
A

A
a

Y
a

b

a

A
R
R
A
A

K
M
P
L
C
C

1

M
i
p
l
o

m

b
O
r
i
m
d
a
w
t
t
o
p

1
h

ARTICLE IN PRESSG Model
SOC-1610; No. of Pages 14

Applied Soft Computing xxx (2012) xxx–xxx

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho mepage: www.elsev ier .com/ locate /asoc

 hierarchical particle swarm optimizer with latin sampling based memetic
lgorithm for numerical optimization

ong Penga,∗, Bao-Liang Lua,b

Center for Brain-like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
MoE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Shanghai Jiao Tong University, Shanghai 200240, PR China

 r t i c l e i n f o

rticle history:
eceived 31 December 2011
eceived in revised form 13 May 2012
ccepted 16 May 2012
vailable online xxx

eywords:

a b s t r a c t

Memetic algorithms, one type of algorithms inspired by nature, have been successfully applied to solve
numerous optimization problems in diverse fields. In this paper, we propose a new memetic computing
model, using a hierarchical particle swarm optimizer (HPSO) and latin hypercube sampling (LHS) method.
In the bottom layer of hierarchical PSO, several swarms evolve in parallel to avoid being trapped in local
optima. The learning strategy for each swarm is the well-known comprehensive learning method with
a newly designed mutation operator. After the evolution process accomplished in bottom layer, one
emetic algorithm
article swarm optimizer
atin hypercube sampling
omprehensive learning
ylindricity

particle for each swarm is selected as candidate to construct the swarm in the top layer, which evolves
by the same strategy employed in the bottom layer. The local search strategy based on LHS is imposed on
particles in the top layer every specified number of generations. The new memetic computing model is
extensively evaluated on a suite of 16 numerical optimization functions as well as the cylindricity error
evaluation problem. Experimental results show that the proposed algorithm compares favorably with

eral
conventional PSO and sev

. Introduction

Optimization has been a research hotspot for several decades.
any real-world optimization problems in engineering are becom-

ng increasingly complicated, so optimization algorithms with high
erformance are needed [1,2]. Unconstrained optimization prob-

ems can be formulated as D-dimensional optimization problems
ver continuous space

in f (x), x = [x1, x2, . . . , xD] (1)

Evolutionary algorithms, inspired by natural evolution, have
een widely used as effective tools to solve optimization problems.
ne class of nature inspired algorithms are swarm intelligent algo-

ithms. Particle swarm optimizer (PSO) [3,4] has attracted attention
n the academic and industrial community. Although PSO shares

any similarities with evolutionary algorithms, the original PSO
oes not use the traditional evolution operators such as crossover
nd mutation. PSO draws on the swarm behavior of birds flocking
here they search for food in a collaborative way. Each member, in

he swarm, called a particle, represents a potential solution to the
Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical partic
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi

arget problem and it adapts its search patterns by learning from its
wn experience and other members’ experience. The particle is a
oint in the search space and it aims at finding the global optimum

∗ Corresponding author.
E-mail address: StanY.Peng@gmail.com (Y. Peng).

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2012.05.020
variants.
© 2012 Elsevier B.V. All rights reserved.

which is regarded as the location of food. Each particle has two
attributes called position and velocity and its direction of flight is
adjusted according to the experiences of the swarm. The swarm as a
whole searches for the global optimum in D-dimensional feasibility
space.

The PSO algorithm is easy to understand and implement, and
has been proved to perform well on many optimization problems.
However, it may easily get trapped in a local optimum for many rea-
sons, such as the lack of diversity among particles and overlearning
from the best particle found so far. To improve PSO’s performance
on complex numerical optimization problems, we propose a hier-
archical PSO framework, in which several swarms evolve in parallel
towards the global optimum and we design a new mutation opera-
tor to increase the diversity of swarms. After evolving for a specified
number of generations, a latin hypercube sampling method is used
to execute the local search.

This paper is organized as follows. Section 2 introduces the
original PSO and some variants. Section 3 describes the proposed
hierarchical PSO with latin sampling based memetic algorithm,
including four subsections: hierarchical PSO framework, muta-
tion strategy, latin hypercube sampling based local search strategy
and the overall framework of the proposed memetic algorithm.
Section 4 gives the experimental results, describes the related
le swarm optimizer with latin sampling based memetic algorithm
.org/10.1016/j.asoc.2012.05.020

parameter tuning process and compares the performance of the
proposed algorithm on a suite of test problems to that of other
PSO variants. Section 5 gives conclusions and describes future
work.

dx.doi.org/10.1016/j.asoc.2012.05.020
dx.doi.org/10.1016/j.asoc.2012.05.020
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:StanY.Peng@gmail.com
dx.doi.org/10.1016/j.asoc.2012.05.020

ARTICLE IN PRESSG Model
ASOC-1610; No. of Pages 14

2 Y. Peng, B.-L. Lu / Applied Soft Computing xxx (2012) xxx–xxx

rticle

2

2

s
d
p
t
o
e
t

V

a

(
t
.
c
o
p
r

i
c
t

fl

Fig. 1. Original pa

. Particle swarm optimizers

.1. Original PSO

PSO is a stochastic optimization algorithm which simulates
warm behavior. The individuals move over a specified D-
imensional feasible space. As in a the genetic algorithm, the
articles in PSO are initialized with random velocities and posi-
ions. The algorithm adaptively updates the velocity and position
f each particle in the swarm by learning from the good experi-
nces. In the original PSO [3], the velocity Vi

d and position Xi
d of

he dth dimension of the ith particle are updated as follows.

d
i : = Vd

i + c1 · rand1d
i · (pbestd

i − Xd
i)

+ c2 · rand2d
i · (gbestd − Xd

i)

Xd
i := Xd

i + Vd
i (2)

where Xi = (X1
i

, X2
i

, . . . , XD
i

) is the position of the ith particle
nd Vi = (V1

i
, V2

i
, . . . , VD

i
) represents velocity of particle i, pbesti =

pbest1
i , pbest2

i , . . . , pbestD
i) is the best previous position yielding

he best fitness value for the ith particle, gbest = (gbest1, gbest2,
 . ., gbestD) is the best position found so far over the whole swarm,
1 and c2 are the acceleration constants, reflecting the weighting
f stochastic acceleration terms that pull each particle towards
best and gbest positions, respectively. rand1d

i
and rand2d

i
are two

andom numbers in the range [0,1].
A particle’s velocity on each dimension is confined to a max-

mum magnitude Vmax. If |Vd
i
| exceeds a pre-specified positive
Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical partic
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi

onstant value Vd
max, then the velocity on the dimension is assigned

o sign(|Vd
i
|)Vd

max.
The framework of the original PSO is shown in Fig. 1. From the

ow of the iterative process, we can find that each particle flies
swarm optimizer.

to the global best particle in the swarm; this leads to a severe
drawback of overlearning from the best particle. Consequently, the
diversity of the whole swarm will drop down dramatically. If the
best particle does not share the same niche with the global opti-
mum, the particles may easily get trapped in a local optimum.
Since PSO’s introduction in 1995, many researchers have worked on
improving its performance in various ways and many more effec-
tive variants have been proposed; these will be discussed in next
subsection.

2.2. Some variants of PSO

This section gives a brief survey of several PSO variants proposed
in recent years. Shi and Eberhart [5] introduced inertia weight w
into the original PSO algorithm, so the criterion for updating the
velocity was changed to

Vd
i := w · Vd

i + c1 · rand1d
i · (pbestd

i − Xd
i) + c2 · rand2d

i · (gbestd − Xd
i).

(3)

They indicated that the inertia weight plays an important role in
balancing the global and local search abilities; a large inertia weight
encourages global search while a small inertia weight encourages
local search. Based on this idea, the inertia weight is usually set to
decrease linearly over iterations.

