Bao-Liang Lu

Professor, Vice Chair
Department of Computer Science and Engineering
Shanghai Jiao Tong University
Shanghai 200240, China

blu AT cs DOT sjtu DOT edu DOT cn
bllu AT sjtu DOT edu DOT cn
Phone.: +86-21-34205422
Office: Room 431, Dian Xin Building 3

Address: 800 Dong Chuan Road Shanghai 200240, China

 


Research Interest

Brain-like computing, neural networks, machine learning, pattern recognition, computer vision, brain-computer interface, natural language processing, and computational biology.


Education Background

I received the B.S. degree in instrument and control engineering from Qingdao University of Science and Technology, China, in 1982, the M. S. degree in computer science and engineering from Northwestern Polytechnical University, Xi'an, China, in 1989, and the Dr. Eng. degree in electrical engineering from Kyoto University, Kyoto, Japan, in 1994.


Work Experience

From 1982 to 1986, I was with the Qingdao University of Science and Technology. From April 1994 to March 1999, I was a Frontier Researcher at the Bio-Mimetic Control Research Center, the Institute of Physical and Chemical Research (RIKEN), Nagoya, Japan. From April 1999 to August 2002, I was a Research Scientist at the RIKEN Brain Science Institute, Wako, Japan. Since August 2002, I have been a full professor at the Department of Computer Science and Engineering, Shanghai Jiao Tong University, China. I have been an adjunct professor of the Laboratory for Computational Biology, Shanghai Center for Systems Biomedicine since 2005.


Teaching

1.        Neural Network Theory and Applications

2.        Data Structure and Algorithm Analysis  

 


Major Grants

1.   Dry-electrode-based Wireless Wearable EEG-cap and Its Application to Drivers' Vigilance Monitor System
Principal Investigator: Bao-Liang Lu
Grant Number: 09511502400
Agency: Science and Technology Commission of Shanghai Municipality
Period: July. 1, 2009 to June 30, 2011

 

2.   The Basic Mechanism Research of Visual Information Processing
Principal Investigator: Bao-Liang Lu
Grant Number: 2009CB320901
Agency: National Basic Research Program (973) of China
Period: Jan. 1, 2009 to Dec. 31, 2013

 

3.   EEG Based Vigilance Estimation and Prediction for Drivers
Principal Investigator: Bao-Liang Lu
Grant Number: NSFC 90820018
Agency: National Science Foundation of China
Period: Jan. 1, 2009 to Dec. 31, 2011

 

4.   Integrated platform for analysis of metagenomic and metabonomic data and study on metabolic disease
Principal Investigator: Bao-Liang Lu
Grant Number: NSFC 2008AA02Z315
Agency: National High-Tech Research Program (863) of China
Period: Jan. 1, 2008 to Dec. 31, 2010.

 

5.   Learning algorithm for Large-scale, multi-label, and imbalanced classification problems
Principal Investigator: Bao-Liang Lu
Grant Number: NSFC 60773090
Agency: National Science Foundation of China
Period: Jan. 1, 2008 to Dec. 31, 2010.

 

6.   Task decomposition and module combination for massively parallel pattern classifiers
Principal Investigator: Bao-Liang Lu
Grant Number: NSFC 60473040
Agency: National Science Foundation of China
Period: Jan. 1, 2005 to Dec. 31, 2007.

 

7.   Incremental learning model
Principal Investigator: Bao-Liang Lu
Grant Number: NSFC 60375022
Agency: National Science Foundation of China
Period: Jan. 1, 2004 to Dec. 31, 2006.

 


Publication

2011

1.      Tian-Xiang Wu, Xiao-Chen Lian, and Bao-Liang Lu, Multi-view Gender Classification Using Symmetry of Facial Images, to appear in Neural Computing and Applications.[PDF]

2.     Bing Li, Xiao-Chen Lian, and Bao-Liang Lu, Gender Classification by Combining Clothing, Hair and Face Organs Classifiers, to appear in Neurocomputing. [PDF]

3.      Bing Li, Rong Xiao, Zhiwei Li, Rui Cai, Bao-Liang Lu, and Lei Zhang, Rank-SIFT: Learning to Rank Repeatable Local Interest Points, to appear in Proc. of 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, USA, June 20-25, 2011.[PDF]

4.      Mu Li, Xiao-Chen Lian, James T. Kwok, and Bao-Liang Lu, Time and Space Efficient Spectral Clustering via Column Sampling, to appear in Proc. of 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, USA, June 20-25, 2011. [PDF]

