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Abstract. Common spatial pattern (CSP) algorithm and principal com-
ponent analysis (PCA) are two commonly used key techniques for EEG
component selection and EEG feature extraction for EEG-based brain-
computer interfaces (BCIs). However, both the ordinary CSP and PCA
algorithms face a loading problem, i.e., their weights in linear combi-
nations are non-zero. This problem makes a BCI system easy to be
over-fitted during training process, because not all of the information
from EEG data are relevant to the given tasks. To deal with the loading
problem, this paper proposes a spare CSP algorithm and introduces a
sparse PCA algorithm to BCIs. The performance of BCIs using the pro-
posed sparse CSP and sparse PCA techniques is evaluated on a motor
imagery classification task and a vigilance estimation task. Experimental
results demonstrate that the BCI system with sparse PCA and sparse
CSP techniques are superior to that using the ordinary PCA and CSP
algorithms.

Keywords: sparse common spatial pattern, sparse principal component
analysis, EEG, brain-computer interface.

1 Introduction

Brain-computer interface (BCI) is usually defined as a direct communication
pathway between the brain and a computer or a device. And electroencephalo-
gram (EEG) is the most commonly used brain signals for BCIs. Over the
last twenty years, with the advances of signal processing, pattern recognition,
and machine learning techniques, the field of BCI research has made great
progress [1,2]. Through BCIs, people can directly control an external device just
by using EEG signals generated from motor imagery, visual evoked potentials,
or people’s mental states. However EEG signals are very noisy and unstable.
Therefore, relevant EEG components selection and feature extraction are very
important for BCIs. For traditional BCIs, spatial filters based on common spatial
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pattern (CSP) are usually used for selecting the relevant EEG components from
the linear combination of the original EEG signals of different channels [3], and
principal components analysis (PCA) technique is usually used for extracting
features from the linear combination of the original EEG features.

However, both the ordinary CSP and PCA algorithms face a loading problem,
i.e., their weights in the linear combinations for PCA and CSP are non-zero.
That problem makes a BCI system easy to be over-fitted during training process,
because not all of the EEG channels or the EEG features are relevant to the given
tasks. As a result, to develop efficient algorithms for EEG channel selection and
EEG feature selection is highly desirable.

In this paper, we introduce sparse loading representations for both CSP and
PCA algorithms. Our proposed sparse technique can accomplish EEG chan-
nel selection, relevant EEG component selection, and EEG feature selection.
For sparse PCA, Zou’s method is adopted [4], where PCA is considered as a
regression-type problem and elastic net is used to calculate the sparse loading
of PCA. The performance of a BCI system using sparse PCA is evaluated on an
EEG-based vigilance estimation task. For sparse CSP, we propose a novel sparse
CSP algorithm and consider CSP as a Rayleigh quotient problem. We use sparse
PCA and elastic net to calculate the sparse loadings of CSP. The performance of
a BCI system with our proposed sparse CSP algorithm is evaluated on a motor
imagery task from the BCI Competition III, Data sets IIIa [5]. Experimental re-
sults demonstrate that both BCI systems using sparse representation techniques
have outperformed the traditional BCI systems.

This paper is organized as follows. In Section 2, the sparse PCA and sparse
CSP algorithms are presented. In Section 3, the experimental setups and the
EEG data processing of vigilance task and motor imagery task are described.
In Section 4, experimental results are presented and discussed. Finally, some
conclusions are given in Section 5.

2 Sparse PCA and CSP Algorithms

As both sparse PCA and sparse CSP algorithms are based on elastic net, the
elastic net algorithm is briefly introduced first, and then sparse PCA and our
proposed sparse CSP algorithms are described.

2.1 Elastic Net

Consider a data set {X, Y }, here X = (x1, ..., xm) is the input set, xi =
(xi,1, ..., xi,n)T , i = 1, ..., m, is the i-th feature of input set, n is the number
of data, m is the feature dimension, and Y = (y1, ..., yn)T is the response set.
For linear regression model, a criterion is usually formed as

β̂ = argmin
β

|Y − Xβ|2, (1)
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where β is the linear coefficients to be estimated. However, the elements of β are
typically nonzero, even some features {xi} are almost not correlated with the
response set. This makes the linear regression model easy to be overfitted.