Different types of topologies have been designed to improve
PSO’s performance in solving different optimization problems.
Kennedy [6,7] claimed that PSO with a small neighborhood might
perform better on complex problems, while PSO with large neigh-
le swarm optimizer with latin sampling based memetic algorithm
.org/10.1016/j.asoc.2012.05.020

borhood would perform better on simple problems. Suganthan
[8] defined the neighborhood of a particle as the several near-
est particles in each iteration so that a dynamic neighborhood
is computationally intensive. Jian et al. [9] examined several

dx.doi.org/10.1016/j.asoc.2012.05.020

 IN PRESSG Model
A

ft Computing xxx (2012) xxx–xxx 3

n
s
v
o
g
n
t
e
p
t
[
o
t
u
fl
L
o
m
p
w
p
s
[
t
t

o
s
i
a
[
fi
m
P
d
t
e
t
t
w
p
w
b
i
c
r

e
t
d
p
[
o
u
i
a
o

3

r
s
t
s

N

M

N N

Bottom layer

Top layer

swarm1 swarm Mswarm2

gbest1
gbestMgbest2
ARTICLESOC-1610; No. of Pages 14

Y. Peng, B.-L. Lu / Applied So

eighborhood topologies. The unified PSO (UPSO) proposed by Par-
opoulos and Vrahatis [10] combined the global version and local
ersion of the original PSO. Mendes et al. [11] used all the neighbors
f the particle to update the velocity instead of the pbest and the
best. The neighbors of each particle were selected based on its fit-
ess value and the size of neighborhood. Peram et al. [12] proposed
he fitness-distance-ratio-based PSO (FDR-PSO). When updating
ach velocity dimension, the FDR-PSO algorithm selects one other
article nbest, which has a higher fitness value and is nearer to
he particle being updated. In comprehensive learning PSO (CLPSO)
13], the velocity of each dimension is influenced by pbest of every
ther particle, which increases the diversity of the swarm for mul-
imodal optimization problems. In [14], several subswarms were
sed to coevolve with each other. The entire population was shuf-
ed at periodic stages and subswarms were reassigned. Yang and
i [15] developed a hierarchical clustering method to partition the
riginal swarm into several subswarms, which locate and track
ultiple optima in dynamic environments. Wang et al. [16] pro-

osed a memetic algorithm based on a particle swarm optimizer
ith a ring-shaped topology; later, he improved his algorithm by
artitioning particles in the ring-shaped topology structure into
everal species which can update information in parallel [17]. Chen
18] proposed a two-layer PSO (TLPSO) for unconstrained optimiza-
ion problems, where each subswarm was made to evolve based on
he original PSO.

Although the original PSO does not use the traditional evolution
perators such as crossover and mutation, researchers introduced
ome other search techniques including evolutionary operators
nto PSO to improve its performance. Evolutionary operators such
s crossover, mutation and selection were used in [19–21]. In Ref.
22], deflection, stretching and repulsion techniques are used to
nd as many minima as possible by preventing particles from
oving to a previously discovered minimal region. Cooperative

SO (CPSO-H) [23] uses one-dimensional swarms to search each
imension separately. In recent years, many advanced opera-
ors have been introduced to improve PSO’s performance. Ling
t al. [24] employed a wavelet-theory-based mutation operation
o enhance PSO in exploring the solution space more effec-
ively. Zhao [25] proposed a perturbed PSO (pPSO) algorithm
hich introduced the perturbed global best to deal with the
roblem of premature convergence and diversity maintenance
ithin the swarm. Gao et al. [26] incorporated the Henon map

ased mutation operator, which divided the mutation operator
nto global and local mutation operators; this enabled the parti-
les to have a stronger exploration ability and fast convergence
ate.

Although many variants of PSO have been proposed, all of which
nhance the performance of original PSO to some extent, the effec-
iveness of these variants in dealing with diverse problems with
ifferent characteristics is still unsatisfying. For example, CLPSO’s
erformance on ill-conditioned problems is poor and an algorithm
27] with high convergence speed is prone to shrink towards local
ptima. So taking measures including model structure, velocity
pdating strategy, and the hybrid operators simultaneously accord-

ng to the particles’ behavior to improve its performance may be
 feasible path to get a satisfactory result over diverse numerical
ptimization problems.

. The proposed memetic algorithm

In this section, we introduce the proposed memetic algo-
Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical partic
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi

ithm in detail; it is based on a hierarchical PSO framework and
ome search techniques including a local search strategy called
he latin hypercube sampling method and a hybrid mutation
trategy.
Fig. 2. The architecture of two-layer hierarchical PSO.

3.1. The hierarchical particle swarm optimizer

There are two versions of PSO, global and local, according to
the approach of choosing gbest. In the global version, each parti-
cle can be influenced by the particle with best fitness in the whole
swarm, which causes all the particles to move and converge quickly
on one optimum point in the search space. By contrast, the local
version only allows a particle to be influenced by the best fit-
ness particle from its neighborhood, which makes the algorithm
exhibit a good exploration capacity because the population can
slowly converge to the optimal space. Recently, many algorithms
have been proposed to partition the population into several sub-
swarms based on Euclidean distance [28], fitness value [29] and
some other metrics [15,17]. These subswarms are different defini-
tions of the neighborhood, and each particle can only interact with
particles in its neighborhood to avoid converging too fast. Obvi-
ously, computing the Euclidean distance is time-consuming when
the dimension is high; individuals with similar fitness values which
are prone to be classified into the same group may be in different
niches. And the species formation method [17] is complicated and
partially depends on the distance of particles. Here, we propose
a two-layer hierarchical PSO model. There are M swarms in the
bottom layer with N particles in each swarm and only one swarm
in the top layer. Fig. 2 gives the architecture of the hierarchical
PSO. For each swarm in the bottom layer, particles move towards
the optimum based on the comprehensive learning method [13]
described below, which is a typical local version of PSO. After each
iteration, M swarms in the bottom layer will generate M best parti-
cles which will stand chances into the top layer. So in the top layer,
the number of particles is identical to the number of swarms in
the bottom layer and they are trained by comprehensive learning
as well.

The reasons for the selecting hierarchical PSO can be stated as
follows. First, several swarms evolving in parallel can have a good
chance to reach the global optimum even if some of them stagnate
in local optima. Second, the swarms are generated randomly which
saves time in computing the neighborhood based on Euclidean dis-
tance. Though simple, this approach might be effective. For this
model, the movement of particles in the bottom layer is similar to
the local search and the movement of particles in the top layer is
similar to the global search. The best particle in the top layer can
influence particles in the bottom layer indirectly so that the speed
of convergence will slow down. So this model can work for both
exploitation and exploration simultaneously.

The comprehensive learning method [13] used to train particles
in the hierarchical PSO modal, is specifically designed for com-
plex multimodal problems. Simply speaking, CLPSO designs a set of
exemplars pbsetd

fi(d) for each particle to update its velocity instead
le swarm optimizer with latin sampling based memetic algorithm
.org/10.1016/j.asoc.2012.05.020

of the traditional pbest and gbest, which enlarges the search scope
and enhances the performance of local search. Fig. 3 gives the flow
of the comprehensive learning method.

dx.doi.org/10.1016/j.asoc.2012.05.020

ARTICLE IN PRESSG Model
ASOC-1610; No. of Pages 14

4 Y. Peng, B.-L. Lu / Applied Soft Computing xxx (2012) xxx–xxx

ensiv

3

i
d
o
m
t
t
c

X

w
o
m

a
p

Fig. 3. Compreh

.2. Mutation strategy

Most variants of PSO adopt strategies to update the old veloc-
ty vector based on the particles in neighborhood, so they have
ifficulty in adapting quickly to the different optimization stages
f ill-conditioned problems. In this subsection, we propose a new
utation operator, inspired by the mutation operation in Differen-

ial Evolution (DE) [30]. It updates the particles’ positions based on
he differential information and the pbest. The mutation operator
an be formulated as

d
i : = c · (Xd

k − Xd
j) + c · (pbestd

i − Xd
i);

c∼N(0.5, 0.2); (4)

here Xd
k

and Xd
j

are the dth variables of two randomly selected
ther particles, N(0.5,0.2) represents the Gaussian distribution with
Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical partic
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi

ean 0.5 and standard deviation 0.2.
We carry out the mutation operation after updating the pbest

nd gbest in both the bottom layer and the top layer based on the
robability Pm except the best particle in each swarm. This operator

Fig. 4. Latin sampling pro
e learning PSO.

will generate a disturbance when particles’ position are close to
local optima.

