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Abstract—In this paper, we investigate stable patterns of electroencephalogram (EEG) over time for emotion recognition using a

machine learning approach. Up to now, various findings of activated patterns associated with different emotions have been reported.

However, their stability over time has not been fully investigated yet. In this paper, we focus on identifying EEG stability in emotion

recognition. We systematically evaluate the performance of various popular feature extraction, feature selection, feature smoothing

and pattern classification methods with the DEAP dataset and a newly developed dataset called SEED for this study. Discriminative

Graph regularized Extreme Learning Machine with differential entropy features achieves the best average accuracies of 69.67 and

91.07 percent on the DEAP and SEED datasets, respectively. The experimental results indicate that stable patterns exhibit consistency

across sessions; the lateral temporal areas activate more for positive emotions than negative emotions in beta and gamma bands; the

neural patterns of neutral emotions have higher alpha responses at parietal and occipital sites; and for negative emotions, the neural

patterns have significant higher delta responses at parietal and occipital sites and higher gamma responses at prefrontal sites. The

performance of our emotion recognition models shows that the neural patterns are relatively stable within and between sessions.

Index Terms—Affective computing, affective brain-computer interaction, emotion recognition, EEG, stable EEG patterns, machine learning,

extreme learning machine

Ç

1 INTRODUCTION

EMOTIONS play an important role in human communica-
tion and decision making. Although in our daily life

emotions seem natural to us, we have little knowledge of
the mechanisms behind the emotional function of the brain
for modeling human emotion [1]. In recent years, research
on emotion recognition based on EEG has attracted great
interest from a vast number of interdisciplinary fields, from
psychology to engineering, including basic studies on emo-
tion theories and applications to affective Brain-Computer
Interactions (aBCIs) [2], [3], which enhance BCI systems
with the ability to detect, process, and respond to users’
affective states using physiological signals.

Although much progress has been made in the theories,
methods and experiments that support affective computing
over the past several years [4], the problem of detecting and
modeling human emotions in aBCIs remains largely unex-
plored [3]. Emotion recognition is the primary and important
phase for aBCIs. However, emotion recognition based on
EEG is very challenging due to the fuzzy boundaries and
differences in individual variations of emotion. In addition,
we cannot obtain the ‘ground truth’ behind human emotions

in theory, that is, the true label for an EEG corresponding to
different emotional states, because emotion is considered
as a function of time, context, space, language, culture, and
races [5].

Many previous studies have focused on participant-
dependent and participant-independent patterns and evalu-
ations of emotion recognition. However, the stability of pat-
terns and performance of models over time has not been fully
exploited, and they are very important for real-world appli-
cations. Stable EEG patterns are considered as neural activi-
ties related to critical brain areas and critical frequency bands
that share commonality across individuals and sessions
under different emotional states. Although task-related EEG
is sensitive to change due to differences in cognitive states
and environmental variables [6], we intuitively consider that
the stable patterns for specific tasks should exhibit consis-
tency among repeated sessions of the same participants. In
this paper, we focus on the following issues of EEG-based
emotion recognition:What is the capability of EEG signals for
discriminating between different emotions? Are there any
stable EEG patterns of neural oscillations or brain regions for
representing emotions? What is the day-to-day performance
of themodels based onmachine learning approaches?

The main contributions of this paper to emotion recogni-
tion from EEG can be summarized as follows: 1) We have
developed a novel emotion EEG dataset as a subset of SJTU
Emotion EEG Dataset (SEED), which is publicly available for
evaluating stable patterns across participants and sessions.
To the best of our knowledge, there is no available public
EEG dataset for the analysis of the stability of neural patterns
regarding emotion recognition. 2) We carry out a systematic
comparison and a qualitative evaluation of different feature
extraction, feature selection, feature smoothing and pattern
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classification methods on a publicly available EEG dataset,
DEAP, and our own dataset, SEED. 3)We adopt a discrimina-
tive Graph regularized Extreme Learning Machine (GELM)
to identify stable patterns over time and evaluate the stability
of our emotion recognitionmodelwith cross-session schemes.
4) Our experimental results reveal that neural signatures for
three emotions (positive, neutral and negative) do exist and
that EEG patterns at critical frequency bands and brain
regions are relatively stablewithin and between sessions.

The layout of the paper is as follows. In Section 2, we pro-
vide a brief overview of relatedwork on emotion recognition
based on EEG as well as the findings on stable patterns for
different emotions. A systematic description of brain signal
analysis methods and classification procedures for feature
extraction, dimensionality reduction and classifiers is given
in Section 3. Section 4 presents the motivation for and ratio-
nale behind our experimental setting. A detailed explanation
of all the materials and protocols that we have used is also
described. A systematic evaluation of different methods is
conducted using the DEAP dataset and our SEED dataset.
We use time-frequency analysis to find the neural signatures
and stable patterns of different emotions, and we evaluate
the stability of our emotion recognition models over time. In
Section 5, we present conclusions about our work.

