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Abstract—Robust vigilance estimation during driving is very
crucial in preventing traffic accidents. Many approaches have
been proposed for vigilance estimation. However, most of the
approaches require collecting subject-specific labeled data for
calibration which is high-cost for real-world applications. To
solve this problem, domain adaptation methods can be used to
align distributions of source subject features (source domain) and
new subject features (target domain). By reusing existing data
from other subjects, no labeled data of new subjects is required
to train models. In this paper, our goal is to apply adversarial
domain adaptation networks to cross-subject vigilance estimation.
We adopt two kinds of recently proposed adversarial domain
adaptation networks and compare their performance with those
of several traditional domain adaptation methods and the base-
line without domain adaptation. A publicly available dataset,
SEED-VIG, is used to evaluate the methods. The dataset includes
electroencephalography (EEG) and electrooculography (EOG)
signals, as well as the corresponding vigilance level annotations
during simulated driving. Compared with the baseline, both ad-
versarial domain adaptation networks achieve improvements over
10% in terms of Pearson’s correlation coefficient. In addition,
both methods considerably outperform the traditional domain
adaptation methods.

Index Terms—adversarial network, domain adaptation, elec-
troencephalography (EEG), electrooculography (EOG), vigilance
estimation.

I. INTRODUCTION

The high incidence of traffic accidents has always been a
very serious problem. Absence of vigilance is believed to be
one of the most significant factors that cause traffic accidents.
According to the government report, there were 396,000
drowsy driving related traffic crashes from 2011 to 2015 in
the USA [1]. When people are in states of low vigilance
levels, their abilities of handling accidental events weaken, and
they are liable to cause accidents. As a consequence, vigilance
estimation during driving is of great importance.

During the last several years, there has been plenty of
progress in measuring mental and physical states with Elec-
troencephalography (EEG) signals [2]–[4]. EEG signals are
time series signals obtained by recording brain electromag-
netic fields. Moreover, multimodal approaches for mental and
physical applications have been developed in recent years [5]–
[7]. Signals from different modalities are related to different
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aspects of subject states. Thus, integrations of features from
different modalities help to form a robust and powerful system.
Among all of the applications using multimodal integration,
vigilance estimation is one of the very interesting topics.
Various studies on this topic have been reported [8]–[10].
However, most of them only focus on classifying driver
states to some predefined vigilance level categories. The
more desirable system should be able to output continuous
estimates as the vigilance levels in real time. In our previous
work, a simulated driving system was developed in which
vigilance levels of drivers were estimated, and the vigilance
estimation was improved by using multimodal approaches and
incorporating temporal dependency [11]–[13].

For two data sets drawn from different but related distribu-
tions (source domain and target domain), domain adaptation
methods can be used to enhance the performance of mod-
els trained on the source domain and tested on the target
domain. As a result, domain adaptation plays an important
role in saving manpower and material resources by reusing
existing data from relevant domains for model training so that
few or no labeled data from the target domain is required.
Moreover, recent years have seen a great boom in the field
of deep adversarial networks [14]. There are several domain
adaptation methods proposed using deep adversarial networks
that achieve state of the art performance in object recognition
problems [15], [16]. The basic idea of these methods is to
adversarially train feature extractors and domain classifiers
so that the feature extractors can extract domain invariant
features. In this paper, we refer to this kind of neural networks
as adversarial domain adaptation networks.

Because collecting labeled data for vigilance estimation
could be high-cost, domain adaptation for cross-subject vigi-
lance estimation has become very important. However, to the
best of our knowledge, domain adaptation for cross-subject
vigilance estimation has not been fully investigated yet. In
our previous work [17], transfer component analysis [18] was
used for the classification problem of cross-subject fatigue
detection. In addition, various domain adaptation methods
have been proposed for cross-subject vigilance estimation
[19]–[21], but these approaches require some labeled data of
new subjects for calibration. In this paper, we integrate the
multimodal approach [11] and adversarial domain adaptation
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networks [15], [16] to build cross-subject vigilance estimation
models without using any label information from new subjects.
We examine several popular domain adaptation methods and
make a systematic comparison on their performance. The
experimental results indicate that the adversarial domain adap-
tation networks considerably improve the vigilance estimation
accuracy.

