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Abstract
In this paper, we adopt a multimodal emotion
recognition framework by combining eye move-
ments and electroencephalography (EEG) to en-
hance emotion recognition. The main contribu-
tions of this paper are twofold. a) We investigate
sixteen eye movements related to emotions and i-
dentify the intrinsic patterns of these eye move-
ments for three emotional states: positive, neutral
and negative. b) We examine various modality fu-
sion strategies for integrating users external sub-
conscious behaviors and internal cognitive states
and reveal that the characteristics of eye move-
ments and EEG are complementary to emotion
recognition. Experiment results demonstrate that
modality fusion could significantly improve emo-
tion recognition accuracy in comparison with sin-
gle modality. The best accuracy achieved by fuzzy
integral fusion strategy is 87.59%, whereas the ac-
curacies of solely using eye movements and EEG
data are 77.80% and 78.51%, respectively.

1 Introduction
Emotion is a subjective, conscious experience when people
are faced with internal or external stimuli, which plays an
essential part in natural communication among humans. In
recent years, there has been a rising tendency in Human-
Computer Interaction (HCI) research to enhance the systems
with the ability to detect, process, and respond to users e-
motional states [Tanguy et al., 2007]. Besides logical intel-
ligence, emotional intelligence (EI) is also considered as an
important part of human intelligence, which was firstly pro-
posed by Salovery and Mayer [Salovey and Mayer, 1989].
Emotional intelligence refers to the ability to perceive emo-
tions, understand emotions and regulate emotions. In partic-
ular, the introduction of emotional intelligence into comput-
er technologies has been rapidly developed as an interdisci-
plinary field called Affective Computing [Picard, 2000] due
to the wide range of potential applications. For example, an
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affective intelligent car interface can enhance driving safe-
ty [Nasoz et al., 2010] and computer agents use emotions
to enhance decision-making [Antos and Pfeffer, 2011]. In
the framework of EI, emotion recognition is the first critical
phase because computers can never respond to users emo-
tional states without recognizing emotions. Recent work [P-
taszynski et al., 2009] reports the need to apply contextual
analysis to emotion processing.

Since emotion contains many nonverbal cues, various s-
tudies apply different modalities such as facial expressions,
speech and gestures as indicators of emotional states [Calvo
and D’Mello, 2010]. However, these methods usually base
on the external behaviors, and ignore the ‘inner’ cognitive
states of users and semantic contexts of emotion, which lim-
its the usability and reliability in real world applications. In
contrast, methods based on physiological signals are consid-
ered more reliable ways to interpret emotions for their ob-
jective measure of the central nervous system and autonom-
ic nervous system [Chanel et al., 2011]. Among these ap-
proaches, EEG-based emotion recognition has attracted in-
creasing interest and various studies have shown its suit-
ability and effectiveness [Lin et al., 2010; Nie et al., 2011;
Wang et al., 2014].

Eye movement signals have become widely used in HCI
research for usability analysis and assessment since they can
provide a natural and efficient way to observe the behaviors
of users. Most previous work uses eye movements to an-
alyze interest of users, visual search processes, and infor-
mation processing [Rayner, 2009]. Eye movement signals
allow to find out what is attracting users attention and ob-
serve their subconscious behaviors. They can be important
cues for context-aware environment, which contain comple-
mentary information for emotion recognition. However, lim-
ited studies have developed effective features of eye move-
ments for emotion recognition so far [Bradley et al., 2008;
Soleymani et al., 2012; Zheng et al., 2014], where most re-
searchers focus on pupillary responses to different emotions.
In this paper, we systematically evaluate sixteen different fea-
tures extracted from eye movement signals and investigate the
intrinsic patterns associated with different emotions.

Since emotions are complex psycho-physiological phe-
nomena associated with many nonverbal cues, it is difficult to
build robust emotion recognition models using just a single
modality. Signals from different modalities represent differ-



ent aspects of emotion and the complementary information
from different modalities can be integrated to build a more
robust emotion recognition model compared to the existing
unimodel approaches [Calvo and D’Mello, 2010]. For mul-
timodal emotion recognition, most studies focus on the com-
binations of audio-visual features [Chen et al., 1998] or dif-
ferent physiological signals [Verma and Tiwary, 2014]. There
has been a tendency of combining external behavior activities
and internal physiological changes [Soleymani et al., 2012].