5.      Dan Nie, Xiao-Wei Wang, Li-Chen Shi, and Bao-Liang Lu, EEG-based Emotion Recognition during Watching Movies, in Proc. of 5th International IEEE EMBC Conference on Neural Engineering (NER), pp. 667-670, Cancun, Mexico, April 27-May 1, 2011.[PDF]

2010

1.      Yan-Ming Tang and Bao-Liang Lu, Age Classification Combining Contour and Texture Feature, to appear in Proceedings of 17th International Conference on Neural Information Processing (ICONIP2010), Sydney, Australia, November 22-25, 2010.[PDF]

2.      Tian-Xiang Wu and Bao-Liang Lu, Multi-view Gender Classification Using Hierarchical Classifiers Structure, to appear in Proceedings of 17th International Conference on Neural Information Processing (ICONIP2010), Sydney, Australia, November 22-25, 2010. [PDF]

3.      Qi Kng, Bao-Liang Lu, Adaptive Ensemble Learning Strategy Using an Assistant Classifier for Large-scale Imbalanced Patent, to appear in Proceedings of 17th International Conference on Neural Information Processing (ICONIP2010), Sydney, Australia, November 22-25, 2010.[PDF]

4.     Xuezhe Ma, Xiaotian Zhang, Hai Zhao and Bao-Liang Lu, Dependency Parser for Chinese Constituent Parsing, CIPS-SIGHAN-2010, August, 2010, Beijing, China.[PDF]

5.      Jia-Xin Ma, Li-Chen Shi and Bao-Liang Lu, Vigilance Estimation by Using Electrooculographic Features, Proceedings of 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010), pp. 6591-6594, Buenos Aires, Argentina, August 31- September 4, 2010.. [PDF]

6.      Li-Chen Shi, Bao-Liang Lu: Off-Line and On-Line Vigilance Estimation Based on Linear Dynamical System and Manifold Learning, Proc. of 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010), pp. 6587-6590, Buenos Aires, Argentina, August 31- September 4, 2010.[PDF]

7.     Georg Bartels, Li-Chen Shi, Bao-Liang Lu: Automatic Artifact Removal from EEG - a Mixed Approach Based on Double Blind Source Separation and Support Vector Machine, Proceedings of 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010), pp. 5383-5386, Buenos Aires, Argentina, August 31- September 4, 2010. [PDF]

8.     Hongbin Yu, Hongtao Lu, Tian Ouyang, Hongjun Liu, Bao-Liang Lu: Vigilance Detection Based on Sparse Representation of EEG, Proceedings of 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010), pp. 2439-2442, Buenos Aires, Argentina, August 31- September 4, 2010.[PDF]

9.      Xiao-Chen Lian, Zhiwei Li, Bao-Liang Lu, Lei Zhang: Max-Margin Dictionary Learning for Multiclass Image Categorization, Proceedings of the 11th Europen Conference on Computer Vision (ECCV2010), Hersonissos, Heraklion, Crete, Greece, September 5-11, 2010.[PDF]

10.  Shaodian Zhang, Hai Zhao, Guodong Zhou and Bao-Liang Lu, Hedge Detection and Scope Finding by Sequence Labeling with Procedural Feature Selection, CoNLL-2010, pp.92-99, Uppsala, Sweden, July 15-16, 2010.[PDF]

11.  Cong Hui, Hai Zhao, Yan Song, Bao-Liang Lu, An Empirical Study on Development Set Selection Strategy for Machine Translation Learning, WMT-2010, pp.67-71, Uppsala, Sweden, July 15-16, 2010.[PDF]

12.  Jian Zhang, Hai Zhao, and Bao-Liang Lu, A Comparative Study on Two Large-Scale HierarchicalText Categorization Tasks' Solutions, Proceedings of International Workshop on Web Information Processing (IWWIP2010), Qingdao, China, July 11-14, 2010.[PDF]

13.  Xiao-Lin Wang and Bao-Liang Lu, Flatten hierarchies large-scale hierarchical text categorization, Proceedings of Fifth International Conference on Digital Information Management (ICDIM2010), pp. 139-144, Thunder Bay, Canada, July 5-8, 2010.[PDF]

14.   Tianqi Zhang, Bao-Liang Lu: Selecting Optimal Orientations of Gabor Wavelet Filters for Facial Image Analysis. Proceedings of International Conferenvce on Image and Signal Processing (ICISP 2010), pp. 218-227, Toris-Rivieres, Canada, June 30-July 2, 2010.[PDF]

15.   Mu Li, James Kwok, and Bao-Liang Lu. Making Large-Scale Nystr?m Approximation Possible. Proceedings of the Twenty-Seventh International Conference on Machine Learning (ICML 2010), Haifa, Israel, June 21-24, 2010.[PDF]