The rest part of this paper is organized as follows. Section
II introduces different domain adaptation methods used in this
paper. Section III describes the multimodal dataset used in
this paper and the corresponding data preprocessing procedure.
Section IV presents the domain adaptation results. Section V
provides the conclusions of this paper.

II. DOMAIN ADAPTATION METHODS

A. Basic Idea

Domain adaptation is a branch of transfer learning (i.e.,
transductive learning within the same feature space [22]). The
source domain is denoted by Ds = {Xs, Ys}, in which Xs =
{xs1 ,xs2 , · · · ,xsn} is the input and Ys = {ys1 , ys2 , · · · , ysn}
is the corresponding label set. The values of Xs and Ys are
drawn from the joint distribution P (Xs, Ys). Similarly, the
target domain denoted by Dt = {Xt, Yt} corresponds to
data and labels drawn from the joint distribution P (Xt, Yt).
In this paper, we consider unsupervised domain adaptation,
which means label information from the target domain is not
required. Typically, the marginal distributions of the input
data are different between source domain and target domain:
P (Xs) 6= P (Xt). This is usually referred to as domain shift
and is considered to be the key problem that leads to poor
performance when a model is trained and tested on data from
different domains. To eliminate the influence of domain shift,
feature-based domain adaptation methods try to find a proper
transformation function φ(·) that aligns the data into a new
feature space where P (φ(Xs)) ≈ P (φ(Xt)).

B. Traditional Methods

Several traditional feature-based domain adaptation methods
are briefly introduced below, and their performance on cross-
subject vigilance estimation will be compared in section IV.

1) Geodesic Flow Kernel (GFK) [23]: In GFK, the Prin-
cipal component analysis (PCA) bases of source and target
domains are first computed. The two sets of bases are then
regarded as two points (P s,P t ∈ RD×d, each column indi-
cates a base vector) on a Grassmannian. After that, a geodesic
flow Φ(t) is defined with t ∈ [0, 1] under the constraints
Φ(0) = P s and Φ(1) = P t. So the geodesic flow can be
interpreted as a path from the source domain bases to the
target domain bases. The projections of two vectors xi and
xj with all of the bases on that path (an infinite number of
them) can be concatenated to form infinite-dimensional vectors
z∞i and z∞j . With the help of kernel trick, the product of
the two infinite-dimensional vectors can be obtained easily.
This kind of products is then used for model training. GFK
aims to find an intermediate space where the idiosyncrasies in

both domains are reduced while the common idiosyncrasies
are preserved.

2) Subspace Alignment (SA) [24]: Similar to GFK, SA also
utilized PCA bases to generate corresponding subspaces for
source and target domains. However, instead of finding an
intermediate space for the two domains, SA directly aligns
the source domain subspace to the target one by a linear
transformation represented by M . Borrowing the notations in
Section II-B1, M is obtained by minimizing the Frobenius
norm ||P sM − P t||2F . After that, P t is used for projecting
target domain data and P sM is used for projecting source
domain data to their subspaces, respectively. The projected
features are then used for training models.

3) Transfer Component Analysis (TCA) [18]: Maximum
mean discrepancy (MMD) [25] is broadly used in domain
adaptation methods as a metric of distribution discrepancies
and is defined as the squared distance between the kernel
embeddings of the source and target data in a reproducing
kernel Hilbert space (RKHS). TCA aims to find a projection
to a new space where MMD between source domain and target
domain data is minimized. It works by solving the following
constrained optimizing problem:

min
W

tr(W>KLKW ) + µtr(W>W ),

s.t. W>KHKW = I,
(1)

where W is equivalent to a projection matrix, K is the
kernel matrix defined on all the data, L is the coefficient
matrix, H is the centering matrix, I is an identity matrix,
and µ is a tradeoff parameter. The first term corresponds
to MMD between source and target domain embeddings in
a RKHS. The second term controls the complexity of the
embedding. The restriction term helps to preserve the data
variance in the projected space. In addition, semi-supervised
transfer component analysis (SSTCA) is an extension to TCA
that takes label information into consideration when finding
the projection.

