uzopt ) through convex optimization, where Sτ (x) is a shrinkage operation
defined as Sτ (x) = sgn(x) · (|x | − τ) [8]. The details of the algorithm solving Eq. (3) are
presented in Algorithm 1. After getting the optimal z and e for each candidate, the object
tracking problem is transferred to a statistical inference problem. In this framework, the
proposed algorithm models partial occlusion explicitly and hence is robust to occlusion.
Moreover, this method utilizes subspace representation with less computational complexity.

In order to adaptively handle appearance changes of target objects, it is necessary to update
the observation models when tracking. Some target objects can not be utilized to update the
observation models directly due to occlusion. Here, we introduce a parameter η to represent
the degree of occlusion with the trivial coefficients since the trivial templates account for
occlusion. We compute the ratio η between the number of non-zero trivial coefficients and
the total number of trivial coefficients. We employ different update strategies according to
the degree of occlusion as

η

⎧⎪⎨
⎪⎩

< lower threshold: little occlusion, full update

> higher threshold: much occlusion, no update

others: partial occlusion, partial update

(4)

Here, we use the incremental PCA method [21] to update the observation model.

2.4 Restarting Object Tracking by Object Detection

As mentioned in the preceding section, we estimate the degree of occlusion by the parameter
η. We set a lower threshold and a higher threshold for η. Different values correspond to
different tracking results. If η is larger than higher threshold, we view this situation as
tracking failure, and we startup the detecting module. Here, we startup the detection module
with two different strategies: the TLD approach and wider search window approach.

Algorithm 1 Algorithm for Computing zopt and eopt
Input : An observation vector y, orthogonal basis vectors U , and a small parameter λ.
1: Initialize e0 = 0 and i = 0
2: Iterate
3: Obtain zi+1 via zi+1 = U�(y − ei )
4: Obtain ei+1 via ei+1 = Sλ(y −Uzi+1)
5: i ← i + 1
6: Until convergence or termination
Output : zopt and eopt
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Tracking-Learning-Detection (TLD) Approach The framework of TLD was proposed by
Zdenek et al. [13] for long-term tracking. The key problem of long-term tracking is the
detection of object when it reappears in the images. The TLD framework consists of three
modules: detection module, tracking module, and learning module. The tracking module
corresponds to tracking target objects based on the relations between two consecutive frames.
The detection module aims to detect target objects when tracking fails due to heavy occlusion
or disappearance from images. Unlike tracking module, the assumption of detection module
is that two consecutive frames are mutually independent. The learningmodule aims to update
and record appearance models of target. The original TLD approach is proposed for color
images. Here, we introduce the TLD framework to re-detect target objects in depth images
when tracking failures occur.

Wider Search Window Approach On the assumption that when losing the target we still can
find it in a wider scope centered on the original position, the sampling scope spreads to
three times of the size of the original one. After sampling stage, the rest stages are the same
as tracking method. We call this approach as wider search window (WSW) approach. By
computing the coefficients of bases and solving the Bayesian task, we find the most likely
patch among candidates. We compute error ratio η in detecting module. If η becomes lower
than its upper bound, we start the tracking module.

3 Experiments and Results

3.1 Experiment Setup

Our algorithm is implemented in Matlab on a Triple-Core Processor 2.10GHz with 6GB
memory. The speed of our algorithm is related to sampling number. More sampling candi-
date boxes would slow down the processing speed. As a trade-off between computational
complexity and accuracy, sampling number is set to 600. To speed up the tracking algorithm,
we transfer all the samples to the same size by interpolation. The size of candidate patches is
fixed as 32× 32. For the parameters of the models, the variance of affine parameters is set to
[4, 4, 0.02, 0.1, 0.01, 0.001]. The maximum number of basis vectors is 10 and the number of
collected samples for update is 5. The regularization parameter λ for �1-norm is set to 0.05.
The high and low thresholds for model update are 0.6 and 0.2, respectively. We evaluate our
methods on both subset of the public dataset Princeton Tracking Benchmark and our own
driver face videos in simulated driving environments. We use two accumulative metrics for
all frames of videos to evaluate the performance. The first one is the center position error
(CPE), which is the Euclidean distance between centers of output bounding boxes and the
ground truth. This metric shows how close the tracking results are to the ground truth. The
other is the frame per second (FPS), which is to measure the processing speed of different
approaches. This metric shows the computational complexity of different methods.