3.3. Local search based on latin sampling

Latin hypercube sampling, which was proposed by Mckay [31],
is a stratified sampling approach. This paper employs this sampling
method to exploit the excellent subspace which has been found at
present. Suppose that V is a hypercube with dimension n, of which
each dimension xi is denoted as [xi

l
, xi

u](i = 1, 2, . . ., n, xi
l

and xi
u are

the lower bound and the upper bound of dimension i, respectively),
then the algorithm of generating H samples in this hypercube V is
Fig. 4.

Here, a simple instance is provided to demonstrate the Latin
Sampling Process in detail. If the dimension of the hypercube is
two and the sampling scale is eight, then a satisfactory sampling
le swarm optimizer with latin sampling based memetic algorithm
.org/10.1016/j.asoc.2012.05.020

matrix A is formed.

A =
[

8 3 6 7 5 1 2 4

6 1 5 3 7 2 8 4

]T

(5)

cess in hypercube.

dx.doi.org/10.1016/j.asoc.2012.05.020

ARTICLE ING Model
ASOC-1610; No. of Pages 14

Y. Peng, B.-L. Lu / Applied Soft Com

1

2

3

4

5

6

7

8

9
 Latin Hypercube Sampling in 2 Dimensional Space

a
L
w
o
s
i

3

h
w

f
f
l
i

1 2 3 4 5 6 7 8 9

Fig. 5. Latin hypercube sampling in 2 dimensional space.

nd the corresponding samples in the hypercube is showed in Fig. 5.
atin hypercube sampling can be viewed as a space-filling design,
hich means that one and only one sample is selected in each row

r column of each sub hypercube. So the samples generated by latin
ampling are distributed uniformly in the hypercube space and this
s helpful to maintain the diversity of population.

.4. The proposed memetic algorithm

In this section, we introduce the hierarchical PSO with latin
ypercube sampling based memetic algorithm (MA-HPSOL) as
hole. Fig. 6 gives the overall framework of the proposed algorithm.

From Fig. 6, we know that hierarchical PSO is the main
Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical partic
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi

ramework of the proposed memetic algorithm. Swarms in the
ramework are trained by the comprehensive learning method. The
atin hypercube sampling based local search is performed every ten
terations. Furthermore, a differential information based mutation

Fig. 6. The proposed memetic
 PRESS
puting xxx (2012) xxx–xxx 5

operator is employed to maintain the diversity of the swarms. To
more explicitly describe the proposed algorithm, the complete flow
chat of MA-HPSOL is given in Fig. 7. In the next section, a large
number of test problems are used to evaluate the performance of
the proposed algorithm. Suppose that the computation cost of one
particle in the CLPSO approach is c, the cost of the mutation operator
is cm and the cost of Latin local search is cl, then the total computa-
tion cost of MA-HPSOL for one generation is (M + 1)N(c + cm) + M(cl).
But when solving real-world problems, usually the fitness evalua-
tion accounts for the most time as the PSO is highly computationally
efficient. So the algorithm-related computation times are not given
in this paper.

4. Experimental study

In this section, we evaluate the performance of MA-HPSOL
by solving 16 numerical optimization problems including eight
conventional unimodal and multimodal benchmarks,six rotated
benchmarks and two composition problems. The test problems are
scalable to any number of variables, so we mainly employ the test
problems with 10 and 30 variables. We will compare MA-HPSOL
with PSO with inertia weight PSOw [5], UPSO [10], FDR-PSO [12],
CLPSO [13] and TLPSO [18].

4.1. Test functions

In this subsection, we choose 16 function optimization prob-
lems to demonstrate the effectiveness of the proposed MA-HPSOL
algorithm. They can be classified into four types: unimodal, mul-
timodal, rotated and composite problems. Table 1 tabulates the
benchmark test functions with their notable characteristics. The
detailed characteristics of these test functions can be found
in [32].
le swarm optimizer with latin sampling based memetic algorithm
.org/10.1016/j.asoc.2012.05.020

4.2. Sensitivity in relation to parameters

For the proposed MA-HPSOL algorithm, there are four parame-
ters: M (the number of swarms in the bottom layer), N (the number

 algorithm (MA-HPSOL).

dx.doi.org/10.1016/j.asoc.2012.05.020

ARTICLE IN PRESSG Model
ASOC-1610; No. of Pages 14

6 Y. Peng, B.-L. Lu / Applied Soft Computing xxx (2012) xxx–xxx

V pbest gbest

k 1

mod(k,10)==0

k Gen

N

k k+1

Y

Y

N

M gbests M
M

gbest1 gbestMgbest2

gbest

osed

o
e

M
o
o
T
i
l
t
o
f
a
i
i
d
a
a
f

c
h
s
d

Fig. 7. Flow chat of prop

f particles in each swarm), the sampling scale p and the length of
ach dimension ı of the hypercube.

Sensitivity in relation to M and N. The experimental results of
A-HPSOL in optimizing functions 1, 2, 8 and 14 with the number

f swarms M increased from 2 to 10 in steps of 1 and the number
f particles N in each swarm increased from 2 to 10 in steps of 1.
he values of other parameters are as follows: the sampling scale
s 10, the length of each dimension ı of the hypercube is twice the
ength of the corresponding dimension of the selected particle and
he mutation probability is the inverse of dimensionality D (here
nly D = 10 is taken into consideration). The maximum number of
unction evaluations is set at 100,000. The data are statistical aver-
ge values of the number of function evaluations obtained from 30
ndependent runs. The results are shown in Fig. 8. From the exper-
mental results of several test functions (functions 1, 2, 8 and 14)
epicted in Fig. 8, we can easily find that small values of M and N
re encouraged by MA-HPSOL. Therefore, the number of swarms M
nd the number of particles N in each swarm are both set to 3 in all
ollowing experiments.

Sensitivity to the length of each dimension ı of the hyper-
Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical partic
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi

ube. How to get a proper neighborhood for exploitation if a particle
as been selected to execute the local search? Because each dimen-
ion of the particle may be different from others’, the length of each
imension ı of the hypercube should be adaptive to the selected
algorithm (MA-HPSOL).

particles. Here, we propose a simple method to specify ı which
shows excellent performance in our experiments. The length of
each dimension ı of the hypercube is twice the length of the corre-
sponding dimension of the selected particle.

Sensitivity to sampling scale p. It is difficult to choose a proper
sampling scale p because if we choose a bigger value, the gener-
ations for evolution will be few and if we choose a smaller value,
the neighborhood of a selected particle may not be exploited suffi-
ciently (if the maximum number of function evaluations is fixed).
So we should get a balance between the sampling scale p and the
generations of evolution. The experimental results of MA-HPSOL in
optimizing functions 8 and 14 with the sampling scale p from 5 to
30 in steps of 5 are shown in Fig. 9. Both the number of swarms M
and the number of particles N are set to 3, and other parameters
are the same as mentioned above. From the experimental results of
functions 8 and 14 depicted in Fig. 9, it is obvious that MA-HPSOL
gets better results when the sampling scale is set to 5, 10 and 15.
Therefore, the sampling scale p in all following experiments is set
to 10.