4) Maximum Independence Domain Adaptation (MIDA)
[26]: MIDA is a recently developed method, in which a
domain feature vector d ∈ Rmd for each original feature
vector x is constructed. Each element di represents some
domain information. In the simplest way, di takes the value 1
if the corresponding x is from the ith domain and 0 otherwise.
Then each data point is replaced by the augmentation of the
original features and domain features (i.e. x̂ = [x>,d>]> ∈
Rm+md ). MIDA tries to find a domain-invariant subspace of
the augmented features in which the projected features are
independent to the original domain features. To measure the
dependency between projected features and domain features,
Hilbert-Schmidt independence criterion (HSIC) is adopted
[27]. The learning problem of MIDA can be expressed as

max
W

− tr(KzHKdH) + µtr(W>Kx̂HKx̂W ),

s.t. W>W = I,
(2)

where W is equivalent to a projection matrix, Kx̂, Kz ,
and Kd are, respectively, the kernel matrices defined on the



concatenated features, subspace of the concatenated features
defined by W , and the domain features, H is the centering
matrix, I is an identity matrix, and µ is a tradeoff parameter.
The first term corresponds to the HSIC, the second term helps
to preserve data variance, W is a projection matrix and its
scale is constrained by the restriction term. Similar to TCA,
MIDA also has a semi-supervised version (SSMIDA).

C. Adversarial Network Methods

Two kinds of adversarial domain adaptation networks are
described here. Their performance is compared with those of
the traditional domain adaptation methods in section IV.

1) Domain-Adversarial Neural Network (DANN) [15]:
DANN was first proposed in [15], and its properties and ap-
plications are then further explored in [28]. The model can be
divided into the following three parts: a feature extractor Gf ,
a label predictor Gy , and a domain classifier Gd. There exist
adversarial relationships between the feature extractor and the
domain classifier. The feature extractor, as the name implies,
extracts new features from input features: f = Gf (x;θf ).
Here x denotes input feature vector and f denotes the cor-
responding output feature vector in a new feature space. The
outputs are then fed into the label predictor and the domain
classifier. The label predictor provides predictions of the
corresponding labels: ŷ = Gy(f ;θy). The domain classifier
distinguishes which domain the input is from: d̂ = Gd(f ;θd).
The three parts are updated simultaneously with the objective
function:

E(θf ,θy,θd) =

N∑
i=1

Ly(ŷi, yi)− λ
N∑
i=1

Ld(d̂i, di), (3)

where the first term Ly(·, ·) is the loss for label prediction,
and Ld(·, ·) corresponds to the loss for domain classification.
The update rule is designed as follows:

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf ,θy, θ̂d),

θ̂d = argmax
θd

E(θ̂f , θ̂y,θd).
(4)

It can be observed that the label predictor and domain classifier
are trained so that the corresponding losses are minimized. The
feature extractor is trained so that the label prediction loss is
minimized while the domain classification loss is maximized.
So the feature extractor is trying to extract features that are
good for label prediction, but not easy to distinguish which
domain the features come from. In this way, the feature
extractor is to extract domain invariant features, so the domain
shift can be eliminated.

2) Adversarial Discriminative Domain Adaptation (ADDA)
[16]: Similar to DANN, ADDA also can be divided into
three parts, except that there are two feature extractors, one
for source domain data and another for target domain data.
Let Gf0 and Gf1 be the corresponding feature extractors for
source domain and target domain, respectively. The training
procedure is two-stage. In the first stage, Gf0 and the label
predictor Gy are trained with source domain data so that the

(3)

(4)
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Fig. 1: The placement of electrodes. The red points 1–4 indicate the position of
traditional EOG electrode placement setup while the blue points 4-7 indicate
the forehead setup. Point 4 is shared by both of the setups.

prediction loss is minimized. After the training, the parameters
of Gf0 and Gy are fixed during the following process. In the
second stage, Gf1 is initialized with the parameters of Gf0 .
Then Gf1 and Gd are trained adversarially: Gd is trained to
discriminate source domain data and target domain data, while
Gf1 is trained to fool Gd. So, after the training, the feature
extractor Gf1 aligns the distribution of the target domain data
to that of the source domain data.