3.2 Experimental Results on the Public Dataset PTB

Song et al. [25] constructed a RGBD dataset of 100 videos, named as Princeton Tracking
Benchmark (PTB), which includes deformable objects, various occlusion conditions, moving
camera and different scenes. In this study, we select eight typical sequences in PTB as test
data to evaluate the performance of our approach. Table 1 shows the detailed descriptions for
the selected sequences.
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Table 1 The detailed
descriptions of the selected
sequences from PTB

Test sequence Frame number Challenge

Cup 368 Move forward and backward

Ball 117 Illumination change

Bear 281 Severe occlusion

Child 164 No-rigid object tracking

Face_move1 469 Face moving

Face_occ2 387 Partial face occlusion

Face_occ3 262 Full face occlusion

Face_turn 600 Face turning

Fig. 5 The selected image sequences of bear, cup, child and ball are listed from top to bottom (only the RGB
images are presented.)

Table 2 Experimental results with the mean center position errors (CPE) for color image-based and depth
image-based methods.

Test sequence Color image Depth image (WSW) Depth image (TLD)

Cup 13.93 12.83 13.15

Ball 263.60 14.49 13.26

Bear 192.99 46.23 27.98

Child 47.57 135.34 82.49

Mean 129.51 52.22 34.22

WSWandTLDdenote twodifferent detection strategies,wider searchwindowand tracking-learning-detection,
respectively
The bold numbers denote the best results for each test sequence. Smaller errors indicate higher accuracies

We first evaluate our approach on arbitrary object tracking. Figure 5 shows the selected
image sequences of bear, cup, child and ball. Table 2 shows the mean center position errors
of different sequences for color image-based and depth image-based methods. From the
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Table 3 Experimental results of
tracking speed measured by
frame per second (FPS) for
different sequences

Test sequence Depth image (WSW) Depth image (TLD)

Cup 4.26 1.78

Ball 4.06 1.19

Bear 3.46 1.09

Child 1.79 0.69

Mean 3.39 1.18

experimental results, we can see that the depth image-based methods can achieve better
performance than the color image-based approach except for child sequences.

In cup sequences, the challenge is that target object is moving forward and backward. The
mean CPEs of color-based and depth-based methods with WSW and TLD are 13.93, 12.83,
and 13.15, respectively. The depth-based methods achieve slightly better performance than
the color-based one.

In ball sequences, the challenge is that the ball rolls around with illumination changes. In
color image sequence, the color-based method loses target in the fortieth frame as the ball
rolls to another brighter room. While in depth image sequence, our method keeps tracking
the ball through out the whole sequence. Therefore, the errors of depth image-based methods
are significantly much lower than the color-based one.

In bear sequences, severe occlusion is the main challenge when a book occludes the
target bear for a while. Severe occlusion leads to losing target in color image, and without
restarting module in the rest images the color-based method fails in finding the target again.
In our proposed methods, we introduce the detecting module to detect the losing target and
keep tracking again. In this case, the mean CPEs of color-based and depth-based methods
withWSWand TLD are 192.99, 46.23 and 27.98, respectively. These significant results show
the efficiency of our detection module in our tracking algorithm.

Finally, no-rigid target tracking in child sequences is the main challenge. From Table 2,
we can see that our methods fail to track the target sometimes. It is because the target child
is not a rigid object and his movements result in changing of target’s shape. Depth image
contains most information with shape information. The characteristic nature of depth images
make it difficult to track no-rigid objects.

Table 3 shows the results of tracking speed (frame per second) for different sequences. The
average tracking speed of depth image-based methods withWSW and TLD are 3.39 and 1.18
frames per second.Aswe can see, although the depth-basedmethodwithTLDachieves higher
accuracies than that withWSW, it is slower for trackingwithmore computational complexity.
In the TLD framework, it need additional memory and time cost for different models in
tracking module and detection module. Moreover, it should be noted that with optimization
improvements and powerful processors, the running times will certainly decrease to satisfy
real time requirements in various applications.