In this paper, we adopt a multimodal emotion recognition
framework by combining eye movements and EEG for three
emotions (postive, negative and neutral). We explore the ef-
ficient features of eye movements and EEG, and utilize the
advantages of their complementary information for emotion
recognition from different modality fusion strategies. Results
show that modality fusion could significantly enhance emo-
tion recognition accuracy compared with single modality. Fu-
sion of eye movement and EEG could better model both the
subconscious behaviors and cognitive states of users simulta-
neously under different emotion elicitation.

2 Methods
2.1 Data Preprocessing
Eye movement data provides different detailed parameters,
such as pupil diameters, fixation details, saccade details, blink
details and event details statistics. In order to align eye move-
ment time series with EEG time series, we further re-sample
the eye movement data. It should be noted that although pupil
diameter has been shown to change in different emotional s-
tates [Bradley et al., 2008; Partala and Surakka, 2003], the
major cause to the change of pupil diameter is the lighting. It
is essential to remove the light reflex if we want to obtain the
emotional information in the pupil diameter. Based on the ob-
servation that the pupil responses of different subjects to the
same video clips have similar patterns, we adopt a nonpara-
metric method to estimate pupillary light reflex using princi-
ple component analysis [Soleymani et al., 2012]. The first
principal component of observation matrix containing pupil
diameter data of the same video clip from different subjects
is used to estimate the light reflex. After subtracting the light
reflex from the original data, the residual part contains emo-
tional pupil response in addition to noise. For EEG signals, a
band-pass filter between 1 and 75 Hz is applied to reduce the
artifacts and drift. After filtering, we down-sample the EEG
signals to 200 Hz to reduce the computational complexity.

2.2 Feature Extraction
EEG Signals
Here we extract and compare two kinds of efficient features
from EEG, power spectral density (PSD) and differential en-
tropy (DE). The spectral power of EEG signals in differen-
t frequency bands have been shown to be highly correlated
with emotions [Lin et al., 2010]. Besides, we extract the d-
ifferential entropy features [Duan et al., 2013]. According
to [Duan et al., 2013], for a fixed length EEG sequence, DE
feature is equivalent to the logarithm of PSD in a certain fre-
quency band. Short-term Fourier transform (STFT) with a 4s

non-overlapping window is used to compute the power spec-
tral density in five frequency bands, i.e., delta (1-4 Hz), theta
(4-8 Hz), alpha (8-14 Hz), beta (14-31 Hz) and gamma (31-50
Hz) for each channel. The total dimension of EEG features
for a sample of 62 electrodes is 310.

Eye Movement Signals
After eliminating the light reflex in the pupil diameter, the
PSD and DE features are computed for the pupil diameter
in X and Y axes using STFT in four frequency bands (0-0.2
Hz, 0.2-0.4 Hz, 0.4-0.6 Hz, and 0.6-1 Hz) [Soleymani et al.,
2012]. Moreover, conventional features (mean and standard
deviation) are also extracted from pupil diameter. The PSD
(or DE) feature dimension of pupil diameter is 12.

Eye movement parameters Extracted features

Pupil diameter
(X and Y)

Mean, standard deviation and
PSD (or DE) in four bands:
0-0.2 Hz, 0.2-0.4 Hz,
0.4-0.6 Hz, 0.6-1 Hz

Dispersion
(X and Y) Mean, standard deviation

Fixation duration (ms) Mean, standard deviation
Blink duration (ms) Mean, standard deviation

Saccade
Mean, standard deviation of
saccade duration (ms) and
saccade amplitude (◦)

Event statistics

Blink frequency,
fixation frequency,
fixation duration maximum,
fixation dispersion total,
fixation dispersion maximum,
saccade frequency,
saccade duration average,
saccade amplitude average,
saccade latency average1.

