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Abstract. In this paper, we propose a novel continuous vigilance estima-
tion approach using LSTM Neural Networks and combining Electroen-
cephalogram (EEG) and forehead Electrooculogram (EOG) signals. We
combine these two modalities to leverage their complementary informa-
tion using a multimodal deep learning method. Moreover, since the change
of vigilance level is a time dependent process, temporal dependency infor-
mation is explored in this paper, which significantly improves the perfor-
mance of vigilance estimation. We introduce two LSTM Neural Network
architectures, the F-LSTM and the S-LSTM, to encode the time sequences
of EEG and EOG into a high level combined representation, from which
we can predict the vigilance levels. The experimental results demonstrate
that both of the two LSTM multimodal structures can improve the per-
formance of vigilance estimation models in comparison with the single
modality models and non-temporal dependent models.
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1 Introduction

Brain-computer interaction (BCI) aims to translate brain activity or state into
control signals for computer devices [1]. A lot of studies have been done on
the assessment of human’s brain states such as vigilance and emotion in order
to develop affective brain-computer interaction systems [2]. Vigilance or alert-
ness, which means the ability to maintain sustained concentration, is an impor-
tant kind of mental state for user aware BCI systems. High vigilance is usually
required for some occupations such as truck drivers or pilots. In these cases, low
vigilance may bring tragedy to both themselves and other people. For example
driving fatigue is believed to be a significant reason for most of the fatal traf-
fic accidents [3]. Therefore a robust vigilance estimation system is desired to
improve the transportation safety.
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Various approaches have been proposed to estimate the vigilance level over
the past years. Different kinds of signals are utilized such as video [4], speech
[5] and physiological signals [3]. In these signals, EEG is considered as a good
indicator of the transition from wakefulness to sleepiness. Eoh et al. showed that
the proportion of different spectral components in EEG is related to the alert-
ness level [3]. Davidson et al. introduced a warning system capable of detecting
lapse with high temporal resolution [4]. In addition to EEG, EOG signal also
contains information that has close relationship with vigilance status. Eye move-
ment features such as slow eye movements (SEM) and blinks [8] have been shown
to be good indicators of vigilance level. The traditional EOG are collected from
electrodes placed around the eyes, which may distract subjects and cause discom-
fort. Zhang et al. proposed to place the electrodes on the forehead and extract
features from forehead EOG to detect driving fatigue [9].

However, most of these methods ignore the time dependency property of the
vigilance changing process. The subject’s mental states are treated as indepen-
dent points and the temporal dependency information are discarded in these
models. Recurrent Neural Network (RNN) is a kind of artificial neural network
where connections between units form a cycle which makes it suitable to process
sequence data. RNN has been successfully applied to research domains such as
machine translation [10] and speech recognition [11]. In this paper, we introduce
the RNN as a multimodal encoder which can incorporate the temporal changes
of EEG and EOG features to help with the estimation of vigilance. The mental
state sequence is encoded into a fixed-dimensional vector representation which
contains meaningful information to decode the vigilance level.

This paper is organized as follows. In Sect. 2, we describe the method used to
build vigilance estimation system. Section 3 gives a detailed description about
the setup of our simulated driving experiment and how we collect our data.
In Sect. 4 we discuss the experiment results using different models. Finally in
Sect. 5, conclusions are presented.

2 LSTM Neural Networks

Vigilance changing is a dynamic process. To incorporate the time dependency
information, we introduce the Recurrent Neural Network (RNN) model as a
temporal encoder. RNN contains cyclical connections in its hidden layers and
can remember the history of its input. For a length T input sequence x , at time
t in forward pass, the hidden units states are updated as:

ht = f (Wxt + Uht−1 + b) (1)

where ht and x t are respectively the output vector and input vector of a hidden
layer at time t, f is the activation function, W and U are weight matrices, and
b is the bias vector.

The problem of this simple RNN architecture is that only small range of
contextual information can be used from the input sequence which will cause
the vanishing gradient problem when applying to longtime sequence. Since we
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need to learn information from longtime EEG/EOG sequences, the Long Short
Time Memory (LSTM) neural network is applied. LSTM neural network is a
RNN with LSTM blocks as units in hidden layers. Each LSTM block contains
memory cells and input gate, output gate and forget gate, which provide write,
read and reset operations for the cells. In this way, the LSTM cells can store
states over long periods of time. The state of memory cells is updated at every
time step t as follows:
Input Gate:

i t = f (Wixt + Uiht−1 + bi ) (2)

Forget Gate:

f t = f (Wf xt + Uf ht−1 + bf ) (3)

Cells update:

Ct = g (Wcxt + Ucht−1 + bc) (4)
Ct = i t ∗ Ct + f t ∗ Ct−1 (5)

Output Gate:

ot = f (Woxt + Uoht−1 + bo) (6)
ht = ot ∗ k (Ct ) (7)

where f, g and k are all activation functions, i t , f t and ot are outputs of gates,
and Ct is the candidate of cells’ state.