III. DATA DESCRIPTION AND PREPROCESSING

A. The SEED-VIG Dataset

To obtain vigilance changing data of subjects during driving,
a simulated driving system was developed [11]. The system is
composed of a large LCD screen, a real vehicle, and a software
controller. Animation shown on the screen is simultaneously
updated according to operations of subjects. The operations
include steering, throttle controlling and braking and lead the
subject to feel like driving on a real highway.

In the simulated driving experiments, 23 volunteers (their
average age is 23.3 years old, 12 of them being females)
were selected as subjects. All of the subjects own normal
or corrected-to-normal vision. Drugs affecting nervous system
were prohibited before the experiments. The subjects were
required to attend the experiments during early afternoons or
late nights to arouse fatigue easily. The experiments lasted
for 2 hours, during which data were recorded. However, the
first and the last 60-second data were discarded to avoid
external influences. The SEED-VIG dataset used in this paper
is publicly available1.

Both EEG and electrooculography (EOG) signals are
recorded using the Neuroscan system at the sampling rate of
1000 Hz. The corresponding electrodes were placed according
to the forehead placement [29] as shown in Figure 1.

EEG signals from posterior and temporal sites were also
recorded. But only forehead EEG and EOG signals are used
here for two reasons: a) it is relatively easier to implement
the forehead placement in real-world wearable devices; and b)

1The SEED-VIG dataset: http://bcmi.sjtu.edu.cn/∼seed/download.html
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Fig. 2: EOG signal extraction and EOG feature extraction. The plots shown in Figure 2(a) are original signals recorded by the four forehead electrodes within
one of the 8-second time window (each of them from top to bottom corresponds to electrodes 4, 7, 5, and 6 in Figure 1, respectively). Because the signals are
downsampled to 125Hz, there are 1000 samples for each channel. The upper two figures in Figure 2(b) show the ICA components extracted from electrodes 4
and 7 as the arrow shows. It can be observed that the lower figure corresponds to the VEO component while the upper one corresponds to some background
signals. Each spike in the figure corresponds to a blink event. The bottom figure in Figure 2(b) shows the result of applying minus rule to the time series
recorded by electrodes 5 and 6 as the arrow shows. The up-rising edges and down-falling edges correspond to saccade events. Figure 2(c) shows the result
by applying Mexican hat wavelet to the VEO and HEO signals. The yellow points are the results of peak detection.

with the forehead placement, the vigilance estimation models
can achieve comparable performance [11].

B. Feature Extraction

1) Data Preprocessing: The raw data recorded by the
forehead electrodes were firstly downsampled to 125 Hz.
Then the signals were segmented to epochs by 8-second non-
overlapping time windows. The features extracted from each
epoch represent one input vector. For each subject, because
there are 7200− 60× 2 = 7080 seconds of valid raw signals,
there are 7080/8 = 885 inputs.

2) EOG Signal Extraction: Two important EOG compo-
nents are horizontal EOG (HEO) and vertical EOG (VEO).
As is shown in Figure 1, for traditional EOG placement
setup, HEO and VEO are obtained by subtracting electrodes
1 from 2, and electrodes 3 from 4, respectively. For the
forehead EOG placement setup, subtraction was made between
electrodes 5 and 6 to obtain HEOf . While, to obtain VEOf ,
it is better to apply independent component analysis (ICA)
[30] on the signals from electrodes 4 and 7 and select the
EOG component, as it was verified in [11]. So we have
HEOf = e5 − e6 and VEOf = ICA(e4, e7). For concision
of expression, the ‘f ’ subscripts will be omitted in the rest
of this paper. The extraction result of one epoch is shown in
Figure 2.