2 RELATED WORK

In the field of affective computing, a vast number of studies
has been conducted on emotion recognition based on differ-
ent signals. A detailed review of emotion recognition meth-
ods can be found in [19]. With the fast development of micro-
nano technologies and embedded systems, it is now conceiv-
able to port aBCI systems from the laboratory to real-world
environments.Many advanceddry electrodes and embedded
systems are developed to handle the wearability, portability,
and practical use of these systems in real-world applications
[20], [21]. Various studies conducted by the affective comput-
ing community attempt to build computational models to
estimate emotional states based on EEG features. Kim et al.
presented a review on the computational methods for EEG-
based emotion estimation [22]. In short, a brief summary of
emotion recognition using EEG is presented in Table 1. These
studies show the efficiency and feasibility of building compu-
tational models of emotion recognition using EEG. In these
studies, the stimuli used in emotion recognition experiments
include still images, music and videos, and the emotions eval-
uated inmost of the studies are discrete.

One of the goals of affective neuroscience is to examine
whether patterns of brain activity for specific emotions exist
and whether these patterns are to some extent common
across individuals. Various studies have examined the neural
correlations of emotions. It seems that processing modules
for specific emotion do not exist. However, neural signatures
of specific emotions, as a distributed pattern of brain activity
[23], may exist. Mauss and Robinson [24] proposed that the
emotional state is likely to involve circuits rather than any
brain region considered in isolation. ToAC researchers, iden-
tifying neural patterns that are both common across partici-
pants and stable across sessions can provide valuable
information for emotion recognition based on EEG.

Cortical activity in response to emotional cues is related to
the lateralization effect. Schmidt and Trainor [25] found that

the pattern of asymmetrical frontal EEG activity distin-
guished valence, while for intensity, the overall frontal EEG
activity did. Muller et al. [26] reported increased gamma
(30-50 Hz) power for a negative valence over the left tempo-
ral region. Davidson et al. [27], [28] showed that frontal EEG
asymmetry is hypothesized to be related to approach and
withdrawal emotions, with heightened approach tendencies
reflected in the left frontal activity and heightened with-
drawal tendencies reflected in the right frontal activity. Nie
et al. [29] reported that the participant-independent features
associated with positive and negative emotions are mainly
in the right occipital lobe and parietal lobe for the alpha
band, the central site for the beta band, and the left frontal
lobe and right temporal lobe for the gamma band. Balconi
et al. [30] found that frequency band modulations are
affected by valence and arousal rating, with an increased
response for high arousal and negative or positive stimuli
compared to that for low arousal and neutral stimuli.

For EEG-based emotion recognition, participant-depen-
dent and participant-independent schemes are always used
for evaluating the performance of emotion recognition sys-
tems. As shown in Table 1, some findings related to activated
patterns such as critical channels and oscillations associated
with different emotions have been proposed. However, a
major limitation is that they extract activated patterns only
across participants but do not consider the time factor.

Studies on the internal consistency and test-retest stabil-
ity of EEG date back to many years ago [6], [31], [32], espe-
cially for clinical applications [33]. McEvoy et al. [6]
proposed that under appropriate conditions, task-related
EEG has sufficient retest reliability for use in assessing clini-
cal changes. However, these previous studies investigated
the stability of EEG features under different conditions, for
example, a working memory task [6]. Moreover, in these
studies, stability and reliability are often quantified using
statistical parameters such as intraclass correlation coeffi-
cients [32], instead of the performance of pattern classifiers.

So far, a few preliminary studies on the stability and reli-
ability of neural patterns for emotion recognition have been
conducted. Lan et al. [34] presented a pilot study on the sta-
bility of features in emotion recognition algorithms. How-
ever, in their stability assessment, the same features derived
from the same channel from the same emotion class of the
same participant were grouped together to compute the cor-
relation coefficients. Furthermore, their experiments were
conducted on a small group of participants with 14-channel
EEG signals. They investigated the stability of each feature
instead of the neural patterns that we focus on in this paper.
Till now, no systematic evaluation has been conducted on
the stability of activated patterns over time. The perfor-
mance of emotion recognition systems over time is still an
unsolved problem in developing real-world application sys-
tems. Therefore, our major aim in this paper is to investigate
stable EEG patterns over time using time frequency analysis
and machine learning approaches. We should emphasize
that we do not study neural patterns under emotion regula-
tion [35], but rather to study specific emotional states during
different times.

To investigate various critical problems related to emo-
tion recognition based on EEG, we face a serious lack of
publicly available emotional EEG datasets. To the best of
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our knowledge, the only publicly available emotional EEG
datasets are MAHNOB HCI [15] and DEAP [13]. The first
one includes EEG, physiological signals, eye gazes, audio,
and facial expressions of 30 people while watching 20 emo-
tional videos. The DEAP dataset includes the EEG and
peripheral physiological signals of 32 participants when
watching 40 one-minute music videos. It also contains
the participants’ rate for each video in terms of the levels of
arousal, valence, like/dislike, dominance, and familiarity.
However, these datasets do not contain EEG data from
different sessions for the same participant, which cannot
be used for investigating the stable patterns over time.
Because there are no available published EEG datasets for
the analysis of the stability of neural patterns for emotion

recognition, we develop a new emotional EEG dataset for
this study as a subset of SEED.1

3 EMOTION EXPERIMENT DESIGN

In order to investigate the neural signatures of different
emotions and stable patterns over time, we design new
emotion experiments to collect EEG data, which are differ-
ent from those other existing publicly available datasets. In
our experiments, the same participant performs the emotion
experiments three times, at an interval of one week or lon-
ger. We chose film clips as emotion elicitation materials.