The EEG and EOG feature sequences need to be adapted to the input of RNN
architecture. First, the data is normalized to zero mean and unit variance, then
the whole data sequence is divided into many short data sequences. Each data
sequence is nearly one minute which, as we show in the experiment result, is long
enough to estimate vigilance levels. In order to learn from multi modalities, we
propose two LSTM network architectures that can fuse information from EEG
and EOG sequences. One is to use two independent LSTM encoders to encode
EEG and EOG sequences respectively and then combine their representations
into one feature vector (F-LSTM) shown in Fig. 1(a). The other is to concatenate
the feature vectors of EEG and EOG at each time step and then use stacked
LSTM layers to encode the feature sequence into a compact feature vector (S-
LSTM) shown in Fig. 1(b).

We implement our model using python theano and decide all the hyper para-
meters by cross validation. In S-LSTM, we use 3 stacked hidden LSTM layers
as encoder and one sigmoid neuron as output layer. Each LSTM layer has half
number neurons comparing to the input layer. The internal weights in LSTM
units are initialized from a standard Gaussian distribution followed by a SVD
orthogonalization. The other weights are initialized from a uniform distribution
with scale parameter determined by Xavier algorithm. The bias value of forget
gates are initialized with ones. The activation functions of all the gates are sig-
moid while tanh is used otherwhere in LSTM units. In F-LSTM, we append a
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Fig. 1. Two LSTM structures adopted in this paper. Figure (a) depicts the F-LSTM
model which combines two LSTM encoders designed respectively for EEG and EOG.
Figure (b) depicts the S-LSTM model which merges the EEG and EOG at feature
level.

Multilayer Perceptron (MLP) model after the last LSTM layer as a decoder.
The activation function used in MLP is ReLU. In order to generalize our model,
dropout with a probability 0.5 is added before the output layer. In training,
RMSProp method is used instead of basic stochastic gradient descent method to
optimize the loss function. Early stopping strategy is adopted when no improve-
ment appears on the performance on validation set after 10 epochs.

3 Experiment Setup and Data Processing

3.1 Experiment Setup

The experiments were performed in a simulated driving environment. A four-
lane high way scene was shown in front of a car. The subjects drove the car
just like driving a real car outdoors. There were in total 21 subjects (12 men
9 women) at the age between 20 and 25, who participated in the experiments.
Before the experiments started, a warm up session was performed to ensure every
participant was familiar with the operation. All the experiments were conducted
after lunch from 13:00 pm to 15:00 pm or after dinner from 21:00 pm to 23:00 pm.
The participants were asked to drive the car for 2 h in the simulated driving
environment. Both of the EOG and EEG signals were recorded simultaneously
using the Neuroscan system with a 1000 Hz sampling rate. At the same time,
eye movement data was recorded using SMI ETG eye tracking glasses.

3.2 Feature Extraction

EEG Signals: The EEG signals are down-sampled to 200 Hz to reduce
computational complexity and preprocessed with a band-pass filter between
1 Hz and 75 Hz to reduce noise and artifacts. EEG signals from 17 channels
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(FT7, FT8, T7, T8, TP7, TP8, CP1, CP2, P1, PZ, P2, PO3, POZ, PO4, O1,
OZ, O2) located at temporal lobe and posterior lobe areas are recorded, since
these areas have been shown to have high relevance with vigilance in previous
findings [6] [7]. Short-time Fourier transform with a 8 s non-overlapping Han-
ning window is used to extract five frequency bands of EEG signals. Although
a smaller time window can be used for EEG, but in order to align with EOG
which needs a bigger window to detect eye movements, a 8 s window is selected.
The five frequency bands are divided as follows, delta: 1–4 Hz, theta: 4–8 Hz,
alpha: 8–14 Hz, beta: 14–31 Hz and gamma: 31–75 Hz. For each frequency band,
we extract the differential entropy (DE) features, which has been shown supe-
rior performance compared to the power spectral density (PSD) features in our
previous study [12].