To solve this problem, various kinds of methods have been proposed. Lasso
is one of the famous methods, which adds a L1 norm penalty to the ordinary
criterion. The Lasso criterion is formed as

β̂ = argmin
β

|Y − Xβ|2 + λ|β|1, (2)

where λ is the penalty factor and | · |1 stands for L1 norm.
By tuning λ, Lasso can continuously shrink the linear coefficients toward zero

and accomplish feature selection, and then improve the prediction accuracy via
the bias-variance tradeoff. Lasso can be efficiently solved by the LARS algo-
rithm [6]. However, LARS has a drawback: the number of selected features is
limited by the number of training data or the number of linear unrelated features
in the training data. To overcome this promlem, naive elastic net and elastic net
have been proposed [7], which add a L2 norm penalty to the Lasso criterion.
The naive elastic net criterion is formed as

β̂ = argmin
β

|Y − Xβ|2 + λ1|β|1 + λ2|β|2, (3)

where λ1 and λ2 are the penalty factors.
The naive elastic net usually makes too much coefficients shrinkage, and causes

more bias to the ELM. But it only reduces a little variances. To correct the bias,
elastic net is proposed, whose solution is a rescaled naive elastic net solution
with a factor (1 + λ2). The elastic net criterion is formed as

β̂ = (1 + λ2)argmin
β

|Y − Xβ|2 + λ1|β|1 + λ2|β|2. (4)

Both naive elastic net and elastic net can be efficiently solved by the LARS-
EN algorithm [7]. The elastic net can simultaneously produce an accurate and
sparse model without the limitation of LARS.

2.2 Sparse PCA

Sparse PCA used in this paper was proposed by Zou et al. [4]. They reformulate
the PCA problem as a regression model and solve it by using the following four
theorems.

In theorem 1, let Zi denote the i-th principal component of X . The cor-
responding PCA loadings Vi can be calculated from the following regression
model,

β̂ = argmin
β

|Zi − Xβ|2 + λ|β|2, (5)

where λ can be assigned with any positive value, and Vi = β̂

|β̂| .
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In theorem 2, another connection between PCA and a regression model is
formed as

(α̂, β̂) = argmin
α,β

n∑

j=1

|X·,j − αβT X·,j|2 + λ|β|2 (6)

subject to |α|2 = 1,

where X·,j is the row vector of X , α and β are m × 1 vectors, and V1 = β̂

|β̂| .
In theorem 3, let α and β be m × k matrices. The connection between PCA

and a regression model is formed as

(α̂, β̂) = argmin
α,β

n∑

j=1

|X·,j − αβT X·,j|2 + λ

k∑

i=1

|βi|2 (7)

subject to αT α = Ik,

where Vi = β̂i

|β̂i| , for i = 1, ..., k.
To achieve sparse loadings, a L1 penalty is added into (7)

(α̂, β̂) = argmin
α,β

n∑

j=1

|X·,j − αβT X·,j|2 + λ

k∑

i=1

|βi|2 +
k∑

i=1

λ1,i|βi|1 (8)

subject to αT α = Ik,

where λ1,i is the penalty factor. This is a naive elastic net problem, and can be
efficiently solved after fixing α.

In theorem 4, suppose the SVD of XT Xβ is XT Xβ = PΣQT . It is proved
that the solution of α in (8) should be

α̂ = PQT . (9)

Then Eq. (8) can be solved by alternated updating α̂ and β̂ until they converge.
When solving Eq. (8), only the covariance matrix of X is need. For more details,
please refer [4].

2.3 The Proposed Sparse CSP Algorithm

Let X denote the original EEG signals, where X is a p(channel)×l(time) matrix.
The CSP-based spatial filter is to determine some linear projections, y = vT X ,
that can maximize the variance (yyT or vT XXT v) of signals of one condition
and at the same time minimize the variance of signals of another condition in a
specific frequency band. The variance of a specific frequency band is equal to the
band-power. Then, CSP can be formulated as a maximum power-ratio problem
or a Rayleigh quotient problem as follows:

V̂ = {v|max
vT R1v

vT R2v
or max

vT R2v

vT R1v
} (10)
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where Ri is the covariance matrix of original EEG signals on condition i, and V̂
are the projection vectors or loadings of CSP.