Table 1: The details of features extracted from eye movement
signals. (To our best knowledge, these features indicated by
bold type are new eye movement features, which are firstly
studied for emotion recognition in this paper.)

In addition to pupil diameter which has been studied
in [Soleymani et al., 2012; Zheng et al., 2014], we system-
atically investigate other fifteen new eye movements. For eye
fixation, dispersion in X and Y axes (which is the small de-
viation of the fixation point) and fixation duration (ms) are
extracted. Blink is also shown to have relation with emo-
tional states [Soleymani et al., 2012], so blink duration (ms)
is used as a useful feature. Saccade interpreted as the fast
movement of eye when it makes a sudden change of fixation
point, is generally dependent on the content of interest and
has not been used for emotion recognition yet. We extrac-
t saccade duration (ms) and amplitude (degree) to examine
whether they are relevant to emotions. The mean and standard
deviation are computed from all extracted features mentioned
above. Another nine event detailed statistics for each trial,
such as blink frequency, and saccade frequency, are added to

1Saccade latency average is the average value of the next saccade
start time minus the last saccade end time.



the feature set, as well. Ultimately, the total number of dif-
ferent features from eye movement signals is 33. A detailed
summary of the extracted features is presented in Table 1.

The features we extract from eye movement and EEG sig-
nals usually have strong fluctuations. Since emotions change
gradually in general, we apply the linear dynamic system
(LDS) approach [Shi and Lu, 2010] with the window of 20s
to filter out the unrelated features for emotion recognition.

2.3 Emotion Recognition
For emotion recognition based on single modality, we adopt
support vector machine with linear kernel as classifier. For e-
valuation, we use the data from the first nine trials as training
data and the data from remaining six trials as testing data in
the whole experiment. After two classifiers on eye movement
and EEG data are trained, different modality fusion strategies
are used to combine them. The fusion strategies could be di-
vided to two main categories: feature level fusion (FLF) and
decision level fusion (DLF). At feature level, the eye move-
ment feature vector and the EEG feature vector are concen-
trated into a larger feature vector. At decision level, the clas-
sification outcomes from the two classifiers are combined to
obtain the final decision. In our work, we adopt FLF and DLF
to compare the performance of different fusion strategies.

For DLF, maximal rule and sum rule are often used due
to their simplicity: no need of training. Given the outputs
of each classifier, the maximal (sum) rule is to compute the
maximal (sum) values of all the probabilities that a sample
belongs to each category in all classifiers and choose the class
label with the highest probability.

The rules mentioned above rely on the assumption that all
the classifiers are mutually independent, which is inconsis-
tent with the real situation. Thus, the predicted result of these
rules are inaccurate to some degree. Therefore, we adopt an
advanced fusion strategy called fuzzy integral [Murofushi and
Sugeno, 1989]. The fuzzy integral is integrals of a real func-
tion with regard to fuzzy measures.

Definition 1. A fuzzy measure µ defined on a finite index
setX = {x1, x2, . . . , xn} is a set function µ : P(X)→ [0, 1]
(P(X) is the power set of X) satisfying:

1. µ(∅) = 0, µ(X) = 1,

2. A ⊆ B ⇒ µ(A) ≤ µ(B).

In this paper, we adopt the discrete Choquet inte-
gral [Murofushi and Sugeno, 1989].

Definition 2. Let µ be a fuzzy measure on X . The discrete
Choquet integral of a function f : X → R+ with respect to
µ, is

Cµ(f(x1), f(x2), . . . , f(xn))

:=

n∑
i=1

[f(x(i))− f(x(i−1))]µ(A(i)),
(1)

where ·(i) presents the permuted indices to satisfy 0 ≤
f (x(1)) ≤ f (x(2)) ≤ · · · ≤ f (x(n)) ≤ 1. Also f(x(0)) = 0
and A(i) := {x(i), x(i+1), . . . , x(n)}.