So all the parameters for MA-HPSOL are shown in Table 2, where
le swarm optimizer with latin sampling based memetic algorithm
.org/10.1016/j.asoc.2012.05.020

ı is set to 2 means that the length of each dimension ı of the hyper-
cube is two times the length of the corresponding dimension of the
selected particle and MAXFES stands for the maximum number of
function evaluations (10,000∗dimension).

dx.doi.org/10.1016/j.asoc.2012.05.020

Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical particle swarm optimizer with latin sampling based memetic algorithm
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi.org/10.1016/j.asoc.2012.05.020

ARTICLE IN PRESSG Model
ASOC-1610; No. of Pages 14

Y. Peng, B.-L. Lu / Applied Soft Computing xxx (2012) xxx–xxx 7

2
4

6
8

10

2

4

6

8

10
−300

−250

−200

−150

−100

−50

0

 M

 Sensitivity in relation to parameters M and N

 N

 lo
g

10
(F

it
n

es
s

V
al

u
e

o
f

fu
n

1)

2
4

6
8

10

2

4

6

8

10
−4

−3

−2

−1

0

1

 M

 Sensitivity in relation to parameters M and N

 N

 lo
g

10
(F

it
n

es
s

V
al

u
e

o
f

fu
n

2)

2
4

6
8

10

2

4

6

8

10
−10

−8

−6

−4

−2

0

2

 M

 Sensitivity in relation to parameters M and N

 N

 lo
g

10
(F

it
n

es
s

V
al

u
e

o
f

fu
n

8)

2
4

6
8

10

2

4

6

8

10
−10

−8

−6

−4

−2

0

2

 M

 Sensitivity in relation to parameters M and N

 N

 lo
g

10
(F

it
n

es
s

V
al

u
e

o
f

fu
n

14
)

Fig. 8. MA-HPSOL sensitivity in relation to M and N.

0 5 10 15 20 25 30 35
−1

0

1

2

3

4

5
x 10

−5

 Value of sampling scale p

 F
it

n
es

s
va

lu
e

o
f

fu
n

8

 Sensitivity in relation to sampling scale p

0 5 10 15 20 25 30 35
−5

0

5

10

15

20
x 10

−9

 Value of sampling scale p

 F
it

n
es

s
va

lu
e

o
f

fu
n

14

 Sensitivity in relation to sampling scale p

Fig. 9. MA-HPSOL sensitivity in relation to sampling scale p.

dx.doi.org/10.1016/j.asoc.2012.05.020

ARTICLE IN PRESSG Model
ASOC-1610; No. of Pages 14

8 Y. Peng, B.-L. Lu / Applied Soft Computing xxx (2012) xxx–xxx

Table 1
Benchmark functions used in this study.

Function Range Characteristics Optima

f1(x) =
∑D

i=1
x2

i
[−100,100] Unimodal 0

f2(x) =
∑D−1

i=1
(100(x2

i
− xi+1)2 + (xi − 1)2) [−2.048,2.048] Unimodal 0

f3(x) = −20exp

(
−0.2

√
1
D

∑D

i=1
x2

i

)

−exp
(

1
D

∑D

i=1
cos(2�xi)

)
+ 20 + e [−32.768,32.768] Multimodal 0

f4(x) =
∑D

i=1

x2
i

4000 −
∏D

i=1
cos

(
xi√

i

)
+ 1 [−600,600] Multimodal 0

f5(x) =
∑D

i=1
{
∑kmax

k=1
[ak cos(2�bk(xi + 0.5))]}

−D
∑kmax

k=1
{ak cos(2�bk · 0.5)}

a = 0.5, b = 3, kmax = 20; [−0.5,0.5] Multimodal 0

f6(x) =
∑D

i=1
{x2

i
− 10 cos(2�xi) + 10} [−5.12,5.12] Multimodal 0

f7(x) =
∑D

i=1
{y2

i
− 10 cos(2�yi) + 10}

yi =
{

xi |xi| < 0.5
round(2xi)

2
|xi| ≥ 0.5

,

i = 1, 2, . . ., D [−5.12,5.12] Multimodal 0

f8(x) = 418.9829D −
∑D

i=1
{xi sin(|xi|0.5)} [−500,500] Multimodal 0

f9(x) = f3(y), y = M ∗ x [−32.768,32.768] Rotated 0
f10(x) = f4(y), y = M ∗ x [−600,600] Rotated 0
f11(x) = f5(y), y = M ∗ x [−0.5,0.5] Rotated 0
f12(x) = f6(y), y = M ∗ x [−5.12,5.12] Rotated 0
f13(x) = f7(y), y = M ∗ x [−5.12,5.12] Rotated 0

f14(x) = 418.9829D −
∑D

i=1
zi

zi =
{

yi sin(|yi|0.5) |yi| ≤ 500
0.001(|yi| − 500)2 |yi| > 500

,

i = 1, 2, . . ., D ; y = M ∗ (x − 420.96) + 420.96 [−500,500]

f15 = CF1 [−5,5]

f16 = CF2 [−5,5]

Table 2
Parameters setting for MA-HPSOL.

Parameters Dimension

10D 30D

M, N {3,3} {3,3}

4

b
1
t

T
S

p 10 10
ı 2 2
MAXFES 10,000*10 10,000*30

.3. Experimental results of MA-HPSOL on test functions
Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical partic
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi

In this section, we will give the experimental results obtained
y MA-HPSOL in optimizing above-mentioned 16 functions with
0 and 30 variables. Based on the parameter sensitivity analysis,
he parameters are set as shown in Table 2. Table 3 shows the

able 3
tatistical results of MA-HPSOL in optimizing 10-D functions.

Functions Max Min Mean Std

f1 0 0 0 0
f2 1.3825e−003 3.6072e−010 2.3089e−004 3.8665e−004
f3 0 0 0 0
f4 0 0 0 0
f5 0 0 0 0
f6 0 0 0 0
f7 0 0 0 0
f8 2.4559e−007 1.0914e−011 1.1462e−008 4.5219e−008
f9 0 0 0 0
f10 0 0 0 0
f11 0 0 0 0
f12 0 0 0 0
f13 0 0 0 0
f14 2.3173e−008 2.7285e−012 1.4677e−009 4.3905e−009
f15 2.3587e−009 6.2578e−013 3.0186e−010 2.3079e−010
f16 5.1823e+000 1.8756e+000 3.4610e+000 2.8459e+000
Rotated 0
Composition 0
Composition 0

statistical results of MA-HPSOL in optimizing the 16 functions with
ten variables (10-D functions) based on 30 independent runs, which
includes the maximum, minimum, mean and standard deviation.
The termination criterion in this experiment is to run MA-HPSOL
until the number of function evaluations reaches the maximum
value 100,000. Obviously MA-HPSOL performs very well on most
of the 16 functions. For functions 1, 3, 4, 5, 6, 7, 9, 10, 11, 12 and
13, the maximum, minimum and mean values of the 30 runs are
all equal to the optimal values. The performance of MA-HPSOL is
stable enough because the diversity is kept on a higher level to
avoid premature convergence. But when solving the functions 2,
8, 14, 15 and 16, MA-HPSOL does not get accurate optimal results.
Due to the ill-conditional nature of function 2 (Rosenbrock prob-
lem) and function 8 (Schwefel problem), which has optimal values
at (1,1, . . ., 1) and (420.96, 420.96, . . ., 420.96), it is hard to adapt
quickly to the different optimization stages. Also, function 14 is
the rotational version of function 8, so there is some distance
between the local optimum found (1.4677e−009) and the global
optimum 0.

For the two composition functions, most of the solutions are
obviously worse than the optimal values. The reason for the
poor performance is that both functions are more challenging
problems with a randomly located global optimum and several
randomly located deep local optima. They are asymmetrical mul-
timodal problems, with different properties in different areas. Due
to the complex shape of the composition functions, it is diffi-
cult to get the same accurate results as the benchmark functions.
However, we find that MA-HPSOL gets relatively good results
of these two composite functions when compared with some
state-of-the-art algorithms, which will be shown in the following
le swarm optimizer with latin sampling based memetic algorithm
.org/10.1016/j.asoc.2012.05.020

part.
The experimental results for MA-HPSOL in optimizing the 16

functions with 30 variables (30-D functions) are shown in Table 4.
The maximum number of function evaluations is set at 300,000.

dx.doi.org/10.1016/j.asoc.2012.05.020

ARTICLE ING Model
ASOC-1610; No. of Pages 14

Y. Peng, B.-L. Lu / Applied Soft Com

Table 4
Statistical results of MA-HPSOL in optimizing 30-D functions.