16.  Gang Jin, Qi Kong, Jian Zhang, Xiaolin Wang, Cong Hui, Hai Zhao, and Bao-Liang Lu, Multiple Strategies for NTCIR-08 Patent Mining at BCMI, Proceedings of the 8th NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering, and Cross-Lingual Information Access, Tokyo, Japan, June 15-18, 2010.[PDF]

17. Mu Li, James Kwok, and Bao-Liang Lu. Online multiple instance learning with no regret. Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR 2010), San Francisco, CA, USA, June 13-18, 2010.[PDF]

18.  Xiao-Chen Lian, Zhiwei Li, Changhu Wang,Bao-Liang Lu, Lei Zhang: Probabilistic Models for Supervised Dictionary Learning, Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR 2010), San Francisco, CA, USA, June 13-18, 2010.[PDF]

19.  Minzhang Huang, Hai Zhao,Bao-Liang LuPruning Training Samples Using a Supervised Clustering Algorithm, Lecture Notes in Computer Science, vol. 6064, pp. 250-257, 2010.[PDF]

20.  Wen-Yun Yang, James T. Kwok,Bao-Liang Lu: Spectral and Semidefinite Relaxation of the CLUHSIC Algorithm. Proceedings of 2010 SIAM International Conference on Data Mining (SDM 2010), pp. 106-117, April 29-May 1, 201.[PDF]

21.  Yang Yang, Bao-Liang Lu: Protein Subcellular Multi-Localization Prediction Using a Min-Max Modular Support Vector Machine. International Journal of Neural Systems, vol. 20, no. 1, pp. 13-28, 2010.[PDF]

22.  Hai Zhao, Changning Huang, Mu Li, Bao-Liang Lu: A Unified Character-Based Tagging Framework for Chinese Word Segmentation. ACM Transactions on Asian Language Information Processing (TALIP) , vol. 9, no. 2, pp. 1-32, 2010.[PDF]

23.  Zheng Ji and Bao-Liang Lu: “A Support Vector Machine Classifier with Automatic Confidence and Its Application to Gender Classification” to appear in Neuraocomputing.[PDF]

 


2009

1.      Jing Li and Bao-Liang Lu, “An Adaptive Image Euclidean Distance”, Pattern Recognition, vol. 42, pp. 349-357, 2009. [PDF]

2.      Yun Li and Bao-Liang Lu, “Feature selection based on loss margin of nearest neighbor classification”, Pattern Recognition, vol. 42, pp. 1914-1921, 2009. [PDF]

3.      Dandan Song, Yang Yang, Bin Yu, Binglian Zheng, Zhidong Deng, Bao-Liang Lu, Xuemei Chen, Tao Jiang: Computational prediction of novel non-coding RNAs in Arabidopsis thaliana. BMC Bioinformatics, vol. 10 (S-1), S-36, 2009.[PDF]

4.      Bao-Liang Lu, Xiao-Lin Wang, and Masao Utiyama, “Incorporating prior knowledge into learning by dividing training data”, Frontiers of Computer Science, vol. 3, No. 1, pp. 109-122, 2009.[PDF]

5.      Bao-Liang Lu and Xiao-Lin Wang, “A Parallel and Modular Pattern Classification Framework for Large-Scale Problems”, in C. H. Chen (Ed.), Handbook of Pattern Recognition and Computer Vision (4th Edition), pp. 725-746, World Scientific, 2009. [PDF]

6.      Mu Li and Bao-Liang Lu, “Emotion Classification Based on Gamma-band EEG”, in Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society,pp. 1323-1326, Mineapolis, USA, 2009.[PDF]

7.      Jia-Cheng Guo, Bao-Liang Lu, Zhi-Wei Li, and Lei Zhang, "LogisticLDA: Regularizing Latent Dirichlet Allocation by Logistic Regression", in Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, pp. 160-169, Hong Kong, 2009. [PDF]

8.      Wei-Ming Liang, Chang-Ning Huang, Mu Li and Bao-Liang Lu, “Extracting Keyphrases from Chinese News Articles Using TextRank and Query Log Knowledge”, in Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, pp. 733-740, Hong Kong, 2009.[PDF]

9.      Shaojie Shi, Bao-Liang Lu,“EEG Signal Classification during Listening to Native and Foreign Languages Songs”, 4th International IEEE EMBS Conference on Neural Engineering, 2009, Antalya, Turkey, pp. 440-443, 2009.[PDF]