TABLE 1
Various Studies on Emotion Classification Using EEG and the Best Performance Reported in Each Study

Study Stimuli #Chan. Method Description Emotion states Accuracy Pattern
Study

[7] IAPS, IADS 3 Power of alpha and beta, then
PCA, 5 participants, classifica-
tion with FDA

Valence and arousal Valence: 92.3%, arousal:
92.3%

�

[8] IAPS 2 Amplitudes of four frequency
bands, 17 participants, evaluated
KNN, Bagging

Valence (12),
arousal (12) and
dominance (12)

Valence: 74%, arousal: 74%,
and dominance: 75%

�

[9] Video 62 Wavelet features of alpha, beta
and gamma, 20 participants,
classification with KNN and
LDA

disgust, happy,
surprise, fear and
neutral

83.26% �

[10] Music 24 Power spectral density and
asymmetry features of five fre-
quency bands, 26 participants,
evaluated SVM

Joy, anger, sadness,
and pleasure

82.29%
p

[11] IAPS 8 Spectral power features, 11 par-
ticipants, KNN

Positive, negative
and neutral

85% �

[12] IAPS 4 Asymmetry index of alpha and
beta power, 16 participants, SVM

Four quadrants of the
valence-arousal space

94.4% (participant-depen-
dent), 62.58% (participant-
independent)

�

[13] Video 32 Spectral power features of five
frequency bands, 32 participants,
Gaussian naive Bayes classifier

Valence (2), arousal
(2) and liking (2)

Valence: 57.6%, arousal: 62%
and liking: 55.4%

�

[14] Music 14 Time-frequency (TF) analysis, 9
participants, KNN, QDA and
SVM

Like and dislike 86.52%
p

[15] Video 32 Power spectral density features
of five frequency bands, modal-
ity fusion with eye track, 24 par-
ticipants, SVM

Valence (3) and
arousal (3)

Valence: 68.5%, arousal:
76.4%

�

[16] Video 62 Power spectrum features, wave-
let features, nonlinear dynamical
features, 6 participants, SVM

Positive and negative 87.53%
p

[17] IAPS 64 Higher order crossings, higher
order spectra and Hilbert-Huang
Spectrum features, 16 partici-
pants, QDA

Happy, curious,
angry, sad, quiet

36.8%
p

[18] Music 19 Asymmetry measures and con-
nectivity measures, 31 partici-
pants, principal component
analysis

Pleasantness, energy,
tension, anger, fear,
happiness, sadness,
and tenderness

/
p

IAPS and IADS stand for the International Affective Picture System and the International Affective Digital Sounds, respectively. The numbers given in paren-
theses denote the numbers of categories for each dimension. Pattern study indicates whether the work reveals the neural activities (critical brain areas and critical
frequency bands) that share commonality across participants or sessions. The classifiers include K Nearest Neighbors (KNN), Fisher’s Discriminant Analysis
(FDA), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Bagging, and Support Vector Machine (SVM).

1. http://bcmi.sjtu.edu.cn/�seed/

ZHENG ETAL.: IDENTIFYING STABLE PATTERNS OVER TIME FOR EMOTION RECOGNITION FROM EEG 419

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 09:28:59 UTC from IEEE Xplore.  Restrictions apply. 

http://bcmi.sjtu.edu.cn/~seed/
http://bcmi.sjtu.edu.cn/~seed/


These emotional films contain both scene and audio, which
can expose participants to more real-life scenarios and elicit
strong subjective and physiological changes.

In our emotion experiments, Chinese film clips are used,
as we consider that native culture factors may affect elicita-
tion in emotion experiments [36], [37]. In the preliminary
study, we manually selected a pool of emotional film clips
from famous Chinese films. Twenty participants were asked
to assess their emotions when watching the selected film
clips using scores (1-5) and keywords (positive, neutral and
negative). The criteria for selecting the film clips were as fol-
lows: (a) the length of the whole experiment should not be
too long in case it will give the participants visual fatigue,
(b) the videos should be understood without explanation,
and (c) the videos should elicit a single desired target emo-
tion. Finally, 15 Chinese film clips for positive, neutral and
negative emotions were chosen from the pool of materials,
which received a score of 3 or higher on the mean ratings
from the twenty participants. Each emotion has five film
clips in one experiment. The duration of each film clip is
about 4 minutes. Each film clip is edited well to create
coherent emotion eliciting. The details of the film clips used
in the experiments are listed in Table 2.

Fifteen participants (seven males and eight females; age
range: 19-28 years old, mean: 23.27, std: 2.37), different from
those in film clips selection, participated in the experiments.
In order to investigate the neural signatures and stable pat-
terns across sessions and individuals, each participant was
required to perform the experiments for three sessions. The
time interval between two sessions was one week or longer.
All the participants are native Chinese students from Shang-
hai Jiao Tong University with self-reported normal or
corrected-to-normal vision and normal hearing. Before
the experiments, the participants were informed about the
experiment and instructed to sit comfortably, watch the
forthcoming movie clips attentively without diverting their
attention from the screen, and refrain as much as possible
from overt movements.

Facial videos and EEG data were recorded simulta-
neously. EEG was recorded using an ESI NeuroScan Sys-
tem2 at a sampling rate of 1000 Hz from a 62-channel active
AgCl electrode cap according to the international 10-20 sys-
tem. The layout of EEG electrodes on the cap is shown in
Fig. 1. The impedance of each electrode had to be less than
5 kV. The frontal face videos were recorded from the cam-
era mounted in front of the participants. Facial videos were
encoded in AVI format with a frame rate of 30 frames per
second and a resolution of 160� 120.