Functions Max Min Mean Std

f1 3.9525e−318 2.9644e−323 1.3562e−319 0
f2 8.3908e−005 1.1101e−015 5.3122e−006 1.7546e−005
f3 3.5527e−015 0 1.8948e−015 1.8027e−015
f4 0 0 0 0
f5 0 0 0 0
f6 0 0 0 0
f7 0 0 0 0
f8 4.7294e−011 0 9.2162e−012 9.1629e−012
f9 0 0 0 0
f10 0 0 0 0
f11 0 0 0 0
f12 0 0 0 0
f13 0 0 0 0
f14 2.5466e−011 0 5.0932e−012 5.7601e−012
f15 4.2483e−016 8.4579e−018 8.9180e−017 4.6175e−017

T
T
d
6
i
t
g

inal work. The termination criteria is to run the algorithms until

T
R

f16 1.2781e+001 1.2472e+000 4.5891e+000 3.4578e+000

he other parameters are the same as those for 10-D functions.
he statistical results in Table 4 are obtained from 30 indepen-
ent runs. As shown in Table 4, when solving the functions 4, 5,
, 7, 9, 10, 11, 12 and 13, the statistical results including the max-
Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical partic
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi

mum, minimum and mean values for the 30 runs are all equal
o the optimal values. The results of functions 1 and 3 are not so
ood as the results obtained in the 10-D experiment. The main

able 5
esults of six algorithms for 10-D results.

PSOs Func

f1 f2

PSOw 1.1911e−222 ± 0.0000e−000 6.7300e−001±1.2280e−00
UPSO 0 ± 0 9.1158e−001 ± 1.6832e−0
FDR-PSO 2.3711e−292 ± 0.0000e−000 5.3167e−001 ± 1.3785e−0
CLPSO 1.0661e−121 ± 5.8364e−121 2.4131e+000 ± 1.7242e+00
TLPSO 7.4796e−149 ± 4.0967e−148 5.1611e+000 ± 1.2933e+00
MA-HPSOL 0 ± 0 2.3089e−004 ± 3.8665e−0

PSOs Func

f5 f6

PSOw 8.0020e−004 ± 1.7287e−003 5.3396e+000 ± 3.1839e+00
UPSO 1.1946e−000 ± 8.3523e−001 1.1613e+001 ± 6.8241e+00
FDR-PSO 2.5278e−003 ± 1.0585e−002 3.7145e+000 ± 2.7396e+00
CLPSO 0 ± 0 0 ± 0

TLPSO 2.2998e−013 ± 1.2503e−012 1.7962e+000 ± 4.8035e+00
MA-HPSOL 0 ± 0 0 ± 0

PSOs Func

f9 f10

PSOw 2.0899e−001 ± 4.8204e−001 1.4705e−001 ± 7.8549e−0
UPSO 1.3929e+000 ± 1.2389e+000 1.0107e−001 ± 7.2331e−0
FDR-PSO 1.5402e−001 ± 3.99.9e−001 1.6642e−001 ± 5.6494e−0
CLPSO 5.7048e−006 ± 1.4831e−005 2.5077e−004 ± 1.3499e−0
TLPSO 1.3536e−013 ± 5.9653e−013 3.5548e−002 ± 4.6763e−0
MA-HPSOL 0 ± 0 0 ± 0

PSOs Func

f13 f14

PSOw 8.7333e+000 ± 2.6773e+000 7.9385e+002 ± 3.2423e+00
UPSO 1.3171e+001 ± 6.4240e+000 1.0933e+003 ± 3.9505e+00
FDR-PSO 1.0267e+001 ± 3.6192e+000 1.0588e+003 ± 3.7468e+00
CLPSO 3.9943e+000 ± 1.1333e+000 2.3378e+002 ± 1.8373e+00
TLPSO 1.0502e+001 ± 5.3488e+000 1.5355e+003 ± 3.8439e+00
MA-HPSOL 0 ± 0 1.4677e−009 ± 4.3905e−0
 PRESS
puting xxx (2012) xxx–xxx 9

reason accounting for this phenomenon may be the lack of a suffi-
cient number of particles for exploring the feasible space. We use
the same pair of {M,N}={3,3} for both 10-D and 30-D experiments,
which means the total particles in the population is 9. This num-
ber of particles is proper for 10-D experiments, and MA-HPSOL
obtains promising results as do some other algorithms [13]. But
the landscape of test 30-D functions is so complex that it is dif-
ficult to explore such a high dimensional feasible space (D = 30)
with so few particles. As the results of functions 2, 8, 14, 15 and
16 show, MA-HPSOL can get values which are very close to the
optima. Also, the standard are very small for all of these functions,
which means that MA-HPSOL exhibits excellent stability over all
30 runs.

4.4. Comparisons with state-of-the-art algorithms

In order to further verify the effectiveness of MA-HPSOL, we use
experiments to evaluate the performance of MA-HPSOL by compar-
ing it with five existing algorithms, PSOw [5], UPSO [10], FDR-PSO
[12], CLPSO [13] and TLPSO [18]. For easy comparison with state-of-
the-art algorithms, the population size for all six algorithms is set to
9. Any specific parameters are set exactly the same as in the orig-
le swarm optimizer with latin sampling based memetic algorithm
.org/10.1016/j.asoc.2012.05.020

the number of function evaluations reaches the maximum value
100,000. All the results given in Table 5 are based on 30 independent
runs.

f3 f4

0 2.3566e−014 ± 4.3135e−014 8.9226e−002 ± 4.1675e−002
00 1.7941e+000 ± 1.8726e+000 1.0769e−001 ± 1.2112e−001
00 1.1842e−014 ± 9.2046e−015 1.1020e−001 ± 4.7358e−002
0 3.5527e−015 ± 0.0000e−000 2.5449e−003 ± 5.2275e−003
0 3.5290e−014 ± 6.8554e−014 2.0856e−002 ± 2.7759e−002
04 0 ± 0 0 ± 0

f7 f8

0 3.4667e+000 ± 2.0965e+000 5.4087e+002 ± 2.0281e+002
0 1.0333e+000 ± 1.2389e+000 9.9245e+002 ± 2.8162e+002
0 1.0000e+000 ± 1.5313e+000 6.9418e+002 ± 1.9950e+002

0 ± 0 2.4358e−005 ± 8.5697e−005
0 1.6667e−001 ± 9.1287e−001 1.5193e+003 ± 3.2714e+002

0 ± 0 1.1462e−008 ± 4.5219e−008

f11 f12

02 5.5281e−001 ± 7.0310e−001 9.4189e+000 ± 4.1126e+000
02 2.3732e+000 ± 1.2709e+000 1.5531e+001 ± 5.8409e+000
02 3.4951e−001 ± 4.3231e−001 1.1077e+001 ± 4.9969e+000
03 5.2010e−004 ± 2.8571e−004 4.1516e+000 ± 1.8617e+000
02 9.0035e−001 ± 1.0941e−000 1.7993e+001 ± 6.5542e+000

0 ± 0 0 ± 0

f15 f16

2 1.2333e+002 ± 1.3047e+002 1.5285e+002 ± 2.1481e+002
2 6.6667e+001 ± 7.5810e+001 1.3183e+002 ± 1.4388e+002
2 1.1333e+002 ± 1.1958e+002 1.4412e+002 ± 1.9202e+002
2 9.4634e+000 ± 2.8594e+001 4.9802e+000 ± 2.5518e+000
2 5.3404e+001 ± 8.5992e+001 6.6410e+001 ± 1.0810e+002
09 3.0186e−010 ± 2.3079e−009 3.4610e+000 ± 2.8459e+000

dx.doi.org/10.1016/j.asoc.2012.05.020

ARTICLE IN PRESSG Model
ASOC-1610; No. of Pages 14

10 Y. Peng, B.-L. Lu / Applied Soft Computing xxx (2012) xxx–xxx

Table 6
Results of six algorithms for 30-D results.