10.   Zheng Ji and Bao-Liang Lu, “Gender Classification Based on Support Vector Machine with Automatic Confidence”, in Proceedings of the 16th International Conference on Neural Information Processing, pp. 685-692, Bangkok, Thailand, 2009.[PDF]

11.   Chao Ma, Bao-Liang Lu, and Masao Utiyama, “Incorporating prior knowledge into task decomposition for large-scale patent classification”, in Proceedings of 6th International Symposium on Neural Networks, LNCS5552, pp. 784-793, 2009.[PDF]

12.   Yang Yang and Bao-Liang Lu, “Prediction of protein subcellular multi-localization by using a min-max modular support vector machine”, in Yu and Sanchez (Eds.), Advances in Computational Intelligence, AISC 61, pp. 133-143, Springer, 2009.[PDF]

13.   Yue Wang, Bao-Liang Lu, and Zhi-Fei Ye, “Module combination based on decision tree in min-max modular network, in Proceedings of International Conference on Neural Computation, pp. 555-558, Madeira, Portugal, 2009.[PDF]

14.   Zheng Ji, Xiao-Chen Lian, and Bao-Liang Lu, " Gender Classification by Fusion of Face and Hair Feature”, in Marid and Chacon (Eds.), State of the Art in Face Recognition, In-Teh, Vienna, Austria,pp. 215-230, 2009.[PDF]

15.   Jia-Wei Fu, Li-Chen Shi, and Bao-Liang Lu, “A survey on EEG-based vigilance analysis and estimation”, Chinese Journal of Biomedical Engineering (in Chinese), vol. 28, no. 4, pp. 589-596, 2009.[PDF]

16.   Zhi-Fei Ye, Yi-Min Wen, and Bao-Liang Lu, “A survey of imbalanced pattern classification problems”, CAAI Transactions on Intelligent Systems (in Chinese), vol. 4, no. 2, pp. 148-156, 2009.[PDF]

17.  He Sun and Bao-Liang Lu, “Gender Classification Based on Local Gabor Binary Mapping and Support Vector Machine”, Computer Engineering (in Chinese), vol. 35(2), pp. 210-213, 2009.[PDF]

 


2008

1.        L.C. Shi, B.L. Lu, "Dynamic Clustering for Vigilance Analysis Based on EEG", 30-th Annual International Conference of the Engineering in Medicine and Biology Society, 2008, Vancouver , British Columbia , Canada , pp. 54-57 [PDF]

2.        M. Li, G.W. Fu, B.L. Lu, "Estimating Vigilance in Driving Simulation using Probabilistic PCA"30-th Annual International Conference of the Engineering in Medicine and Biology Society, 2008, Vancouver, British Columbia, Canada, pp. 5000-5003 [PDF]

3.        X. Chu, C. Ma, J. Li, B. L. Lu, M. Utiyama and H. Isahara, "Large-Scale Patent Classification with Min-Max Modular Support Vector Machines", Proc. of International Joint Conference on Neural Networks (IJCNN), vol.1, pp.3972-3979, HongKong, China, 2008

4.        B. Xia, H. Sun and B. L. Lu, "Multi-view Gender Classification based on Local Gabor Binary Mapping Pattern and Support Vector Machines", Proc. of International Joint Conference on Neural Networks (IJCNN), vol.1,pp.3388-3395, HongKong, China, 2008 [PDF]

5.        W. Y. Yang and B. L. Lu, "A string kernel framework with feature selection for SVM protein classification", Proc. of the Sixth Asia Pacific Bioinformatics Conference (APBC), vol.6:9-18, Kyoto, Japan, 2008 [PDF]

6.        Y. P. Li and B. L. Lu. "Semantic similarity definition over gene ontology by further mining of the information content", Proc. of the Sixth Asia Pacific Bioinformatics Conference (APBC), vol.6:155-164, Kyoto, Japan, 2008 [PDF]

7.        K. Wu, X. Lin and B. L. Lu.  "Cross language text categorization using a bilingual lexicon", Proc. of the Third International Joint Conference on Natural Language Processing (IJCNLP). India, 2008

8.        Yang Yang, B. L. Lu and Wen-Yun Yang, "Classification of protein sequences based on word segmentation methods", Proc. of the Sixth Asia Pacific Bioinformatics Conference (APBC), vol.6:177-186, Kyoto, Japan, 2008

9.   Cheng. Cong and B. L. Lu, “Partition of Sample Space with Perceptrons”, Computer Simulation (in Chinese), vol. 25(2), pp. 96-99, 2008[PDF]

10.  Ji-Lin Li and Bao-Liang Lu, “Design of FIR Filters in Complex Domain by Neural Networks”, Computer Simulation (in Chinese), vol. 25(2), pp. 175-177, 2008[PDF]