In total, there were 15 trials for each experiment. There
was a 15 s hint of start before each clip and 10 s of feedback
after each clip. For the feedback, participants were told to
report their emotional reactions to each film clip by com-
pleting the questionnaire immediately after watching each
clip. The questions are the following [38]: (1) what they had
actually felt in response to viewing the film clip, (2) how
they felt at the specific time they were watching the film
clips, (3) whether they had watched the movie before, and
(4) whether they had understood the film clips. They also
rated the intensity of subjective emotional arousal using a
five-point scale according to what they actually felt during
the task [39]. Fig. 2 presents the detailed protocol. For EEG
signal processing, the raw EEG data were first down-
sampled to a 200 Hz sampling rate. In order to filter the noise
and remove the artifacts, the EEG data were then processed
with a bandpass filter between 0.5 to 70 Hz. The EEG data
were visually checked and the recordings seriously contami-
nated by EMG and EOG were removed manually from the
dataset. EOG was simultaneously recorded in the experi-
ments to help identify blink artifacts from the recordings.

4 METHODOLOGY

4.1 Feature Extraction

From our previous work[40], [41], [42], we have found that
the following six different features and electrode combina-
tions are efficient for EEG-based emotion recognition:
power spectral density (PSD), differential entropy (DE), dif-
ferential asymmetry (DASM), rational asymmetry (RASM),
asymmetry (ASM) and differential caudality (DCAU) fea-
tures from the EEG. As a result, we use these six different
features in this study. According to the five frequency

Fig. 1. The EEG cap layout for 62 channels.

TABLE 2
Details of the Film Clips Used in Our Emotion Experiment

No. Labels Film clip sources #clips

1 negative Tangshan Earthquake 2
2 negative Back to 1942 3
3 positive Lost in Thailand 2
4 positive Flirting Scholar 1
5 positive Just Another Pandora’s Box 2
6 neutral World Heritage in China 5

Fig. 2. The protocol used in our emotion experiment.2. http://www.neuroscan.com/
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bands, delta (1-3Hz), theta (4-7 Hz), alpha (8-13 Hz), beta
(14-30 Hz) and gamma (31-50 Hz), we computed the tradi-
tional PSD features using Short Time Fourier Transform
(STFT) with a 1-s-long window and no overlapping Han-
ning window. The differential entropy feature for Gaussian
distribution is defined as follows [40],

hðXÞ ¼ �
Z 1

�1

1ffiffiffiffiffiffiffiffiffiffi
2ps2

p exp
ðx� mÞ2

2s2
log

1ffiffiffiffiffiffiffiffiffiffi
2ps2

p

exp
ðx� mÞ2

2s2
dx ¼ 1

2
log 2pes2;

(1)

where X denotes the Gaussian distribution Nðm; s2Þ, x is a
variable, and p and e are constants. According to [40], in a
certain band, DE is equivalent to the logarithmic spectral
energy for a fixed-length EEG sequence.

Because there is evidence that the lateralization between
the left and right hemisphere is associated with emotions
[28], we investigate asymmetry features. We computed the
differential asymmetry and rational asymmetry features as
the differences and ratios between the DE features of 27
pairs of hemispheric asymmetry electrodes (Fp1-Fp2, F7-F8,
F3-F4, FT7-FT8, FC3-FC4, T7-T8, P7-P8, C3-C4, TP7-TP8,
CP3-CP4, P3-P4, O1-O2, AF3-AF4, F5-F6, F7-F8, FC5-FC6,
FC1-FC2, C5-C6, C1-C2, CP5-CP6, CP1-CP2, P5-P6, P1-P2,
PO7-PO8, PO5-PO6, PO3-PO4, and CB1-CB2). DASM and
RASM can be expressed, respectively, as

DASM ¼ DEðXleftÞ �DEðXrightÞ; (2)

and

RASM ¼ DEðXleftÞ=DEðXrightÞ: (3)

ASM features are the direct concatenation of DASM and
RASM features for comparison. In the literature, the patterns
of spectral differences along the frontal and posterior brain
regions have also been explored [43]. To characterize
the spectral band asymmetry with respect to caudality (in
the frontal-posterior direction), we define DCAU features as
the differences between DE features of 23 pairs of frontal-pos-
terior electrodes (FT7-TP7, FC5-CP5, FC3-CP3, FC1-CP1, FCZ-
CPZ, FC2-CP2, FC4-CP4, FC6-CP6, FT8-TP8, F7-P7, F5-P5, F3-
P3, F1-P1, FZ-PZ, F2-P2, F4-P4, F6-P6, F8-P8, FP1-O1, FP2-O2,
FPZ-OZ,AF3-CB1, andAF4-CB2). DCAU is defined as

DCAU ¼ DEðXfrontalÞ �DEðXposteriorÞ: (4)

The dimensions of PSD, DE, DASM, RASM, ASM and
DCAU are 310 (62 electrodes � 5 bands), 310 (62 electrodes
� 5 bands), 135 (27 electrode pairs � 5 bands), 135 (27 elec-
trode pairs � 5 bands), 270 (54 electrode pairs � 5 bands),
and 115 (23 electrode pairs � 5 bands), respectively.