We further evaluate our methods on face tracking. Figure 6 shows the selected four face
sequences under different conditions (face moving, partial occlusion, full occlusion and face
turning). The challenges here are occlusion and head turn. From the results of Table 4, we can
see that our proposed methods can achieve comparative performance in face tracking as well
as arbitrary object tracking. The performance of depth-based method with TLD is slightly
better than that with WSW. However, both methods fail to track faces with high degrees of
head turning due to the no-rigid challenge.
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Fig. 6 The face sequences under different conditions (face moving, partial occlusion, full occlusion and face
turning)

Table 4 Experimental results
with the mean center position
errors for face tracking

Test sequence Depth image (WSW) Depth image (TLD)

Face_move1 5.53 6.76

Face_occ2 13.44 12.49

Face_occ3 14.17 13.46

Face_turn2 87.66 79.48

Mean 30.14 28.05

3.3 Experimental Results on Driver Face Tracking

Driving fatigue is one of the main causes of road accidents [22,24]. In order to prevent these
accidents, the state of drowsiness of drivers should bemonitored. It is straightforward to detect
and recognize facial expression of drivers as the measurement of fatigue level [4,10,11].
Robust face tracking plays a critical role in these approaches. However, the challenges of
complex driving environments including various illumination, occlusion and camera motion
degrade the performance of monitoring systems, which limit the real world applications.

In this study, we evaluate the performance of our proposedmethods on driver face tracking
in a simulated driving system. We have developed a simulated driving system to collect the
data as shown in Fig. 7. We record both RGB and depth data using a standard Microsoft
Kinect 1.0, and manually annotate ground truth bounding boxes of faces. Here, we evaluate
the performance of our proposed tracking algorithms on depth driver face sequences. The
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Fig. 7 Our simulated driving system. a the virtual driving environment displayed on the screen. b the face
videos are recorded with Kinect while the participant is driving the virtual vehicle

Fig. 8 The samples of driver face sequences recorded from our simulated driving system

sample driver face sequences are shown in Fig. 8. The dataset contains different conditions
in driving environments including various illumination and occlusion with ten-minute time
length. The mean CPEs of depth-based methods with WSW and TLD are 11.33 and 16.34,
respectively. From the experimental results, we can see that even there exist illumination
changing and hand occlusion, our proposed methods using depth images can still achieve
comparative tracking performance. These results indicate the efficiency and effectiveness of
our proposed methods for real world applications such as driving fatigue detection.

4 Conclusions

In this paper, we have proposed a robust tracking method based on depth image with sparse
representation and object detection under challenging conditions like illumination changing
and occlusion. We have introduced a framework of combining tracking and detection to
leverage precision and efficiency under severe occlusion conditions. The sigmoid normaliza-
tion algorithm is used to preprocess depth images. For tracking, objects are represented with
sparse representation with a set of online updated PCA basis vectors and trivial templates.
For detection, we have introduced two detection strategies of WSW and TLD to our tracking
algorithm. We have evaluated our methods on both the public available dataset PTB and our
own driver face video in a simulated driving environment. The comparative performance
with respect to precision and running time demonstrate the effectiveness and efficiency of
our proposed methods.

Acknowledgments Thisworkwas supported in part by the grants from theNationalNatural Science Founda-
tion ofChina (GrantNo. 1272248), theNationalBasicResearchProgramofChina (GrantNo. 2013CB329401),
and the Science and Technology Commission of Shanghai Municipality (Grant No. 3511500200).

123

Author's personal copy



Online Depth Image-Based Object Tracking with Sparse...

References

1. Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072
2. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271
3. Cai Q, Gallup D, Zhang C, Zhang Z (2010) 3D deformable face tracking with a commodity depth camera.

In: Computer Vision-ECCV 2010, Springer, pp 229–242
4. Cao Y, Lu BL (2013) Neural information processing., Real-time head detection with kinect for driving

fatigue detectionSpringer, Heidelberg, pp 600–607
5. Colombo A, Cusano C, Schettini R (2006) 3D face detection using curvature analysis. Pattern Recognit

39(3):444–455
6. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In:

IEEE conference on computer vision and pattern recognition, vol 2, pp 142–149
7. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach

Intell 25(5):564–577
8. Hale ET, Yin W, Zhang Y (2008) Fixed-point continuation for \ell_1-minimization: methodology and

convergence. SIAM J Optim 19(3):1107–1130
9. Hu W, Li X, Zhang X, Shi X, Maybank S, Zhang Z (2011) Incremental tensor subspace learning and its

applications to foreground segmentation and tracking. Int J Comput Vis 91(3):303–327
10. JiQ,YangX (2002)Real-time eye, gaze, and face pose tracking formonitoring driver vigilance. Real-Time

Imaging 8(5):357–377
11. Ji Q, Zhu Z, Lan P (2004) Real-time nonintrusive monitoring and prediction of driver fatigue. IEEE Trans

Veh Technol 53(4):1052–1068
12. Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In:

IEEE conference on computer vision and pattern recognition, pp 1822–1829
13. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach

Intell 34(7):1409–1422
14. Martínez AM (2002) Recognizing imprecisely localized, partially occluded, and expression variant faces

from a single sample per class. IEEE Trans Pattern Anal Mach Intell 24(6):748–763
15. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE

Trans Pattern Anal Mach Intell 33(11):2259–2272
16. Nummiaro K, Koller-Meier E, Van Gool L (2003) An adaptive color-based particle filter. Image Vision

Comput 21(1):99–110
17. Paragios N, Deriche R (2000) Geodesic active contours and level sets for the detection and tracking of

moving objects. IEEE Trans Pattern Anal Mach Intell 22(3):266–280
18. Paschos G (2001) Perceptually uniform color spaces for color texture analysis: an empirical evaluation.

IEEE Trans Image Process 10(6):932–937
19. Pei SC, Lin CN (1995) Image normalization for pattern recognition. Image Vis Comput 13(10):711–723
20. Pérez P,HueC,Vermaak J,GangnetM (2002)Color-based probabilistic tracking. In: European conference

on computer vision, Springer, pp 661–675
21. Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput

Vis 77(1–3):125–141
22. SahayadhasA, SundarajK,MurugappanM (2012)Detecting driver drowsiness based on sensors: a review.

Sensors 12(12):16,937–16,953
23. Shen SC, Zheng WL, Lu BL (2014) Online object tracking based on depth image with sparse coding. In:

Neural information processing, Springer, pp 234–241
24. ShiLC,LuBL (2013)EEG-based vigilance estimation using extreme learningmachines.Neurocomputing

102:135–143
25. Song S, Xiao J (2013) Tracking revisited using rgbd camera: Unified benchmark and baselines. In: IEEE

international conference on computer vision, pp 233–240
26. Spinello L, Arras KO (2011) People detection in RGB-D data. In: IEEE/RSJ international conference on

intelligent robots and systems, pp 3838–3843
27. WangD, LuH,YangMH (2013)Online object trackingwith sparse prototypes. IEEETrans Image Process

22(1):314–325
28. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation.

IEEE Trans Pattern Anal Mach Intell 31(2):210–227
29. Wu Y, Lim J, Yang MH (2013) Online object tracking: A benchmark. In: IEEE conference on computer

vision and pattern recognition, pp 2411–2418
30. Xia L, Chen CC, Aggarwal JK (2011) Human detection using depth information by kinect. In: IEEE

computer society conference on computer vision and pattern recognition workshops (CVPRW), pp 15–
22

123

Author's personal copy



W.-L. Zheng et al.

31. Yang H, Shao L, Zheng F, Wang L, Song Z (2011a) Recent advances and trends in visual tracking: A
review. Neurocomputing 74(18):3823–3831

32. Yang M, Zhang L (2010) Gabor feature based sparse representation for face recognition with gabor
occlusion dictionary. In: Computer Vision-ECCV 2010, Springer, pp 448–461

33. YangM,ZhangL,Yang J,ZhangD (2011b)Robust sparse coding for face recognition. In: IEEEconference
on computer vision and pattern recognition, pp 625–632

34. Yang T, Pan Q, Li J, Li SZ (2005) Real-time multiple objects tracking with occlusion handling in dynamic
scenes. IEEE conference on computer vision and pattern recognition, vol 1, pp 970–975

35. Yilmaz A, Li X, Shah M (2004) Contour-based object tracking with occlusion handling in video acquired
using mobile cameras. IEEE Trans Pattern Anal Mach Intell 26(11):1531–1536

36. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surveys (CSUR) 38(4):13
37. Zhang S, Yao H, Sun X, Lu X (2013) Sparse coding based visual tracking: review and experimental

comparison. Pattern Recogn 46(7):1772–1788

123

Author's personal copy


	Online Depth Image-Based Object Tracking with Sparse Representation and Object Detection
	Abstract
	1 Introduction
	2 Object Tracking with Sparse Representation and Object Detection
	2.1 Alternative Box Sampling
	2.2 Depth Image Normalization
	2.3 Sparse Representation with Subspace Learning for Object Tracking
	2.4 Restarting Object Tracking by Object Detection

	3 Experiments and Results
	3.1 Experiment Setup
	3.2 Experimental Results on the Public Dataset PTB
	3.3 Experimental Results on Driver Face Tracking

	4 Conclusions
	Acknowledgments
	References