3) EOG Feature Extraction: EOG feature extraction con-
sists in edge detection for HEO and VEO signals. Rising
edges and falling edges within HEO signals correspond to
eye saccade events while rising edges with immediately fol-
lowing falling edges within VEO signals correspond to eye
blink events. To achieve reliable edge detection, the wavelet

transform method was used as introduced in [31]. Both HEO
and VEO signals were processed with Mexican hat wavelet at
the scale of 8. As is shown in Figure 2, the edge detection
problem then became peak detection problem. With robust
peak detection methods, eye movement (blink and saccade)
information can be extracted effectively. After that, a total
number of 36 features were generated according to the ex-
tracted eye movement information. A detailed list of the 36
features is shown in Table I.

TABLE I
36 FEATURES EXTRACTED FROM EOG SIGNALS

Source Features
Blink Maximum/mean/sum of blink rate maximum/minimum/mean

of blink amplitude, mean/maximum of blink rate variance
and amplitude variance power/mean power of blink amplitude
blink numbers

Saccade Maximum/minimum/mean of saccade rate and saccade ampli-
tude, maximum/mean of saccade rate variance and amplitude
variance, power/mean power of saccade amplitude, saccade
numbers

Fixation Mean/maximum of blink duration variance and saccade du-
ration variance maximum/minimum/ mean of blink duration
and saccade duration

4) EEG Signal Extraction: Similar to the procedure of
EOG signal extraction, ICA was also applied to EEG signal
extraction. If the unmixing equation of ICA is U =WE, then
the reconstruction of EEG signals for the forehead channels
will be Ẽ =W−1ĨU, where E indicates the raw signals from
forehead electrodes 4~7, Ẽ indicates the reconstructed fore-
head EEG signals and Ĩ indicates a modified identity matrix
with diagonal elements corresponding to EOG components set
to zeros.
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Fig. 3: The network structures of adversarial network methods used in this paper.

5) EEG Feature Extraction: Differential entropy (DE) fea-
tures were extracted from each epoch of Ẽ. The frequency
bands were 2 Hz bands from 1 Hz to 50 Hz (i.e., frequency
bands of 1~2 Hz, 2~4 Hz, ..., 48~50 Hz). So the number of
dimensions for EEG features is 4× 25 = 100.

6) Feature Fusion and Smoothness: To take advantage
of the multimodal features, feature fusion was applied by
concatenating the 36 EOG features and 100 EEG features. So
a 136-dimension feature vector was generated for each epoch.
After that, to reduce the influence of artifacts, feature vectors
were smoothed in sequential order by the moving average
algorithm with the window size of 30.

C. Vigilance Annotation

Eye tracking glasses were used to obtain PERCLOS indices
[32] of the subjects during the driving experiment. The name
‘PERCLOS’ is the abbreviation for ‘percentage of eye clo-
sure’, so its value ranges from 0 (high vigilance level) to 1
(low vigilance level). The PERCLOS index values were further
smoothed with the moving average algorithm as the vigilance
annotations.

IV. DOMAIN ADAPTATION RESULTS AND DISCUSSION

A. Domain Adaption Settings

We have extracted 885 feature vectors for each of the 23
subjects. Each feature vector is attached with the correspond-
ing vigilance annotation. Our objective now is to perform
domain adaptation between different subjects. The leave-one-
subject-out cross-validation algorithm is applied, which means,
for each domain adaptation method there are a few runs, and
for each run the data from one of the subjects are regarded
as target domain while the data from other subjects as source
domains.