4.2 Feature Smoothing

Most of the existing approaches for emotion recognition
from EEG may be suboptimal because they map EEG sig-
nals to static discrete emotional states and do not take the
temporal dynamics of the emotional state into account.
However, in general, emotion should not be considered as a
discrete psychophysiological state [44]. Here, we assume
that the emotional state is defined in a continuous space
and that emotional states change gradually. Our approach

focuses on tracking the change of the emotional state over
time from the EEG. In our approach, we introduce the
dynamic characteristics of emotional changes into emotion
recognition and investigate how the observed EEG is gener-
ated from a hidden emotional state. We apply the linear
dynamic system (LDS) approach to filter out components
that are not associated with emotional states [45], [46]. For
comparison, we also evaluate the performance of the con-
ventional moving average method.

To make use of the time dependency of emotion changes
and further reduce the influence of emotion-unrelated EEG,
we introduce the LDS approach to smooth features. A linear
dynamic system can be expressed as follows,

xt ¼ zt þ wt; (5)

and

zt ¼ Azt�1 þ vt; (6)

where xt denotes the observed variables, zt denotes the hid-
den emotion variables, A is a transition matrix, wt is Gauss-
ian noise with mean �w and variance Q, and vt is Gaussian
noise with mean �v and variance R. These equations can also
be expressed in equivalent form in terms of Gaussian condi-
tional distributions,

pðxtjztÞ ¼ Nðxtjzt þ �w;QÞ; (7)

and

pðztjzt�1Þ ¼ NðztjAzt�1 þ �v;RÞ: (8)

The initial state is assumed to be

pðz1Þ ¼ Nðz1jp0; S0Þ: (9)

The above model is parameterized by u ¼ fA;Q;R; �w; �v;
p0; S0g. u can be determined using maximum likelihood
through the EM algorithm [47] based on the observation
sequence xt. To infer the latent states zt from the observation
sequence xt, the marginal distribution, pðztjXÞ, must be cal-
culated. The latent state can be expressed as

zt ¼ EðztjXÞ; (10)

where E denotes the expectation. This marginal distribution
can be achieved by using the message propagation method
[47].We use cross-validation to estimate the prior parameters.

4.3 Dimensionality Reduction

We computed the initial EEG features using signal analysis.
However, the features extracted may be uncorrelated with
emotion states and lead to the performance degradation of
classifiers. Additionally, the high dimensionality of the fea-
tures may result in the classifiers suffering from the ‘curse
of dimensionality’ [48]. In addition, for real-world applica-
tions, dimensionality reduction could help to increase the
speed and stability of the classifier. Hence, in this study, we
compare two popular approaches: principal component
analysis (PCA) and minimal redundancy maximal rele-
vance (MRMR) algorithm [49].

Although PCA can reduce the feature dimensions, it can-
not preserve the original domain information such as chan-
nel and frequency after the transformation. Hence, we
choose the MRMR algorithm to select a feature subset from
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an initial feature set. The MRMR algorithm uses mutual
information as the relevance measure with the max-depen-
dency criterion andminimal redundancy criterion. Max-Rel-
evance searches for features satisfying (11) with the mean
value of all the mutual information values between the indi-
vidual feature xd and class c as follows,

maxDðS; cÞ; D ¼ 1

jSj
X
xd2S

Iðxd; cÞ; (11)

where S represents the feature subset to select. When two
features highly depend on each other, the respective class-
discriminative power would not change much if one of
them is removed. Therefore, the following minimal redun-
dancy condition can be added to select for mutually exclu-
sive features,

minRðSÞ; R ¼ 1

jSj2
X

xdi;xdj2S
Iðxdi; xdjÞ: (12)

The criterion, combined with the above two constraints, is
the minimal-redundancy-maximal-relevance, which can be
expressed as

max ’ðD;RÞ; (13)

where ’ ¼ D�R. In practice, an incremental search method
is used to find the near-optimalK features.

4.4 Classification

The extracted features are further fed to three conventional
pattern classifiers, i.e., k nearest neighbors (KNN), logistic
regression (LR), and support vector machine (SVM), and a
newly developed pattern classifier, discriminative Graph
regularized Extreme Learning Machine (GELM) [50], to
build emotion recognition systems. For the KNN classifier,
the euclidean distance is selected as the distance metric, and
the number of nearest neighbors is set to 5 using cross-
validation. For LR, the parameters are computed using max-
imal likelihood estimation. We use the LIBLINEAR software
[51] to build the SVM classifier with a linear kernel. The soft
margin parameter is selected using cross-validation.

Extreme Learning Machine (ELM) is a single hidden
layer feed-forward neural network (SLFN) [52], and learn-
ing with local consistency of the data has drawn much
attention to improve the performance of the existing
machine learning models in recent years. Peng et al. [50]
proposed a discriminative Graph regularized Extreme
Learning Machine based on the idea that similar samples
should share similar properties. GELM yields a much better
performance in comparison with other models for face rec-
ognition [50] and emotion classification [41].