Equation (10) can be solved as follows. Let

vT R2v = uT u, (11)

and then,

v = PΣ−1/2u, (12)

where P and Σ are the PCA decomposition of R2, R2 = PΣPT .
By applying Eqs. (11) and (12), vT R1v

vT R2v can be reformed as

uT Du

uT u
, (13)

where D = Σ−1/2PT R1PΣ−1/2.
It is easy to show that the i-th largest value of Eq. (13) is the i-th largest

eigenvalue of D, and u is the corresponding eigenvector. The i-th smallest value
of Eq. (13) corresponds to the i-th largest value of vT R2v

vT R1v . Usually, not two

projections but several projections corresponding to the large values of vT R1v
vT R2v

and vT R2v
vT R1v

are used for EEG spatial filtering. The loadings, v, of CSP can be
calculated by using Eq. (12) together with the eigenvectors corresponding to
some large eigenvalues or small eigenvalues of D.

To achieve sparse loadings of CSP, we can reformulate Eq. (12) as an elastic
net problem as follows:

v̂ = argmin
v

|u − Σ1/2PT v|2 + λ1|v|1 + λ2|v|2, (14)

and solve it by the LARS-EN algorithm.

2.4 Complexity Analysis of the Proposed Sparse CSP Algorithm

In EEG data analysis, the number of features, m, is usually less than the number
of data, n. Therefore, the complexities of the proposed spare CSP algorithm can
be analyzed only on m < n condition.

For elastic net, the time cost is O(m3 + nm2) [7], which is equivalent to the
cost of least square problem. For sparse PCA, the time cost is nm2 +pO(m3) [4],
where p is the number of iterations when solving the sparse PCA. As a result,
the cost of sparse PCA is comparable with the cost of the ordinary PCA, O(m3).

For our proposed sparse CSP algorithm, the extra time cost is kO(nm2 +m3)
in comparison with the ordinary CSP algorithm, where k is the number of com-
ponents extracted by CSP. The cost of ordinary CSP algorithm is O(m3 +nm2).
Therefore, the total cost of the proposed sparse CSP algorithm is (k+1)O(m3 +
nm2), which is comparable with the cost of the ordinary CSP algorithm.
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3 Experiment

3.1 Experimental Setup

Vigilance Task. This is a monotonous visual task [8,9,10]. The subjects are
asked to sit in a comfortable chair, two feet away from the LCD. There are four
colors of traffic signs being presented in the LCD randomly by the NeuroScan
Stim2 software. Each trial is 5.5∼7.5 seconds long, including 5∼7 seconds black
screen and 500 millisecond traffic signs presented. The subjects are asked to
recognize the sign color, and press the correct button on the response pad. A
total of 11 healthy subjects have participated in this experiment. After training,
each subject has finished at least two sessions (one for train, and others for
test). For each session, a total of 62 EEG channels are recorded by the NeuroScan
system sampled at 500Hz. Each session continues for more than one hour, during
13:00∼15:00 after lunch. The local error rate of the subject’s performance is used
as the reference vigilance level, which is derived by computing the target false
recognition rate within a 2-minute time window at 2-second step.

Motor Imagery Task. This data set comes from BCI Competition III, data
sets IIIa, provided by the Laboratory of Brain-Computer Interfaces (BCI-Lab),
Graz University of Technology [5]. It is a 4 classes (left hand, right hand, foot,
and tongue) cued motor imagery experiment from 3 subjects. After trial begin,
the first 2s were quite, at t=2s an acoustic stimulus indicated the beginning of
the trial, and a cross + is displayed; then from t=3s an arrow to the left, right,
up or down was displayed for 1 s; at the same time the subject was asked to
imagine a left hand, right hand, tongue or foot movement, respectively, until the
cross disappeared at t=7s. There are 60 trials per class for each subject. A total
of 60 EEG channels are recorded by the NeuroScan system sampled at 250Hz.

3.2 Data Processing

Vigilance Task. Six EEG channels (P1, Pz, P2, Po3, Poz, Po4) are used for
the vigilance estimation task, which are measured from the posterior regions of
the scalp. The vigilance estimation process consists of the following five main
components: a) a bandpass filter (1Hz-50Hz) is used to remove the low-frequency
noise and the high frequency noise; b) the power spectral density (PSD) of each
channel is calculated by every 2 seconds with a 2 Hz frequency resolution as
the original features; c) the features are smoothed with a 2 min moving-average
filter; d) the top 10 principal components of the PSD are calculated by the sparse
PCA algorithm as features; and e) a least square regression model is adopted
for vigilance estimation by every 2 seconds.