Let C1, C2, . . . , Cm be m classes and XT = [x1 . . . xn]
be a n-dimensional vector. There are n classifiers, one for
each attribute xi, which provide a confidence value denoted

by Φji (X
◦) for an unknown sample X◦ in the statement “X◦

belongs to class Cj”, for all Cj .
To integrate all the confidence values of n classifiers, a

fuzzy integral is used. The global confidence value in the
statement “X◦ belongs to class Cj” is given by

Φµj (Cj ;X
◦) := Cµj (Φj1,Φ

j
2, . . . ,Φ

j
n), (2)

where µj (j ∈ {1, 2, . . . ,m}) are defined on the set of at-
tributes (or classifiers) and represent the importance of the
classifiers. Ultimately, X◦ is predicted to be in the class with
the highest confidence value.

The goal is to learn the fuzzy measure µ, which hasm(2n−
2) coefficients. Suppose the number of classes is 2 (i.e. m =
2) for the sake of simplicity. Then there are l = l1 + l2
training examples labelled Xj

1 , X
j
2 , . . . , X

j
lj

, j = 1, 2. We
can compute µ by minimizing error J ,

J =

l1∑
k=1

(Φµ1(C1;X1
k)− Φµ2(C2;X1

k)− 1)2

+

l2∑
k=1

(Φµ2(C2;X2
k)− Φµ1(C1;X2

k)− 1)2.

(3)

This reduces to a quadratic optimization problem with 2(2n−
2) variables and 2n(2n−1− 1) constraints which can be writ-
ten in the following form:

minimize
1

2
uTDu+ ΓTu

under the constraint Au+ b ≥ 0
(4)

where u is a 2(2n−2) dimensional vector including all of the
fuzzy measures µ1, µ2, i.e. u := [uT1 u

T
2 ]T , with

uj := [µj({x1})µj({x2}) . . . µj({xn})
µj({x1, x2}) . . . µj({xn−1, xn}) . . .
µj({x2, x3, . . . , xn})]T .

(5)

After computing an appropriate set of fuzzy measures, we
can use them to represent the importance of each classifier
and the relative importance between any subset of the clas-
sifiers. Fuzzy integral can implement maximal and sum rule
with certain fuzzy measures. Furthermore, it can learn an
optimized set of fuzzy measures according to different indi-
viduals, which is much more precise and reasonable.

3 Experiment Setup
Previous studies have already tested the reliability of film
clips to elicit emotions [Schaefer et al., 2010]. In our work,
since all the subjects are Chinese students, we use popular
Chinese movie clips to elicit emotions effectively. Three e-
motional states are designed to be induced, i.e., positive, neg-
ative and neutral. We select the clips with highly emotional
contents and ensure the integrity of the plot within the clips
to avoid subjects’ confusion. A preliminary study is conduct-
ed to select the movie clips, where twenty participants are
asked to assess the materials with five point scales. Finally,
fifteen movie clips (five clips per emotion) with the average



score all higher than or equal to 3 points and ranked top 5 in
each category, are chosen. Each movie clip lasts about four
minutes. The finally chosen sources of movie clips include
Tangshan Earthquake, Back to 1942, Just Another Pandora’s
Box, Flirting Scholar, and World Heritage in China.

Fifteen video clips are totally used for each experiment.
There are a 5s hint for starting, a 45s self-assessment and a
15s rest in each trial. During self-assessment, subjects are
asked to report their emotional reactions in questionnaires by
scoring between 1 and 5 for each trial. The trials with score
below 3 points should be discarded because the subjects fail
to elicit the corresponding emotion or the aroused emotion is
not strong enough.

Nine health, right-handed subjects (5 females) participate
in the experiment. Each of them takes part in the experiment
for three times at an interval of about one week and there are
totally 27 experiments evaluated here. All the subjects are
undergraduate or graduate students aged between 20 and 24
years old with normal or corrected-to-normal vision, none of
whom have any history of mental disease or drug use.