2007

1.  J. Luo, Y. Ma, E. Takikawa, S. H Lao, M. Kawade and B. L. Lu. "Person-specific SIFT features for face recognition", International Conference on Acoustic, Speech and Signal Processing (ICASSP2007), vol.2, pp.593-596, Hawaii, 2007. [PDF]

2.  K. Wu, B. L. Lu, "A probabilistic approach to feature selection for multi-class text categorization", Proc. of Fourth International Symposium Neural Networks (ISNN 2007), LNCS, Vol.4491: 1310-1317, Nanjing, China, 2007. [PDF]

3.  K. Wu, B. L. Lu, Masao Uchiyama, and Hitoshi Isahara, "An empirical comparison of min-max-modular k-NN with different voting methods to large-scale text categorization", Soft Computing - A Fusion of Foundations, Methodologies and Applications, vol.12, no.7, pp.647-655, 2008. (ISNN 2007) [PDF]

4.  Y. M. Wen, and B. L. Lu, "A confident majority voting strategy for parallel and modular support vector machines", Proc. of Fourth International Symposium Neural Networks (ISNN 2007), LNCS, Vol. 4493: 525-534, Nanjing, China, 2007. [PDF]

5.  Y. M. Wen and B. L. Lu, "Incremental Learning of Support Vector Machines by Classifier Combining", Proc. of 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2007), LNCS, vol.4426: 904-911, Nanjing, China, 2007. [PDF]

6.   K. Wu and B. L. Lu, "Cross-Lingual Document Clustering", Proc. of 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2007), LNCS, vol.4426: 956-963, Nanjing, China, 2007. [PDF]

7.   Li-Chen Shi, Hong Yu, and Bao-Liang Lu, "Semi-Supervised Clustering for Vigilance Analysis Based on EEG," Proceedings of International Joint Conference on Neural Networks(IJCNN2007), pp. 1518-1523, Orlando, US, Aug. 2007. [PDF]


2006

1.   W. Y. Yang, B. L. Lu and Y. Yang, "A comparative study on feature extraction from protein sequences for subcellular localization prediction", Proceedings of 2006 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2006)TorontoCanada2006. [PDF]

2.   K. Chen, B. L. Lu and J. Kwok, "Efficient classification of multi-label and imbalanced data using min-max modular classifiers", Proc. of IEEE World Congress on Computation Intelligence, pp.1770-1775, Vancoudar, Canada, July 16-21, 2006. [PDF]

3.   J. Li and B. L. Lu, "A new supervised clustering algorithm based on min-max modular network with gaussian-zero-crossing functions", Proc. of 2006 IEEE World Congress on Computation Intelligent, pp.786-793, Vancouver, Canada, July 16-21, 2006. [PDF]

4.   Y. Li, B. L. Lu and Z. F. Wu, "A hybrid method of unsupervised feature selection based on ranking". International Conference on Pattern Recognition 2006 (ICPR2006), Vol.2, pp.687-690, Hongkong, August 20-24, 2006.

5.   H. C. Lian, B. L. Lu, "Multi-view gender classification using local binary patterns and support vector machines", Lecture Notes in Computer Science, 3972, Advances in Neural Networks - ISNN 2006: Third International Symposium on Neural Networks, ISNN 2006, Proceedings - Part II, 2006, pp.202-209. [PDF]

6.   J. Luo, B. L. Lu, "Gender recognition using a min-max modular support vector machine with equal clustering", Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3972, Advances in Neural Networks - ISNN 2006: Third International Symposium on Neural Networks, ISNN 2006, Proceedings - Part II, 2006, pp.210-215. [PDF]

7.   Y. Yang, B. L. Lu, "Prediction of protein subcellular multi-locations with a min-max modular support vector machine", Lecture Notes in Computer Science, 3973,Advances in Neural Networks - ISNN 2006: Third International Symposium on Neural Networks, ISNN 2006, Proceedings - Part III, 2006, pp. 667-673. [PDF]

8.   H. Zhao, B. L. Lu, "A modular reduction method for k-NN algorithm with self-recombination learning", Lecture Notes in Computer Science,  3971, Advances in Neural Networks - ISNN 2006: Third International Symposium on Neural Networks, ISNN 2006, Proceedings, 2006, pp.537-544. [PDF]

9.   Y. Li, B. L. Lu, Z. F. Wu. Hierarchical Fuzzy Filter Method for Unsupervised Feature Selection. Journal of Intelligent and Fuzzy Systems (in press).