PSOs Func

f1 f2 f3 f4

PSOw 5.4003e−014 ± 2.7946e−013 2.0220e+001 ± 2.7331e+000 1.2901e−000 ± 7.9643e−001 3.0255e−002 ± 3.0136e−002
UPSO 5.7543e−048 ± 1.8637e−047 1.7619e+001 ± 2.8343e+000 9.3904e+000 ± 3.2206e+000 4.6661e−001 ± 1.0997e−000
FDR-PSO 4.1352e−037 ± 1.3299e−036 1.8431e+001 ± 2.0006e+000 1.9836e−001 ± 4.6920e−001 2.0955e−002 ± 2.5570e−002
CLPSO 4.2811e−100 ± 2.3448e−099 1.9102e+001 ± 5.9737e+000 1.0184e−014 ± 3.7007e−015 0 ± 0
TLPSO 5.5844e−000 ± 1.7482e−000 3.4220e+001 ± 2.3256e+001 4.3912e+000 ± 6.7563e+000 3.7541e+000 ± 1.3289e+001
MA-HPSOL 1.3562e−319 ± 0 5.3122e−006 ± 1.7546e−005 1.8948e−015 ± 1.8027e−015 0 ± 0

PSOs Func

f5 f6 f7 f8

PSOw 2.4549e+000 ± 1.7194e+000 5.4391e+001 ± 1.8495e+001 4.7067e+001 ± 1.0748e+001 3.3460e+003 ± 5.3609e+002
UPSO 1.7658e+001 ± 3.7136e+000 8.8207e+001 ± 2.4246e+001 6.8608e+001 ± 3.6082e+001 5.1012e+003 ± 8.0621e+002
FDR-PSO 1.4589e+000 ± 1.3015e+000 4.8653e+001 ± 7.9526e+000 2.0467e+001 ± 1.1834e+001 3.8710e+003 ± 4.6738e+002
CLPSO 0 ± 0 9.2863e−001 ± 8.2351e−001 3.5333e+000 ± 1.8144e+000 3.2373e+002 ± 1.7017e+002
TLPSO 8.6334e+000 ± 6.2190e+000 1.2334e+002 ± 3.7287e+001 9.3403e+001 ± 3.0241e+001 6.9289e+003 ± 7.3891e+002
MA-HPSOL 0 ± 0 0 ± 0 0 ± 0 9.2162e−012 ± 9.1629e−012

PSOs Func

f9 f10 f11 f12

PSOw 2.3447e−000 ± 7.2235e−001 2.5026e−002 ± 2.4675e−002 8.3977e+000 ± 2.8246e+000 6.9846e+001 ± 1.8030e+001
UPSO 9.9534e+000 ± 2.2655e+000 1.2333e−001 ± 2.4671e−001 2.3634e+001 ± 2.7319e+000 1.0299e+002 ± 2.9672e+001
FDR-PSO 1.7451e+000 ± 5.9430e−001 1.9906e−002 ± 2.4336e−002 6.0272e+000 ± 1.7910e+000 6.0891e+001 ± 1.3842e+001
CLPSO 2.1219e−005 ± 1.0226e−004 2.4710e−004 ± 1.3502e−003 3.0519e+000 ± 2.0973e+000 3.9856e+001 ± 8.7627e+000
TLPSO 4.7013e+000 ± 7.3372e+000 2.9873e−002 ± 1.2639e−001 1.6220e+001 ± 7.8068e+000 1.3424e+002 ± 3.1714e+001
MA-HPSOL 0 ± 0 0 ± 0 0 ± 0 0 ± 0

PSOs Func

f13 f14 f15 f16

PSOw 7.9900e+001 ± 2.2287e+001 4.4924e+003 ± 7.9191e+002 3.0000e+001 ± 7.0221e+001 4.2018e+001 ± 8.9057e+001
UPSO 1.1684e+002 ± 2.7428e+001 5.9841e+003 ± 8.5677e+002 9.3333e+001 ± 1.4606e+002 1.4799e+002 ± 1.0022e+002
FDR-PSO 6.3675e+001 ± 1.6926e+001 4.6024e+003 ± 8.3439e+002 3.6667e+001 ± 7.6489e+001 6.4385e+001 ± 1.3767e+002

3e+00
4e+00
1e−0

m
s

I

w
b
t
o
t
t
t
m
t
r

D

v
(
t
S
t

H

CLPSO 3.8088e+001 ± 8.5958e+000 2.8051e+003 ± 5.758
TLPSO 1.1142e+002 ± 3.3820e+001 7.7998e+003 ± 7.349
MA-HPSOL 0 ± 0 5.0932e−012 ± 5.760

Furthermore, a distance function Index(D) for describing the
ean distance between the optimal solution and the obtained best

olution is defined as follows [33].

ndex(D) = |fopt(D) − fbest(D)|
D

. (6)

here fopt(D) and fbest(D) are the optimal solution and the obtained
est solution, respectively. This metric is usually used to compare
he decreasing velocities of the differences between the solutions
btained by all kinds of evolutionary algorithms and the target solu-
ion. In this paper, the optima for all the test functions are 0 and
he obtained best solutions are usually very close to 0, so we use
he log10 (fbest(D)) instead of fbest(D) for narrowing the interval of

etric. But the abs(log) function is not monotonic so we modify
he Index(D) to Dist(D) as follows so that we can easily visualize the
esults of each algorithm.

ist(D) = (log10(fbest(D)) − fopt(D))
D

(7)

Fig. 10 presents the Dist(D) values in terms of the best fitness
alue of the median run of each algorithm for each test function
D = 10). We record the best solutions every 5000 function evalua-
ions for each test problem with total function evaluations 100,000.
Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical partic
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi

o the interval for the horizontal coordinate is [1,20] and the ver-
ical coordinate shows the Dist(D).

From the results in Table 5 and Fig. 10, we observe that MA-
PSOL surpasses all other algorithms on all functions except
2 4.3520e−003 ± 2.3791e−002 2.1560e+001 ± 7.2032e+001
2 5.4619e+001 ± 3.5070e+001 3.9283e+002 ± 3.5491e+002
12 8.9180e−017 ± 4.6175e−017 4.5891e+000 ± 3.4578e+000

function 8. The performance of CLPSO in optimizing function 8
is superior to MA-HPSOL. However, when we run both CLPSO
and MA-HPSOL 50 independent times we find that CLPSO holds
a very small probability (3/50) to trap in local optima 118.4383
and 236.8767 while MA-HPSOL still obtain results with precision
10−8. The convergence characteristic of MA-HPSOL is very promis-
ing in optimizing unimodal, multimodal, rotated multimodal and
composite problems. For UPSO, it just performs well on unimodal
function 1 and also other algorithms get good results. PSOw shows
good convergence characteristics on functions 1, 3 and 9 while FDR-
PSO has a relatively good convergence for functions 2, 3 and 9.
This is a reasonable phenomenon because function 9 is just the
rotational version of function 3. TLPSO shows good convergence
in optimizing functions 1, 3, 5, 6, 7, 9 and 10. Because particles in
MA-HPSOL are trained with the comprehensive learning method,
MA-HPSOL and CLPSO share some similar convergence characteris-
tics in optimizing functions 1, 3, 4, 8, 9, 15 and 16 with the difference
that MA-HPSOL converges faster than CLPSO. Especially for func-
tions 3, 4, 5, 6, 7, 9, 10, 11, 12 and 13, MA-HPSOL converges to
the global optimum in less than 20,000 function evaluations on the
whole. This is mainly caused by multi-swarms in the hierarchical
architecture and the local search strategy.