Given a training data set,

L ¼ fðxi; tiÞjxi 2 Rd; ti 2 Rmg; (14)

where xi ¼ ðxi1; xi2; . . . ; xidÞT and ti ¼ ðti1; ti2; . . . ; ximÞT . In
GELM, the adjacentW is defined as follows,

xi ¼ 1=Nt; if hi and hj belong to the tth class
0; otherwise,

�
(15)

where hi ¼ ðg1ðxiÞ; . . . ; gKðxiÞÞT and hj ¼ ðg1ðxjÞ; . . . ; gKðxjÞÞT
are hidden layer outputs for two input samples xi and xj. We
can then compute the graph Laplacian L ¼ D�W , where D
is a diagonal matrix and each of the entries in D contains the
column sums of W . Therefore, GELM can incorporate two
regularization terms into the conventional ELM model. The
objective function of GELM is defined as follows,

min
b

jjHb� T jj22 þ �1TrðHbLbTHT Þ þ �2jjbjj22; (16)

where TrðHbLbTHT Þ is the graph regularization term, jjbjj2
is the l2-norm regularization term, and �1 and �2 are regu-
larization parameters to balance the two terms.

By setting the derivative of the objective function (16)
with respect to b as zero, we have

b ¼ ðHHT þ �1HLHT þ �2IÞ�1HT: (17)

In GELM, the constraint imposed on the output weights
enforces the outputs of samples from the same class to be
similar. The constraint can be formulated as a regularization
term in the objective function of a basic ELM, which also
enables direct calculation of the output weight matrix.

5 EXPERIMENT RESULTS

5.1 Experiment Results on DEAP Data

In this section, to validate the efficiency of the machine
learning algorithms used in this study, we first evaluate
these algorithms with the publicly available emotion data-
set, the DEAP dataset3 [13], and we compare the perfor-
mance of our models with those of other methods used in
the existing studies on the same emotion EEG dataset.

The DEAP dataset consists of EEG and peripheral physio-
logical signals of 32 participants who watched 40 excerpts of
one-minute duration music videos. The EEG signals were
recorded from 32 active electrodes (channels) according to
the international 10-20 system,whereas peripheral physiolog-
ical signals (8 channels) include the galvanic skin response,
skin temperature, blood volume pressure, respiration rate,
electromyogram and electrooculogram (horizontal and verti-
cal). More details on the DEAPdataset are given in [13].

In this experiment, we used an emotion representation
model based on the valence-arousal model. Each dimension
has values ranging from 1 to 9. We further segmented the
four quadrants of the valence-arousal (VA) space according
to the ratings. LALV, HALV, LAHV, and HAHV denote
low arousal/low valence, high arousal/low valence, low
arousal/high valence, and high arousal/high valence,
respectively. Considering the fuzzy boundary of emotions
and the variations of participants’ ratings possibly associated
with individual differences on the rating scale, we added a
gap to segment the quadrants of VA space to ensure the cor-
rect ratings of participants’ true self-elicitation emotion and
discard the EEG data with ratings of arousal and valence
between 4.8 and 5.2. The numbers of instances for LALV,
HALV, LAHV, and HAHV are 12,474, 16,128, 10,962 and
21,420, respectively. The rating distribution of DEAP on the
arousal-valence plane (VA plane) for the four conditions is

3. http://www.eecs.qmul.ac.uk/mmv/datasets/deap/index.html
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shown in Fig. 3. We can see that the ratings are distributed
approximately uniformly [13].We label the EEGdata accord-
ing to the participants’ ratings of valence and arousal.

We first extracted the PSD, DE, DASM, RASM, ASM and
DCAU features of the 32-channel EEG data. The original
EEG data from the DEAP dataset were preprocessed with
down-sampling to 128 Hz and a bandpass frequency filter
from 4.0-45.0 Hz, and EOG artifacts were removed. There-
fore, we extracted the features in the four frequency bands:
theta: 4-7 Hz, alpha: 8-13 Hz, beta: 14-30 Hz, and gamma:
31-45 Hz. The features were further smoothed using the lin-
ear dynamic system approach. We then selected SVM and
GELM as the classifiers. In this study, we used the SVM
classifier with a linear kernel, and the number of hidden
layer neurons for GELM was fixed as 10 times the dimen-
sions of the input. To use the entire data set for training and
testing the classifiers, a five-fold cross-validation scheme
was adopted. All the experiments were performed with
five-fold cross-validation, and the classification perfor-
mance was evaluated using the classification accuracy rate.

Table 3 shows the mean accuracy rates of SVM and
GELM classifiers for different features obtained from vari-
ous frequency bands (theta, alpha, beta and gamma) and
the total frequency bands. It should be noted that ‘Total’ in
Table 3 represents the direct concatenation of all features
from four frequency bands. Because the EEG data of DEAP
are preprocessed with a bandpass frequency filter from 4.0-
45.0 Hz, the results of the delta frequency bands are not
included. The average accuracies (%) are 61.46, 69.67, 52.54,
52.70, 51.82 and 55.26 for the PSD, DE, DASM, RASM,
ASM and DCAU features from the total frequency bands,
respectively. The best accuracy of the GELM classifier is
69.67 percent using the DE features of total frequency
bands, and the best accuracy of the SVM classifier is 54.34
percent. We also evaluate the performance of KNN, logistic
regression and SVM with the RBF kernel on DEAP, which
achieve the respective accuracies (%) and standard devia-
tions (%) of 35.50/14.50, 40.86/16.87, and 39.21/15.87,
respectively, using the DE features of the total frequency
bands. We perform one-way analysis of variance (ANOVA)
to study the statistical significance. The DE features outper-
form the PSD features significantly (p < 0:01), and for classi-
fiers, the performance of GELM is better than that of SVM
(p < 0:01). Aswe can see fromTable 3, the diversity of classi-
fication accuracy for different frequency bands is not signifi-
cant for the DEAP dataset (p > 0:95). The results here do not
show specific frequency bands for the quadrants of the VA
space. We can also see that the DCAU features achieve com-
parable accuracies. These results indicate that there exists
some kind of asymmetry that provides discriminative infor-
mation for the four affect elicitation conditions (LALV,
HALV, LAHV, andHAHV), as discussed in Section 2.2.