10.   Z. G. Fan and B. L. Lu, Fast Learning for Statistical Face Detection, ICONIP2006, Lecture Notes in Computer Science, LNCS 4233, pp. 187-196, 2006. [PDF]

11.  Hong Shen, B. L. Lu, Masao Utiyama and Hitoshi Isahara, “comparison and Improvements of Feature Extraction Methods for Text Categorization”, Computer Simulation (in Chinese), vol. 23(3), pp. 222-224, 2006[PDF]


2005

1.   Z. G. Fan and B. L. Lu, "Fast Recognition of Multi-View Faces with Feature Selection", 10th IEEE International Conference on Computer Vision (ICCV'05), vol. 1, pp. 76-81, 2005. [PDF]

2.   H. C. Lian and B. L. Lu, "An algorithm for pruning redundant modules in min-max modular network", International Joint Conference on Neural Networks (IJCNN2005), pp.1983-1988, Montréal, Québec, Canada, July 31-August 4, 2005

3.   F. Y. Liu, K. Wu, H. Zhao, and B. L. Lu, "Fast text categorization with min-max modular support vector machines", International Joint Conference on Neural Networks (IJCNN2005), Vol. 1, pp.570-575, Montréal, Québec, Canada, July 31-August 4, 2005

4.   Y. Yang and B. L. Lu, "Extracting features from protein sequences using chinese segmentation techniques for subcellular localization", Proceedings of 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2005), pp. 288-295, San Diego, California, USA, November 14-15, 2005. [PDF]

5.   F. Y. Liu, K, A. Wang, B. L. Lu, M. Utiyama, and H. Isahara, "Efficient Text Categorization Using a Min-Max Modular Support Vector Machine"in Human Interaction With Machine, Hommel, G and Shen H. Y. Eds.,Springer, pp. 13-22, 2005. [PDF]

6.   H. Zhao, B. L. Lu, "Improvement on Response Performance of Min-Max Modular Classifier by Symmetric Module Selection", Proceedings of Second International Symposium Neural Networks (ISNN05), LNCS, Vol. 3497: 39-44, Chongqing, China, 2005. [PDF]

7.   J. Li, B. L. Lu, "Typical Sample Selection and Redundancy Reduction for Min-Max Modular Network with GZC Function", Proceedings of Second International Symposium on Neural Networks (ISNN05), LNCS, Vol. 3496, pp. 467-472 Chongqing, China, 2005. [PDF]

8.   Y. M. Wen and B. L. Lu, "A hierarchical an parallel method for training support vector machines", Proceedings of Second International Symposium on Neural Networks (ISNN05), LNCS, 881-886, Chongqing, China, 2005

9.   Y. Yang, B. L. Lu, "Structure Pruning Strategies for Min-Max Modular Network", Proceedings of Second International Symposium on Neural Networks (ISNN05), LNCS, vol. 3496, pp. 646-651, Chongqing, China, 2005. [PDF]

10.   K. A. Wang, H. Zhao and B. L. Lu, "Task Decomposition Using Geometric Relation for Min-Max Modular SVMs", Proceedings of Second International Symposium on Neural Networks (ISNN05), LNCS, vol. 3496, pp. 887-892, Chongqing, China, 2005. [PDF]

11.   H. Zhao and B. L. Lu, "A General Procedure for Combining Binary Classifiers and Its Performance Analysis", Proceeding s of the First International Conference on Natural Computation (ICNC'05), LNCS, vol. 3610, pp. 303-312, Changsha, China, 2005. [PDF]

12.   J. Li, B. L. Lu, and M. Ichikawa, "An algorithm for pruning redundant modules in min-max modular network with GZC function", Proceedings of the First International Conference on Natural Computation (ICNC'05), LNCS, vol.3610, pp.293-302, Changsha, China, 2005. [PDF]

13.   Z. G. Fan and B. L. Lu, "Multi-View Face Recognition with Min-Max Modular SVMs", Proceedings of the First International Conference on Natural Computation (ICNC'05), LNCS, vol. 3611, pp. 396-399, Changsha, China, 2005. [PDF]

14.   H. C. Lian and B. L. Lu, "Gender Recognition Using a Min-Max Modular SVM", Proceedings of the First International Conference on Natural Computation (ICNC'05), LNCS, vol. 3611, pp. 433-436, Changsha, China, 2005. [PDF]

15.   Y. K. Chen, H. Zhao and B. L. Lu, "On improvement on generalization performance of classifier by using empirical risk", 2nd International Conference on Neural Networks and Brain, vol.1 pp. 41-46, Beijing, China, 2005. [PDF]

16.   H. C. Lian and B. L. Lu, "Age estimation using a min-max modular support vector machine", 12th International Conference on Neural Information Processing (ICONIP 2005), pp.83-88, Taipei, October 30-November 2, 2005.