EOGsignals:EOG features are also extracted with a 8 s non-overlapping window
on EOG signals. For traditional EOG, the electrodes are placed around eyes as
shown in Fig. 2(a). This will distract subject from the driving process and bring
discomfort to the subject. In this work, all electrodes are placed on the forehead as
Fig. 2(b) and we extract features from forehead EOG. For traditional EOG, the
vertical EOG (VEO) and horizontal EOG (HEO) are extracted by subtracting
electrodes four from three and electrodes one from two, respectively.

For forehead EOG, forehead VEO is extracted from electrodes four and seven
by using independent component analysis (ICA). Forehead HEO is extracted by
simply subtraction from electrode five and six. After preprocessing forehead EOG
signals, we detect eye movements such as blinks and saccades using wavelet trans-
form method. Continuous wavelet coefficients at scale 8 with Mexican mother
wavelet are calculated. The blinks and saccades are then detected from VEO and
HEO, respectively. The statistical parameters such as blink/saccade duration,
mean, maximum, variance and derivative are extracted as EOG features. A total
of 36 EOG features are used in this paper. The detailed descriptions of EOG
features are described in [9].

Fig. 2. Electrode placements for the traditional and forehead EOG setups. The yellow
and blue colors indicate the electrode placements of the traditional EOG and forehead
EOG, respectively. The electrode four is the shared electrode of both setups. (Color
figure online)
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3.3 Vigilance Labeling

In this study, the ground truth vigilance values are obtained using eye tracking
glasses proposed in [13]. PERCLOS, which refers to the percentage of eyelid
closure over time, is used as the index of alertness level. PERCLOS is defined
as [13]:

PERCLOS =
blink + CLOS

interval
(8)

interval = blink + fixation + saccade + CLOS (9)

where ‘CLOS’ denotes the duration of eye closure. We calculate the PERCLOS
values using eye tracking glasses as the labels of vigilance levels. It should be
noted here that although the eye tracking glasses can estimate the vigilance
level precisely, it’s not a good choice to use in real world applications due to
its expensive cost and longtime delay. So we only use it as a vigilance labeling
method and obtain the labels to train our models.

4 Experiment Results

We use the support vector regression (SVR) with radial basis function (RBF)
kernel as a baseline in this paper. To evaluate the experiment results, we divided
our whole data sequence from one experiment into five segments and evalu-
ated the performance with 5-fold cross validation. The Root Mean Square Error
(RMSE) and Correlation Coefficient (COR) are used as metrics for the experi-
ment results.

First we investigate whether multiple modalities are helpful for the result of
vigilance estimation. We used the S-LSTM model for the two single modalities,
which means instead of the concatenation of EEG and EOG features either
the EEG or EOG feature was used as input to S-LSTM model. For multiple
modalities, the S-LSTM and F-LSTM network architectures were used to fuse the
two modalities. The mean and standard deviation for RMSE and COR are shown
in Table 1. We can see that both of the two multimodalities models achieved
better results than single modality methods.

Next we will examine the importance of time dependency information in
estimating vigilance. The SVR model used doesn’t take time dependency into

Table 1. Experiment results for different models. Each single modality uses S-LSTM
model in first two columns. Last three columns are models fusing mulimodalities

Model EEG EOG S-LSTM F-LSTM SVR

COR Mean 0.8237 0.8203 0.8329 0.8363 0.7958

Std 0.0831 0.1191 0.0961 0.1009 0.1131

RMSE Mean 0.0927 0.0935 0.0816 0.0807 0.1186

Std 0.0259 0.0215 0.0189 0.0135 0.0515
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Fig. 3. The vigilance level prediction curves obtained by SVR and F-LSTM models.

consideration. The input of SVR model is the concatenation of EEG and EOG
features. The mean and standard deviation for RMSE and COR are shown in
Table 1. We can see from the results that LSTM models can significantly improve
the estimation results compared to SVR. Figure 3 shows the vigilance prediction
curves of SVR and M-LSTM models. The curves of M-LSTM model is more
smooth comparing to SVR model. This means incorporating the time depen-
dency information to vigilance estimation can make the system more robust to
noise and predict the trend of vigilance levels more accurately.

5 Conclusion

In this paper, we have proposed a vigilance estimation approach combining two
modalities and incorporating time dependency information. Two LSTM neural
network structures were proposed to encode longtime signal sequences. The
experimental results show that our proposed multimodal LSTM based meth-
ods can achieve significant improvement on vigilance estimation comparing to
the traditional models.
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