A comparison of the recognition accuracy of various sys-
tems using EEG signals in the DEAP dataset is presented in
Table 4. The single modality signal (EEG) is used without a
combined modality fusion manner. Chung et al. [53]
defined a weighted-log-posterior function for the Bayes
classifier and evaluated the method with the DEAP dataset.
The accuracies for valence and arousal classification are 66.6
and 66.4 percent for two classes and 53.4 and 51.0 percent
for three classes, respectively. Koelstra et al. [13] developed
the DEAP dataset and obtained an average accuracy of 62.0
and 57.6 percent for the valence and arousal (2 classes),
respectively. Liu et al. [54] proposed a real-time fractal

TABLE 3
The Mean Accuracy Rates (%) of SVM and GELM
Classifiers for Different Features Obtained from

Separate and Total Frequency Bands

Feature Classifier Theta Alpha Beta Gamma Total

PSD SVM 32.86 33.49 33.73 31.99 36.19
GELM 61.78 61.14 61.77 61.56 61.46

DE SVM 44.31 41.59 43.54 42.74 47.57
GELM 61.45 61.65 62.17 61.45 69.67

DASM SVM 43.18 42.72 42.07 41.24 40.70
GELM 57.86 57.02 56.08 56.48 52.54

RASM SVM 54.34 52.54 53.12 52.76 51.83
GELM 46.66 44.52 44.88 45.56 52.70

ASM SVM 45.03 44.03 43.59 44.03 40.76
GELM 56.16 54.30 54.40 54.73 51.82

DCAU SVM 41.51 41.05 41.27 40.00 40.85
GELM 57.47 56.58 58.25 58.25 55.26

Fig. 3. The rating distribution of DEAP on the arousal-valence plane (VA
plane) for the four conditions (LALV, HALV, LAHV, and HAHV).

TABLE 4
Comparison of the Various Studies Using EEG

in the DEAP Dataset

Study Results

Chung
et al. [53]

66.6%, 66.4% for valence and arousal (2 clas-
ses), 53.4%, 51.0% for valence and arousal
(3 classes) with all 32 participants.

Koelstra
et al. [13]

62.0%, 57.6% for valence and arousal (2 clas-
ses) with all 32 participants.

Liu et al.
[54]

63.04% for arousal-dominance recognition
(4 classes) with the selected 10 participants.

Zhang
et al. [55]

75.19 % and 81.74 % on valence and arousal
(2 classes) with the selected eight participants.

Our method 69.67% for quadrants of VA space (4 classes)
with all 32 participants.
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dimension (FD)-based valence level recognition algorithm
from EEG signals and obtained a mean accuracy of
63.04 percent for arousal-dominance recognition (4 classes)
with the selected 10 participants. Zhang et al. [55] described
an ontological model for representation and integration of
the EEG data, and their model yielded an average recogni-
tion ratio of 75.19 percent for valence and 81.74 percent for
arousal for the eight participants. Although their accuracies
were relatively high, there are only two categories for each
dimension, and these results were achieved using a subset
of the original dataset. In contrast, from Table 3, we can see
that our method GELM achieves an average accuracy of
69.67 percent on the same data set for quadrants of the VA
space (LALV, HALV, LAHV, and HAHV) with DE features
of total frequency bands for all 32 participants.

5.2 Experiment Results on SEED data

In this section, we present the results of our approaches on
the SEED dataset. A very important difference between
SEED and DEAP is that SEED contains three sessions at the
time interval of one week or longer for the same participant.

5.2.1 Performance of Emotion Recognition Models

We first compare six different features, namely PSD, DE,
DASM, RASM, ASM and DCAU, from the total frequency
bands. We use GELM as the classifier, and the number of
hidden layer neurons is fixed as 10 times the dimensions of
the input. We adopt a five-fold cross-validation scheme.
FromTable 5, we can see that DE features have a higher accu-
racy and lower standard deviation than the traditional PSD
features, implying that DE features are more suitable for
EEG-based emotion recognition than the five other different
features. For the asymmetry features, although they have a

fewer number of dimensions than the PSD features, they can
achieve significantly better performance than PSD, which
means that brain processing related to positive, neutral and
negative emotions has asymmetrical characteristics.

We also evaluate the performance of two different feature
smoothing algorithms. Here, we compare the linear dynamic
system approach with the conventional moving average
algorithm. The size of moving windows is five in this study.
The means and standard deviations of the accuracies in per-
centages (%) for without smoothing, moving average, and
the LDS approach are 70.82/9.17, 76.07/8.86 and 91.07/7.54,
respectively. We can see that the LDS approach significantly
outperforms the moving average method (p < 0:01), which
achieves 14.41 percent higher accuracy. The results also dem-
onstrate that feature smoothing plays a significant role in
EEG-based emotion recognition.