17.   Y. M. Wen, B. L. Lu and H. Zhao, "Equal clustering makes min-max modular support vector machine more efficient", 12th International Conference on Neural Information Processing (ICONIP 2005), pp.77-82, Taipei, October 30-November 2, 2005

18.   H. Zhao, B. L. Lu, Y. M. Wen and K. A. Wang, "On effective decomposition of training data sets for min-Max modular classifier", 12th International Conference on Neural Information Processing (ICONIP 2005), pp.343-348, Taipei, October 30-November 2, 2005

19.   H. Zhao and B. L. Lu, "Determination of hyperplane by PCA for dividing training data set", 12th International Conference on Neural Information Processing (ICONIP 2005), pp.755-760, Taipei, October 30-November 2, 2005

20.   范志刚, 吕宝粮, "基于迭代特征选择的快速多角度人脸识别", 计算机研究与发展, vol. 42, Suppl. B, pp. 325-329, 2005

21.   吕宝粮,刘峰耀,内山将夫, 井佐原均,"基于最小最大模块化支持向量机的多标号文本分类",计算机研究与发展,vol. 42, Suppl. B, pp. 361-366, 2005

22.   文益民, 杨旸吕宝粮"集成学习算法在增量学习中的应用研究" 计算机研究与发展,vol. 42, Suppl. B, pp. 222-227, 2005

23.   赵海, 吕宝粮"基于最小最大模块化分类器的自重组学习算法",计算机研究与发展,vol. 42, Suppl. B, pp. 243-247, 2005

24.   文益民, 吕宝粮"最小最大模块化支持向量机改进研究", 计算机工程与应用, vol. 19, pp. 185-188, 2005


2004

1.   B. L. Lu, K. A. Wang, M. Utiyama, and H. Isahara, "A part-versus-part method for massively parallel training of support vector machines", Proc. of IEEE/INNS Int. Joint Conf. on Neural Networks (IJCNN2004), Budabest, Hungary, July 25-29, pp. 735-740, 2004. [PDF]

2.   Z. G. Fan and B. L. Lu, "An adjusted Gaussian skin-color model based on principle component analysis", Advances in Neural Networks-ISNN2004, Lecture Notes in Computer Science, vol. 3173, part I, pp. 804-809, 2004. [PDF]

3.   Y. M. Wen and B. L. Lu, "A cascade method for reducing training time and the number of support vectors", Advances in Neural Networks-ISNN2004, Lecture Notes in Computer Science, vol. 3173, part I, pp. 480-485, 2004. [PDF]

4.   H. Zhao and B. L. Lu, "Analysis of fault tolerance of a combining classifier", Advances in Neural Networks-ISNN2004, Lecture Notes in Computer Science , vol. 3173, 888-893, 2004. [PDF]

5.   B. Huang and B. L. Lu, "Fault diagnosis for industrial images using a min-max modular neural network", 11th International Conference on Neural Information Processing (ICONIP2004), Calcutta, India, Nov. 22-25, 2004, Lecture Notes in Computer Science, vol. 3316, 843-847, 2004. [PDF]

6.   Z. G. Fan and B. L. Lu, "Feature selection for fast image classification with support vector machines", 11th International Conference on Neural Information Processing (ICONIP2004), Calcutta, India, Nov. 22-25, 2004, Lecture Notes in Computer Science , vol. 3316, 1026-1031, 2004. [PDF]

7.   H. Zhao and B. L. Lu, "A modular k-nearest neighbor classification method for massively parallel text categorization", First International Symposium on Computational and Information Science, Shanghai, Dec. 16-18, 2004, Lecture Notes in Computer Science , vol. 3314, 867-872, 2004. [PDF]

8.   B. L. Lu, K. A. Wang, and Y. M. Wen, "Comparison of parallel and cascade methods for training support vector machines on large-scale problems" (invited paper), Proc. Of International Conference on Machine Learning and Cybernetics (ICMLC04), pp.3056-3061, Shanghai, China, Aug. 26-29, 2004

9.   B. L. Lu, J. H. Shin, M. Ichikawa, 2004. Massively parallel classification of single-trial EEG signals using a min-max modular neural network. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 51 (3): 551-558. [PDF]


2003

1.   B. L. Lu and K. Ito, "Converting general nonlinear programming problems into separable programming problems with feedforward neural networks", Neural Networks, vol. 16, pp. 1059-1074, 2003. [PDF]