Table 6 gives the means and standard deviations of the 30 runs
le swarm optimizer with latin sampling based memetic algorithm
.org/10.1016/j.asoc.2012.05.020

of the six algorithms on the sixteen test functions with D = 30. As
the convergence graphs are similar to the 10-D problems, they are
not presented here. It is a acid test for these algorithms holding
a population with just 9 particles. From the results in Table 6, we

dx.doi.org/10.1016/j.asoc.2012.05.020

Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical particle swarm optimizer with latin sampling based memetic algorithm
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi.org/10.1016/j.asoc.2012.05.020

ARTICLE IN PRESSG Model
ASOC-1610; No. of Pages 14

Y. Peng, B.-L. Lu / Applied Soft Computing xxx (2012) xxx–xxx 11

0 5 10 15 20
−35

−30

−25

−20

−15

−10

−5

0

5

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 1

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 2

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 3

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 4

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 5

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 6

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 7

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 8

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

Fig. 10. The median dist(D) values of 10-D test functions.

dx.doi.org/10.1016/j.asoc.2012.05.020

Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical particle swarm optimizer with latin sampling based memetic algorithm
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi.org/10.1016/j.asoc.2012.05.020

ARTICLE IN PRESSG Model
ASOC-1610; No. of Pages 14

12 Y. Peng, B.-L. Lu / Applied Soft Computing xxx (2012) xxx–xxx

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 9

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 10

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 11

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 12

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 13

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 14

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1

−0.5

0

0.5

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 15

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

 Function evaluations

 In
d

ex
:

D
IS

T
(D

=1
0)

 Function 16

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

Fig. 10. (continued)

dx.doi.org/10.1016/j.asoc.2012.05.020

ARTICLE IN PRESSG Model
ASOC-1610; No. of Pages 14

Y. Peng, B.-L. Lu / Applied Soft Computing xxx (2012) xxx–xxx 13

c
M
p
i
o

4

h
p
b
b
T
u
m
i
m
c

F
n
c
t
d

e

w
e
o
t
z
f

f

p
f
i
p
g
T
p
i
H
e
l

Table 7
Results of data set 1 cylindricity error evaluation.

Parameter Improved GA [37] PSO [38] MA-HPSOL

x0 0.0009250 0.003315 0.0020284
y0 −0.0002253 0.002814 0.0000496
z0 0.0014643 0 0
l 0.0000435 −0.00052 0.0000591
m 0.0000162 0.000609 0.0000214
n 0.9996235 1 1
Cylindricity 0.0105976 0.025368 0.0104864

Table 8
Results of data set 2 cylindricity error evaluation.

Parameter Improved GA [41] PSO-DE [39] MA-HPSOL

x0 0.011853 0.010650 0.0106429
y0 0.047689 0.046918 0.0469181
z0 0 0 0
l −0.000674 −0.000619 −0.000619
Fig. 11. Definition of cylindricity error.

an observe that the performance of almost all algorithms except
A-HPSOL degrade dramatically in optimizing high-dimensional

roblems with a small population size. Taking CLPSO for example,
t can attain the precision of 10−12 with population size 40, but it
nly 103 with population size 9.

.5. Cylindricity error evaluation based on MA-HPSOL

In the past few years, many kinds of evolutionary algorithms
ave contributed to optimize a wide range of manufacturing
rocess [34–36], whose demands to be more robust, more flexi-
le, more complex are ever increasing. Cylindrical features have
ecome one of the most important features in mechanical designs.
hey contribute significantly to fundamental mechanical prod-
cts such as transmission systems, revolving devices and injection
olds, to achieve the intended functionalities. Therefore, evaluat-

ng cylindricity error precisely is very important in high precision
anufacturing. Many attempts have been made for evaluating the

ylindricity error [37,38].
The definition of cylindricity error can be stated as follows [39].

ig. 11 illustrates the cross section of a cylinder with axis direction
(l,m,1) and radius R. The projection of a measured point P onto the
ylinder is F. Assuming the axis passes the point Q(x0, y0, 0), then
he axis function can be expressed as (x − x0)/l = (y − y0)/m = z. The
istance from Pi(i = 1, 2, . . ., N) to the axis is

i = |EPi| = | �QPi × n|
|n| =

∣∣∣∣∣∣∣∣∣

�i �j �k
xi − x0 yi − y0 zi

l m 1

∣∣∣∣∣∣∣∣∣√
l2 + m2 + 1

, (8)

here | · | means the length of a vector in the Euclidean space. Math-
matically, the cylindricity error evaluation can be formulated as an
ptimization problem with parameter vector (x0, y0, l, m). Hence,
he fitness function of evaluating cylindricity error under minimum
one cylinder (MZC) criterion is aiming at minimizing the objective
unction:

 (x0, y0, l, m) = max(ei) − min(ei). (9)

Here we will evaluate the cylindricity error by the above pro-
osed MA-HPSOL algorithm and related parameters are set as
ollows: (1) The MA-HPSOL dependent parameters are set as shown
n Table 2; (2) Dimension of particles is 4, which is the length of
arameter vector (x0, y0, l, m); (3) Terminal condition: maximum
enerations 100. The remaining parameters are the same as [13].
he measurement data sets are introduced from Refs. [38,40]. All
arameters are initialized in [−1,1]. The evaluating results are given
Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical partic
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi

n Tables 7 and 8. As shown in Tables 7 and 8, the proposed MA-
PSOL algorithm is a competitive approach in cylindricity error
valuation, which is obviously a complicated optimization prob-
em. When comparing with other types of evolutionary algorithms
m 0.002960 −0.002915 −0.002915
n 1 1 1
Cylindricity 0.184274 0.18397196 0.1839592

(Improved GA [37,41], PSO [38], PSO-DE [39]), the results obtained
by MA-HPSOL are better than that listed in existing literatures.

5. Conclusion and future work

This paper presents a high performance memetic algorithm
(MA-HPSOL) to deal with complex numerical optimization prob-
lems. Within the framework of the proposed algorithm, there are
three main components: an hierarchical particle swarm optimizer
for exploration, a local search method based on latin hypercube
sampling for exploitation and a mutation operator using differen-
tial information.

Concretely, the hierarchical PSO is composed of two layers: the
bottom layer and the top layer. Particles in each swarm of the
bottom layer evolve independently, which means each swarm is
a niche with no influence on other swarms. Global best position
in each swarm of the bottom layer becomes the candidate of the
particle in the top layer, so the global best position in the swarm
of the top layer steers the particles in each swarm of the bottom
layer indirectly. The local search strategy, latin hypercube sam-
pling, aims at exploiting the best solutions found so far uniformly.
Both such exploration and the exploitation operators can help keep
the diversity of whole population on a higher level to avoid par-
ticles’ trapping into local optima. Even if particles in one swarm
are trapped in local optima, other swarms are also likely to reach
the global optima. Furthermore, a mutation operator, aiming at
modifying the particles’ positions based on differential informa-
tion, is used. According to the experimental results on 16 functions,
the proposed memetic algorithm (MA-HPSOL) has excellent per-
formance to find global optimal solutions. MA-HPSOL is used to
evaluate the cylindricity error and the experimental results show
that it can obtain competitive performance as well.

For our future work, two aspects, quantitatively depicting the
diversity of the whole population and imposing mutual communi-
cation among swarms in the bottom layer, will be investigated in
depth.

Acknowledgments

This work was partially supported by the National Basic
le swarm optimizer with latin sampling based memetic algorithm
.org/10.1016/j.asoc.2012.05.020

Research Program of China (grant no. 2009CB320901) and the Euro-
pean Union Seventh Framework Program (grant no. 247619). We
would like to thank Prof. P.N. Suganthan for providing the source
code of “CLPSO”.

dx.doi.org/10.1016/j.asoc.2012.05.020

 ING Model
A

1 ft Com

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ARTICLESOC-1610; No. of Pages 14

4 Y. Peng, B.-L. Lu / Applied So

eferences

[1] H. Azamathulla, F. Wu, Support vector machine approach for longitudinal dis-
persion coefficients in natural streams, Applied Soft Computing 11 (2) (2011)
2902–2905.

[2] H. Azamathulla, A. Ghani, C. Chang, Z. Hasan, N. Zakaria, Machine learning
approach to predict sediment load—a case study, Clean-Soil, Air, Water 38 (10)
(2010) 969–976.

[3] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.

[4] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human
Science, 1995, pp. 39–43.

[5] Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of IEEE
International Conference on Evolutionary Computation, 1998, pp. 69–73.

[6] J. Kennedy, Small worlds and mega-minds: effects of neighborhood topology on
particle swarm performance, in: Proceedings of IEEE Congress on Evolutionary
Computation, vol. 3, 1999.

[7] J. Kennedy, R. Mendes, Population structure and particle swarm performance,
in: Proceedings of IEEE Congress on Evolutionary Computation, vol. 2, IEEE,
2002, pp. 1671–1676.