Each subject has an individual vigilance estimation model. For each vigilance
estimation model, one session of a subject is used for training, while other ses-
sions of this subject are used for test.
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Motor Imagery Task. All 60 EEG channels are used for motor imagery clas-
sification. The 4-class motor imagery data sets are paired into 6 groups of 2-class
motor imagery data sets for classification. The classification process consists of
the following four main components: 1) a bandpass filter (8Hz-32Hz) is used to
remove the noises and EEG signals which are unrelated to motor imagery; 2)
the top 10 motor imagery related EEG components are extracted by the pro-
posed sparse CSP algorithm; 3) the variance of each component in each single
motor imagery trial is calculated as the feature; and 4) SVMs with RBF kernel
is adopted as the motor imagery classifiers.

The classification model is trained for each subject and each pair of 2-class
motor imagery separately. For each classification model, half of each 2-class
motor imagery data set is used for training, while the other half is used for test.
The parameters used in SVMs are fine tuned by 5-fold cross validation.

4 Experimental Results

The performance of BCI system using sparse PCA is evaluated on the vigilance
estimation task. The parameter λ1 in sparse PCA is used to control the sparse-
ness of loadings. Instead of tuning λ1, we directly set the number of nonzero
coefficients in the loadings of sparse PCA. An early stopping strategy is used for
the LARS-EN algorithm. When the number of nonzero coefficients of βi meets
the predefined number, the LARS-EN algorithm used for solving the naive elastic
net in sparse PCA is stopped. In this study, without fine-tuning, λ is assigned
to 10−5, and the number of nonzero coefficients in each principal component
loading is set to 20.

For comparison, another BCI system with using the ordinary PCA is used
for vigilance estimation. There are totally 30 pairs of training and test data set
from the 11 subjects. The linear correlation coefficient and mean square error
between the estimated vigilance level and the reference vigilance level are used
for performance evaluation. The experimental results of vigilance estimation is
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Fig. 1. The result of linear correlation coefficient between the estimated vigilance level
and the reference vigilance level (left), and the result of mean square error between the
estimated vigilance level and the reference vigilance level (right)
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Fig. 2. Comparison of classification accuracies of all 2-class motor imagery data set
from 3 subjects (left), and the means of two-class classification accuracies for each
subject (right)

shown in Fig. 1. From this figure it can be seen that the average performance
of the BCI with sparse PCA is better than that of the BCI system with the
ordinary PCA. For those data set the BCI with the ordinary PCA performed
well, and the BCI with sparse PCA also performed well. But for those data set
the BCI with the ordinary PCA didn’t perform well, and the BCI with sparse
PCA still performed well, or at least performed much better than the BCI with
ordinary PCA.

The performance of the BCI system with the proposed sparse CSP algorithm
is evaluated on the motor imagery task. There are totally 6 pairs of training
and test data set for each subject. The LARS-EN algorithm used in the sparse
CSP algorithm also adopts an early stopping strategy. The number of nonzero
coefficients in each CSP loading is set to 30, and λ2 is assigned to 0.01.

For comparison, a BCI system with the ordinary CSP algorithm is also applied
to the motor imagery classification. The experimental results are shown in Fig. 2.
From this figure it can be seen that, for most two-class data sets, the BCI system
with the proposed sparse CSP algorithm performed better than the BCI system
with the ordinary CSP algorithm; and for each subject, the average performance
of the BCI system with the proposed sparse CSP algorithm is better than that
of the BCI system with the ordinary CSP algorithm.

5 Conclusions

In this paper, sparse PCA and sparse CSP techniques are introduced to EEG-
based BCIs. And a novel sparse CSP algorithm has been proposed. The per-
formance of BCI systems with sparse PCA and sparse CSP algorithms have
been evaluated on a vigilance estimation task and a motor imagery classifica-
tion task. Experimental results demonstrate that the BCI systems with sparse
PCA and CSP techniques have outperformed the ordinary BCI systems. This
result indicates that sparse subspace learning technique is very useful for EEG
data processing, which can improve the robustness of EEG-based BCI systems.
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In addition, as the solution of LARS-EN is global optimal in comparison with
other spare subspace learning techniques such as non-negative matrix factor-
ization [11], the solutions of sparse PCA and sparse CSP can be much more
stable.
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