All the domain adaptation methods introduced in Section
II are adopted. Besides, the baseline results are obtained by
directly using the features without any domain adaptation. For

the traditional domain adaptation methods and the baseline
method, the linear kernel support vector regression (SVR)
algorithm [33] is used for the regressors. For TCA and MIDA,
both of the unsupervised and semi-supervised versions are
adopted. Because TCA, SA, GFK, and ADDA can not be
directly applied to multiple source domains, all source domain
data (i.e., data of 22 subjects) are concatenated as data of
one source domain for these methods. Multi-layer percep-
trons (MLPs) are used for the feature extractors, the label
predictors, and the domain classifiers in the adversarial domain
adaptation networks. The structures of the two adversarial
domain adaptation networks are shown in Figure 3. Adam
optimizer [34] was adopted for training of the networks to
obtain faster convergence. We performed randomized search
of the hyperparameters over some predefined sets of values.
For each method, the hyperparameter settings were evaluated
with the leave-one-subject-out cross-validation algorithm and
the best setting was chosen to generate the final results. The
specific predefined value sets for some of the hyperparameters
are listed in Table II.

TABLE II
VALUE SETS FOR HYPERPARAMETER TUNING

Type Value Set
Subspace Dimension {10, 20, 40, 60, 80, 100, 120}
C for SVR {2n|n ∈ {−10,−9, · · · , 10}}
ε for SVR {0, 0.01, · · · , 0.1}
λ for DANN&ADDA {2n|n ∈ {−10,−9, · · · , 10}}
Learning Rate for Adam {2n × 10−4|n ∈ {−10,−9, · · · , 10}}
Other Hyperparameters {2n|n ∈ {−10,−9, · · · , 10}}

To evaluate the estimation results, Pearson’s correlation
coefficient (PCC) and root-mean-square error (RMSE) are
used. Their definitions are

RMSE =

√√√√ 1

ntarget

ntarget∑
i=1

(ŷi − yi)2 (5)



TABLE III
RESULTS OF DOMAIN ADAPTATION

Baseline GFK SA TCA MIDA SSTCA SSMIDA DANN ADDA

PCC AVG 0.7606 0.7907 0.7707 0.7786 0.7858 0.7722 0.8024 0.8402 0.8442
STD 0.2314 0.1260 0.0745 0.2152 0.1900 0.2061 0.1629 0.1535 0.1336

RMSE AVG 0.1689 0.1910 0.1667 0.1596 0.1840 0.1607 0.1701 0.1427 0.1405
STD 0.0673 0.0636 0.0746 0.0544 0.0753 0.0513 0.0686 0.0588 0.0514
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Fig. 4: Vigilance estimations (in terms of PERCLOS indices) of different subjects using two domain adaptation methods. The x-axes correspond to elapsed
times, and the y-axes correspond to the estimated PERCLOS index values. Higher values indicate lower vigilance levels. Each figure corresponds to the
estimates for one of the subjects. As is shown in the figures, the black lines are ground truth PERCLOS index values obtained from eye tracking glasses. The
blue lines, the red lines, and the green lines are estimates provided by the baseline approach, the SSMIDA method, and the DANN method, respectively.

and

PCC =

∑ntarget
i=1 (ŷi − ŷi)(yi − y)

σŷσy
, (6)

where ŷi is the predicted value, yi is the true value, σŷ and
σy are the corresponding standard deviations. While RMSEs
show the average error of the estimates, PCCs are related to
structural relationships between the estimates and the labels.
Typically, smaller values of RMSEs or bigger values of PCCs
indicate better performance.

B. Domain Adaption Results

In Table III, the averages (AVGs) and standard deviations
(STDs) of PCCs and RMSEs using different domain adapta-
tion methods are described. The adversarial domain adaptation
networks achieve significant improvement in performance both
in terms of PCC (0.8402 and 0.8442 compared with baseline’s

(a) All subjects (b) Subject 3 (c) Subject 8

Fig. 5: Illustrations of original feature distributions.

0.7606, p-values being 0.0121 and 0.0091) and in terms of
RMSE (0.1427 and 0.1405 compared with baseline’s 0.1689,
p-values being 0.0557 and 0.0131), mostly at 0.05 level. For
the adversarial domain adaptation networks, ADDA performs
slightly better than DANN. Among the traditional methods,



(a) Baseline (b) GFK (c) SA (d) TCA (e) MIDA

(f) SSTCA (g) SSMIDA (h) DANN (i) ADDA

Fig. 6: Plots of distributions of features after domain adaptation. Blue points indicate data points from source domains, while red ones indicate data points
from target domains.