2.   B. L. Lu, Q. Ma, M. Ichikawa, and H. Isahara, "Efficient part-of-speech tagging with a min-max modular neural network", Applied Intelligence, vol 19, pp. 65-81, 2003. [PDF]


2002 and before

1.   B. L. Lu, M. Ichikawa, "Emergent on-line learning with a Gaussian zero-crossing discriminant function", Proceedings of the International Joint Conference on Neural Networks, 2002, 2, pp. 1263-1268. [PDF]

2.   Q. Ma, B. L. Lu, H. Isahara, M. Ichikawa, "Part of speech tagging with min-max modular neural networks", Systems and Computers in Japan, 2002, 33(7), pp.30-39. [PDF]

3.   B. L. Lu, J. Shin, M. Ichikawa, "Massively parallel classification of EEG signals using min-max modular neural networks", Lecture Notes in Computer Science, vol. 2130, 601-608, 2001. [PDF]

4.   Q. Ma, B. L. Lu, M. Murata, et al. "On-line error detection of annotated corpus using modular neural networks", Lecture Notes in Computer Science, vol. 2130, 1185-1192, 2001. [PDF]

5.   J. H. Shin, B. L. Lu, A. Talnov, et al. " Reading auditory discrimination behaviour of freely moving rats from hippocampal EEG", Neurocomputing, vol. 38, 1557-1566, 2001. [PDF]

6.   B. L. Lu, M. Ichikawa, "Emergence of learning: An approach to coping with NP-complete problems in learning", Proceedings of the International Joint Conference on Neural Networks, 2000, 4, pp.159-164. [PDF]

7.   B. L. Lu, M. Ichikawa, S. Hosoe, "Modular massively parallel learning framework for brain-like computers", Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1999, 5, pp. 332-337. [PDF]

8.   Q. Ma, B. L. Lu, H. Isahara, "Part of speech tagging with min-max modular neural networks", Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1999, 5, pp.356-360. [PDF]

9.   G. R. Ji, B. L. Lu, X. Chen, J. Wang, "Object searching in scale-space", Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1999, 1, pp.565-570. [PDF]

10.   B. L. Lu, H. Kita, Y. Nishikawa, "Inverting feedforward neural networks using linear and nonlinear programming", IEEE Transactions on neural networks, vol. 10 (6), 1271-1290, 1999. [PDF]

11.   B. L. Lu, M. Ito, "Task decomposition and module combination based on class relations: A modular neural network for pattern classification", IEEE Transactions on Neural Networks, vol. 10 (5), 1244-1256, 1999. [PDF]

12.   B. L. Lu, M. Ito, "Task decomposition based on class relations: A modular neural network architecture for pattern classification", Lecture Notes in Computer Science, vol. 1240, 330-339, 1997

13.   Book Chapters: B. L. Lu and K. Ito, "Transformation of nonlinear programming problems into separable ones using multi-layer neural networks", Mathematics of Neural Networks: Models, Algorithms and Applications, S. W. Ellacott, J. C. Mason, and I. J. Anderson Eds., Kluwer Academic Publishers, pp. 235-239, 1997

14.   B. L. Lu, K. Ito, M. Ito, "Solving inverse kinematics problem of redundant manipulators in an environment with obstacles using separable nonlinear programming", Proceedings of the Japan/USA Symposium on Flexible Automation, 1996, 1, pp.79-82.

15.   B. L. Lu, K. Ito, "A Parallel and modular multi-sieving neural network architecture with multiple control networks", Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1996, 2, pp. 1303-1308.

16.   B. L. Lu, K. Ito, "Regularization of inverse kinematics for redundant manipulators using neural network inversions", IEEE International Conference on Neural Networks - Conference Proceedings, 1995, 5, pp. 2726-2731. [PDF]

17.   B. L. Lu, H. Kita, Y. Nishikawa, "Multi-sieving neural network architecture that decomposes learning tasks automatically", IEEE International Conference on Neural Networks - Conference Proceedings, 1994, 3, pp.1319-1324. [PDF]

19.   B. L. Lu, Y. Bai, H. Kita, Y. Nishikawa, "Efficient multilayer quadratic perceptron for pattern classification and function approximation", Proceedings of the International Joint Conference on Neural Networks, 1993, 2, pp.1385-1388. [PDF]

20.   B. L. Lu, H. Kita, Y. Nishikawa, "A new method for inverting nonlinear multilayer feedforward networks", IECON Proceedings (Industrial Electronics Conference), 1991, 2, pp.1349-1354. [PDF]


Links

BCMI Lab  SJTU  CS Dept

[Last updated: May, 2008]