Before experiment, they are informed of the purpose, pro-
cedure of the experiment and the harmlessness of the equip-
ment. We also advise subjects to sit comfortably and still in
order to reduce the interference of artifact on EEG signal-
s. The experiments are performed in the morning or early in
the afternoon to avoid sleepiness. Eye movement signals are
recorded using SMI ETG eye tracking glasses2. EEG signals
are recorded with a 1000 Hz sampling rate using ESI Neu-
roScan System. A 62-channel electrode cap is placed on the
scalp of the subject according to the international 10-20 elec-
trode system. The dataset used in this paper will be freely
available to the academic community via the website3.

4 Experiment Results
4.1 Eye Movement Based Emotion Recognition
We first compare the performance of the PSD and DE features
of pupil diameter in order to evaluate their discrimination a-
bility for different emotional states. The average accuracy of
the DE features (M = 57.40%, SD = 17.92) is slightly higher
than that of PSD features (M = 52.75%, SD =21.59), which
achieve a comparative accuracy for three emotions. More-
over, we investigate the relationship between pupil diameters
and different emotions. We find that PD is largest in neg-
ative state and second largest in positive state, while small-
est in neutral state for a majority of experiments, which are
consistent with previous findings [Partala and Surakka, 2003;
Zheng et al., 2014]. In addition, we use one way analysis
of variance (ANOVA) to study the statistical significance of
PD in different categories of emotions. It shows that the d-
ifference between the means of pupil diameters in different
emotion categories is significant (p < 0.05). These results
indicate that PD is a stable measure of emotional activation.

The one way ANOVA is also used to study the statistical
significance of the feature group: dispersion (X and Y), fixa-
tion duration, blink duration, saccade and event statistics. We

2http://eyetracking-glasses.com/
3http://bcmi.sjtu.edu.cn/∼seed/index.html

find that except for blink duration, the difference between the
means of these features in different categories is significant
(p < 0.05). The box plots of four features, namely, disper-
sion of X, saccade amplitude, saccade duration, and fixation
duration, are shown in Figure 1. The dispersion is lower in
neutral category, while saccade amplitude and duration are
higher in neutral category. Fixation duration is the lowest in
positive state and the highest in negative state.
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Figure 1: Box plots of four eye movement features for three
emotional states. The differences between the means of
these features in different categories are found significan-
t (p < 0.05) with one way ANOVA.

The difference between the means of blink duration in dif-
ferent categories is not found significant, which means blink
duration does not have significant difference in different emo-
tional states. In addition, the average recognition accuracies
of the total 33-dimensional eye features with blink duration
(77.06%) is slightly lower than that of the 31-dimensional eye
features without blink duration (77.80%). This indicates that
blink duration does not have much contribution to improving
recognition accuracy, so we do not utilize this kind of feature
in the following data analysis.

The recognition performance of dispersion (X and Y), fix-
ation duration, saccade and event statistics are shown in Ta-
ble 2. As we can see, the accuracies of all the feature groups
are higher than 45%, above the random level 33.3%, a lot.
This indicates that all these features have potential emotion
discrimination ability, considering the low dimensionality of
each feature. The classification accuracies of event statistic-
s, saccade and PD are the first three highest. These results
indicate that they have a relatively higher discrimination a-
bility compared to the other two feature groups. Finally, we
concentrate all the eye movement features listed in Table 2
and study its discrimination ability. The best average classi-
fication accuracy of the total 31-dimension feature achieves
77.80% (SD = 14.61). This promising result suggests that
these eye movement features can be used to discriminate dif-
ferent emotions effectively.



PD Dispersion Fixation Saccade Event FLF
Ave. 57.40 50.17 47.32 57.95 62.26 77.80
Std. 17.92 16.99 16.79 21.51 23.82 14.61

Table 2: Classification accuracies (%) of different eye move-
ment features. (‘FLF’ means feature level fusion by combin-
ing all the eye movement features)

4.2 EEG Based Classification
Table 3 shows the performance of different features from d-
ifferent frequency bands. From Table 3, we can see that the
average accuracies of beta and gamma bands for each feature
are significantly higher than the other bands, which indicates
that beta and gamma bands are more informative and suit-
able for emotion recognition than the other bands. Further-
more, the DE features achieve higher average classification
accuracies and lower standard deviations than the PSD fea-
tures. This implies that the suitability of the DE features for
EEG-based emotion recognition. As DE features from total
frequency bands have the most prominent and stable perfor-
mance among all the features, we choose the DE features of
EEG data from five total frequency bands to fuse with eye
movement data.