SSMIDA outperforms other methods in terms of PCC (0.8024)
while TCA performs the best in terms of RMSE (0.1596).

In Figure 4, the vigilance estimation results (i.e., predictions
of the PERCLOS index values) of different subjects using two
domain adaptation methods are plotted. DANN and SSMIDA
are chosen to represent adversarial domain adaptation net-
works and traditional methods, respectively. Besides, the true
labels and the estimates provided by the baseline approach are
also plotted for comparison. The figures show that all of the
three methods can output estimates that follow the vigilance
changing trends, and DANN achieves the best performance
under most of the cases.

C. Discussions
By observing the results mentioned above, the following

conclusions can be derived. (1) In Table III, though all of the
domain adaptation methods achieved better performance than
the baseline method in terms of PCC, some of them (MIDA,
GFK, SSMIDA) failed to achieve better performance in terms
of RMSE. Considering the properties of PCC and RMSE, the
three methods can output estimates that follow the vigilance
changing trends but with larger errors. (2) In Figure 4, for most
subjects, DANN performs better than SSMIDA, and both of
them perform better than the baseline method in estimating the
true labels. This is consistent with the results shown in Table
III. There are cases where the estimates are smaller than 0 or
larger than 1. This mostly happens for the baseline estimation.
The reason is that the large domain discrepancies were not
reduced by any domain adaptation methods. (3) There are a
few cases when all of the three methods could not achieve
good performance. Two examples are shown in Figures 4(c)
and 4(h) where the estimates are inaccurate for some of the
large and small PERCLOS index values. This phenomenon is
possibly caused by individual differences shown in Figure 5.
The domain discrepancies are shown by plotting the feature
distributions (before domain adaptation) in a two-dimensional
space derived by applying the PCA algorithm. Data points

from subjects 3 and 8 are emphasized in Figures 5(b) and 5(c).
It can be observed that the distributions of subjects 3 and 8 are
very different from those of other subjects. This indicates huge
individual differences (domain discrepancies) which should
account for the undesirable performance of domain adaptation
methods on these two subjects.

To unveil the influence of domain adaptation methods on
the feature distributions, the output features of all the domain
adaptation methods (with subject 1 set as the target domain and
other subjects set as the source domain) are plotted in Figure
6. The two-dimensional spaces are obtained by applying the
PCA algorithm. From the figures, following conclusions can
be obtained. (1) From Figure 6(a), it can be observed that
the original features from different domains are in different
distributions. This is the case which was introduced in Section
II: P (Xs) 6= P (Xt). (2) After applying most of the domain
adaptation methods, the distributions become similar to each
other. This means that the domain adaptation objective has
been achieved: P (φ(Xs)) ≈ P (φ(Xt)). (3) SA fails to align
the distributions into similar ones, which explains the relatively
low PCC as shown in Table III. (4) The distributions of output
features in Figures 6(e), 6(g), 6(h), and 6(i) are successfully
aligned, which is consistent with the good performance of
MIDA, SSMIDA, DANN and ADDA as shown in Table
III. (5) For the domain adaptation methods that are able to
align multiple source and target domains simultaneously (i.e.,
MIDA, SSMIDA, and DANN), data from all of the 23 subjects
are successfully aligned to similar distributions.

V. CONCLUSIONS

In this paper, we have introduced adversarial domain adap-
tation networks for multimodal cross-subject vigilance estima-
tion. The recently proposed domain-adversarial neural network
(DANN) and adversarial discriminative domain adaptation
(ADDA) were adopted, and both of them have achieved con-
siderable improvement in estimation accuracy in comparison



with other existing domain adaptation methods. Experimental
results have demonstrated that the domain adaptation methods
can reduce domain discrepancies by aligning the distributions
of the data from different subjects into similar distributions.
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