[8] P. Suganthan, Particle swarm optimiser with neighbourhood operator, in: Pro-
ceedings of IEEE Congress on Evolutionary Computation, vol. 3, 1999.

[9] W. Jian, Y. Xue, J. Qian, Improved particle swarm optimization algorithms study
based on the neighborhoods topologies, in: Proceedings of IEEE Annual Con-
ference of Industrial Electronics Society, vol. 3, 2004, pp. 2192–2196.

10] K. Parsopoulos, M. Vrahatis, UPSO: a unified particle swarm optimization
scheme, Lecture Series on Computer and Computational Sciences 1 (2004)
868–873.

11] R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler,
maybe better, IEEE Transactions on Evolutionary Computation 8 (3) (2004)
204–210.

12] T. Peram, K. Veeramachaneni, C. Mohan, Fitness–distance-ratio based particle
swarm optimization, in: Proceedings of IEEE Symposium on Swarm Intelli-
gence, 2003, pp. 174–181.

13] J. Liang, A. Qin, P. Suganthan, S. Baskar, Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions, IEEE Transactions
on Evolutionary Computation 10 (3) (2006) 281–295.

14] Y. Jiang, T. Hu, C. Huang, X. Wu, An improved particle swarm optimization
algorithm, Applied Mathematics and Computation 193 (1) (2007) 231–239.

15] S. Yang, C. Li, A clustering particle swarm optimizer for locating and tracking
multiple optima in dynamic environments, IEEE Transactions on Evolutionary
Computation 14 (6) (2010) 959–974.

16] H. Wang, S. Yang, W. Ip, D. Wang, A particle swarm optimization based memetic
algorithm for dynamic optimization problems, Natural Computing 9 (3) (2010)
703–725.

17] H. Wang, S. Yang, W.H. Ip, D. Wang, A memetic particle swarm optimisation
algorithm for dynamic multi-modal optimisation problems, International Jour-
nal of Systems Science 43 (7) (2012) 1268–1283.

18] C. Chen, Two-layer particle swarm optimization for unconstrained optimiza-
tion problems, Applied soft computing 11 (1) (2011) 295–304.

19] P. Angeline, Using selection to improve particle swarm optimization, in: Pro-
ceedings of IEEE International Conference on Evolutionary Computation, 1998,
pp. 84–89.

20] M. Lovbjerg, T. Rasmussen, T. Krink, Hybrid particle swarm optimiser with
Please cite this article in press as: Y. Peng, B.-L. Lu, A hierarchical partic
for numerical optimization, Appl. Soft Comput. J. (2012), http://dx.doi

breeding and subpopulations, in: Proceedings of the Third Genetic and Evo-
lutionary Computation Conference, vol. 1, Citeseer, 2001, pp. 469–476.

21] V. Miranda, N. Fonseca, EPSO-evolutionary particle swarm optimization, a new
algorithm with applications in power systems, in: Transmission and Distribu-
tion Conference and Exhibition: Asia Pacific. IEEE/PES, vol. 2, 2002, pp. 745–750.

[

 PRESS
puting xxx (2012) xxx–xxx

22] K. Parsopoulos, M. Vrahatis, On the computation of all global minimizers
through particle swarm optimization, IEEE Transactions on Evolutionary Com-
putation 8 (3) (2004) 211–224.

23] F. Van den Bergh, A. Engelbrecht, A cooperative approach to particle swarm
optimization, IEEE Transactions on Evolutionary Computation 8 (3) (2004)
225–239.

24] S. Ling, H. Iu, K. Chan, H. Lam, B. Yeung, F. Leung, Hybrid particle swarm
optimization with wavelet mutation and its industrial applications, IEEE
Transactions on Systems, Man, and Cybernetics, Part B 38 (3) (2008)
743–763.

25] X. Zhao, A perturbed particle swarm algorithm for numerical optimization,
Applied Soft Computing 10 (1) (2010) 119–124.

26] H. Gao, W. Xu, Particle swarm algorithm with hybrid mutation strategy, Applied
Soft Computing 11 (8) (2011) 5129–5142.

27] S. Hsieh, T. Sun, C. Liu, S. Tsai, Efficient population utilization strategy for particle
swarm optimizer, IEEE Transactions on Systems, Man, and Cybernetics: Part B
39 (2) (2009) 444–456.

28] R. Brits, A. Engelbrecht, F. Van den Bergh, Solving systems of uncon-
strained equations using particle swarm optimization, in: Proceedings of
IEEE International Conference on Systems, Man and Cybernetics, vol. 3, 2002,
pp. 102–107.

29] N. Huy, O. Soon, L. Hiot, N. Krasnogor, Adaptive cellular memetic algorithms,
Evolutionary Computation 17 (2) (2009) 231–256.

30] A. Qin, V. Huang, P. Suganthan, Differential evolution algorithm with strategy
adaptation for global numerical optimization, IEEE Transactions on Evolution-
ary Computation 13 (2) (2009) 398–417.

31] M. McKay, R. Beckman, W. Conover, A comparison of three methods for select-
ing values of input variables in the analysis of output from a computer code,
Technometrics (1979) 239–245.

32] J. Liang, P. Suganthan, K. Deb, Novel composition test functions for numerical
global optimization, in: Proceedings of IEEE Symposium on Swarm Intelligence,
2005, pp. 68–75.

33] S. Ho, L. Shu, J. Chen, Intelligent evolutionary algorithms for large parameter
optimization problems, IEEE Transactions on Evolutionary Computation 8 (6)
(2004) 522–541.

34] K. Chan, C. Kwong, Y. Tsim, A genetic programming based fuzzy regression
approach to modelling manufacturing processes, International Journal of Pro-
duction Research 48 (7) (2010) 1967–1982.

35] K. Chan, C. Kwong, Y. Tsim, Modelling and optimization of fluid dispensing
for electronic packaging using neural fuzzy networks and genetic algorithms,
Engineering Applications of Artificial Intelligence 23 (1) (2010) 18–26.

36] K. Chan, C. Kwong, H. Jiang, M. Aydin, T. Fogarty, A new orthogonal array based
crossover, with analysis of gene interactions, for evolutionary algorithms and
its application to car door design, Expert Systems with Applications 37 (5)
(2010) 3853–3862.

37] H. Lin, Y. Peng, Evaluation of cylindricity error based on an improved GA with
uniform initial population, in: Proceedings of IITA International Conference on
Control, Automation and Systems Engineering, IEEE, 2009, pp. 311–314.

38] J. Mao, Y. Cao, J. Yang, Implementation uncertainty evaluation of cylindricity
errors based on geometrical product specification (GPS), Measurement 42 (5)
(2009) 742–747.

39] X. Zhang, X. Jiang, P. Scott, A reliable method of minimum zone evaluation of
cylindricity and conicity from coordinate measurement data, Precision Engi-
neering 35 (3) (2011) 484–489.

40] K. Carr, P. Ferreira, Verification of form tolerances part II: cylindricity
le swarm optimizer with latin sampling based memetic algorithm
.org/10.1016/j.asoc.2012.05.020

and straightness of a median line, Precision Engineering 17 (2) (1995)
144–156.

41] X. Wen, A. Song, An improved genetic algorithm for planar and spatial straight-
ness error evaluation, International Journal of Machine Tools and Manufacture
43 (11) (2003) 1157–1162.

dx.doi.org/10.1016/j.asoc.2012.05.020

	A hierarchical particle swarm optimizer with latin sampling based memetic algorithm for numerical optimization
	1 Introduction
	2 Particle swarm optimizers
	2.1 Original PSO
	2.2 Some variants of PSO

	3 The proposed memetic algorithm
	3.1 The hierarchical particle swarm optimizer
	3.2 Mutation strategy
	3.3 Local search based on latin sampling
	3.4 The proposed memetic algorithm

	4 Experimental study
	4.1 Test functions
	4.2 Sensitivity in relation to parameters
	4.3 Experimental results of MA-HPSOL on test functions
	4.4 Comparisons with state-of-the-art algorithms
	4.5 Cylindricity error evaluation based on MA-HPSOL

	5 Conclusion and future work
	Acknowledgments
	References