Feature Delta Theta Alpha Beta Gamma FLF

PSD Ave. 60.62 60.18 61.69 72.10 69.46 65.35
Std. 17.23 17.72 19.04 15.50 18.53 18.41

DE Ave. 69.14 63.39 68.07 78.33 77.48 78.51
Std. 14.45 16.94 16.94 13.11 16.60 14.32

Table 3: Classification accuracies (%) of different features
and their feature level fusion from EEG.

4.3 Performance of Modality Fusion
In this section, we combine eye movement signals and EEG
data to enhance emotion recognition accuracy. The perfor-
mance of single modality and different modality fusion strate-
gies is shown in Figure 2. The performance obtained by all
the models with modality fusion outperforms that based on s-
ingle modality, which indicates that modality fusion can com-
bine complementary information in each single modality and
effectively enhance the performance of emotion recognition.
Fuzzy integral achieves the best performance with the average
accuracy of 87.59%, which is nearly ten percent higher than
the single modality. The average accuracy of FLF is ranked
second, followed by sum and max rules. Fuzzy integral com-
putes an optimal set of fuzzy measures to fuse two single
modality for each subject, so it is much more precise com-
pared with max and sum rules. Directly concatenating the
two feature vectors of eye movements and EEG into a larger
feature vector can also achieve comparative performance.

The confusion matrices of each modality are shown in Ta-
ble 4, which gives details of the strength and weakness of
each modality. Each row of the confusion matrix represents
the target class and each column represents the predicted
class. The element (i, j) is the percentage of samples in class i
that is classified as class j. From all the sub-tables in Table 4,
we can see that the positive class is generally recognized with
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Figure 2: Performance of each single modality and different
modality fusion strategies.

very high accuracy of ninety percent, while negative emotion-
al state is the most difficult class to be recognized with the
lowest accuracy. Figure 3 demonstrates that eye movement
and EEG modalities have important complementary charac-
teristics. For eye movement modality, positive state is con-
fused with negative state (15%) and vice versa (17%), and
negative state is confused with neutral state (15%). For EEG
modality, negative state is often confused with neutral state
(34%) and vice versa (15%). Neutral and negative states can
be recognized with higher accuracy in eye movement modal-
ity than in EEG modality. Thus, it is expected that these t-
wo modalities can be complementary to improve the perfor-
mance for recognizing each emotional state.
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Figure 3: Confusion graph of eye movements and EEG,
which shows their complementary characteristics for emo-
tion recognition. (The numbers is the percentage of samples
in class (arrow tail) that is classified as class (arrow head).
Bolder lines mean higher values.)

From Tables 4(c), 4(d), 4(e), and 4(f), it can be observed
that the classification accuracies of multimodal systems are



Positive Neutral Negative
Positive 0.15
Neutral 0.09 0.83 0.08

Negative 0.17 0.15 0.68
(a) Eye Movements

Positive Neutral Negative
Positive 0.94
Neutral 0.08 0.77 0.15

Negative 0.09 0.34 0.57
(b) EEG

Positive Neutral Negative
Positive 0.90 0.02 0.08
Neutral 0.07 0.84 0.09

Negative 0.10 0.15 0.75
(c) FLF

Positive Neutral Negative
Positive 0.84 0.03 0.13
Neutral 0.06 0.87 0.07

Negative 0.13 0.16 0.71
(d) Max Rule

Positive Neutral Negative
Positive 0.95 0.02 0.03
Neutral 0.05 0.88 0.07

Negative 0.10 0.26 0.64
(e) Sum Rule

Positive Neutral Negative
Positive 0.96 0.00 0.04
Neutral 0.10 0.81 0.09

Negative 0.02 0.13 0.85
(f) Fuzzy Integral

0.81 0.04 0.02 0.04

Table 4: Confusion matrices of each single modality and different modality fusion strategies.

higher than those of unimodal systems in most cases. For max
and sum rules, they confuse negative state with neutral state
(16% and 26% respectively), but they can classify neutral s-
tate with higher accuracy. FLF strategy makes fewer mistakes
when classifying negative state compared to max and sum s-
trategies. For fuzzy integral strategy, since eye movement
and EEG modalities both misclassify negative state with neu-
tral state a lot, fuzzy integral strategy also misclassify these
two states (13%), but much less than that of single modality.
The accuracy of negative state is much higher than others. As
a result, the overall classification accuracy of fuzzy integral
strategy is the highest among all the fusion strategies.

5 Discussion
The experimental results show that the performance of mul-
timodal system is better than unimodal system with an im-
provement of almost 10 percent. it indicates that fusing dif-
ferent kinds of signals to recognize emotion is feasible and
promising. The confusion matrices reveal that the ability to
recognize different emotions is different between eye move-
ments and EEG. Positive emotion is confused with negative
emotion in eye movement domain while positive emotion can
be classified with higher accuracy in EEG domain. Nega-
tive and neutral emotions are usually misclassified in EEG
domain, while eye movements are quite good at recognizing
neutral emotion. Therefore, it is reasonable to expect that
there are complementary information for eye movements and
EEG. This is why fusion of the two modalities can achieve
higher accuracies than single modality.

For multimodal emotion recognition based on eye move-
ments and EEG, a similar recent work is reported by [Zheng
et al., 2014]. However, in their work, they extracted only
pupil diameter features and utilized simple fusion methods to
combine two modalities. In contrast, in addition to pupil di-
ameter, our work investigate fifteen new eye movement fea-
tures such as eye saccade, fixation and dispersion and ana-
lyze the intrinsic patterns of these eye movement features for
different emotions. Moreover, we introduce more advanced
fusion strategies to improve the performance and achieve a
significantly improved recognition accuracy (87.59%). The
experimental results indicate the efficiency of the extracted
eye movement features and the superiority of the multimodal
methods for emotion recognition.

In this paper, we study three discrete categories of emotion

and label the EEG data of each trial as a discrete steady emo-
tion. However, emotion in real world is much more complex
and it is a function of time, context, space, culture, and person
[Kim and André, 2008]. In other words, emotion recogni-
tion indeed is a regression problem, instead of a classification
problem. Here, we simplify the problem with certain restrict-
ed conditions. To recognize emotional states more precise-
ly, emotion recognition from regression perspective should
gain considerable research attention. Due to the fuzzy bound-
aries of emotion, the challenging problem is how to obtain the
‘ground truth’ of emotion.

6 Conclusion and Future Work
This paper has shown that combining eye movements and
EEG can considerably improve the performance of emotion
recognition systems. The experiment results demonstrate that
pupil diameter, dispersion, fixation duration, saccade dura-
tion, saccade amplitude and nine event statistics are distin-
guishable for three emotions, which could be used as effi-
cient features for emotion recognition. We have revealed that
the characteristics of eye movements and EEG are comple-
mentary to emotion recognition. Modality fusion can signifi-
cantly enhance the emotion recognition accuracy in compari-
son with single modality. The best accuracy achieved by the
fuzzy integral fusion strategy is 87.59%, whereas the accu-
racies of solely using eye movements and EEG are 77.80%
and 78.51%, respectively. The promising accuracy shows the
advantages of combining eye movements and EEG.

With the fast development of wearable dry EEG sensors
[Chi et al., 2012], it is now practical to implement brain com-
puter interfaces from laboratory to real-world environments.
Therefore, as future work, we will consider experiment sce-
narios for real-world applications, instead of virtual scenarios
and simulated stimuli. For example, we are going to develop
a novel approach for estimating students feelings in real-time
from EEG and eye movements while they attend MOOC.
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