We compare the performance of four different classifiers,
KNN, Logistic Regression, SVM and GELM. In this evalua-
tion, DE features of 310 dimensions were used as the inputs
of classifiers. The parameter K of KNN was fixed to be the
constant value of five. For LR and linear SVM, grid search
with cross-validation was used to tune the parameters. The
mean accuracies and standard deviations in percentage (%)
of KNN, LR, SVM with RBF kernel, SVM with linear kernel
and GELM are 70.43/12.73, 84.08/8.77, 78.21/9.72, 83.26/
9.08 and 91.07/7.54, respectively. From the above results, we
can see that GELM outperforms other classifiers with higher
accuracies and lower standard deviations, which imply that
GELM ismore suited for EEG-based emotion recognition.

5.2.2 Neural Signatures and Stable Patterns

Fig. 4 presents the average accuracies of the GELM classifier
for the six different features extracted from five frequency
bands (delta, theta, alpha, beta and gamma) and the direct
concatenation of these five frequency bands. The results in
Fig. 4 indicate that the features obtained from the gamma
and beta frequency bands perform better than those from
other frequency bands, which imply that beta and gamma
oscillations of brain activity are more related to the process-
ing of these three emotional states than other frequency
oscillations, as described in [56], [57], [58].

Fig. 5 shows the spectrogram of the electrode position T7
in an experiment, and Fig. 6 shows the average spectrogram

TABLE 5
The Means and Standard Deviations of Accuracies (%)

for the PSD, DE, DASM, RASM, ASM and DCAU
Features from the Total Frequency Bands

Feature PSD DE DASM RASM ASM DCAU

Mean 72.75 91.07 86.76 86.98 85.27 89.95
Std. 11.85 7.54 8.43 9.09 9.16 6.87

Fig. 4. The average accuracies of GELM using different features
obtained from five frequency bands and using a fusion method.

Fig. 5. The spectrogram of the electrode position T7 in one experiment.
As different emotions elicited, we can see that the spectrogram has dif-
ferent patterns.
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over participants for each session at some electrodes (FPZ,
FT7, F7, FT8, T7, C3, CZ, C4, T8, P7, PZ, P8 and OZ). As we
can see from Figs. 5 and 6, the spectrograms have different
patterns for different elicited emotions. The dynamics of
higher-frequency oscillations are more related to positive/
negative emotions, especially for the temporal lobes. More-
over, the neural patterns over time are relatively stable for
each session. To obtain the neural patterns associated with
emotion processing, we project the DE features to the scalp
to determine the temporal dynamics of frequency oscilla-
tions and stable patterns across participants.

Fig. 7 depicts the average neural patterns for positive,
neutral and negative emotions. The results demonstrate
that neural signatures associated with positive, neutral and
negative emotions do exist. The lateral temporal areas acti-
vate more for positive emotions than negative emotions in
beta and gamma bands, and the energy of the prefrontal
area is increased for negative emotions over positive emo-
tions in beta and gamma bands. While the neural patterns
of neutral emotions are similar to those of negative emo-
tions, which both show less activation in the temporal areas,
the neural patterns of neutral emotions have higher alpha

responses at parietal and occipital sites. For negative emo-
tions, the neural patterns have significant higher delta
responses at parietal and occipital sites and significantly
higher gamma responses at prefrontal sites. The existing
studies [59], [60] have shown that EEG alpha activity reflects
attentional processing and that beta activity reflects emo-
tional and cognitive processes. When participants watched
neutral stimuli, they tended to be more relaxed and less
attentional, which evoked alpha responses. For positive
emotion processing, the energy of the beta and gamma
responses was increased. The findings of these neural pat-
terns are consistent with previous emotion studies [14], [17],
[42], [59], [61].

5.2.3 Dimensionality Reduction

As discussed above, the brain activities of emotion process-
ing have critical frequency bands and brain areas, which
imply that theremust be a low-dimensionmanifold structure
for emotion-related EEG signals. Therefore, we investigate
how the dimension of features will affect the performance of
emotion recognition. Here, we compare two dimensionality
reduction algorithms, the principle component analysis

Fig. 6. The average spectrogram of the participants for each session at some electrodes, which shows the stable neural patterns over time in the
temporal lobes and high-frequency bands (a red color indicates a high amplitude).

Fig. 7. The average neural patterns for all participants and sessions for different emotions, which shows that neural signatures associated with posi-
tive, neutral and negative emotions do exist. The lateral temporal areas are activated more for positive emotions than negative emotions in the beta
and gamma bands. While the neural patterns of neutral emotions are similar to those of negative emotions, which both show less activation in tempo-
ral areas, the neural patterns of neutral emotion have higher alpha responses at parietal and occipital sites. The negative emotion patterns have sig-
nificant higher delta responses at parietal and occipital sites and higher gamma responses at prefrontal sites.
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algorithm and the minimal redundancy maximal relevance
algorithm, with DE features of 310 dimensions as inputs and
GELMas a classifier.

We find that dimensionality reduction does not affect
the performance of our model greatly. For the PCA algo-
rithm, when the dimension is reduced to 210, the accuracy
drops from 91.07 to 88.46 percent and then reaches a local
maximum value of 89.57 percent at the dimension of 160.
For the MRMR algorithm, the accuracies vary slightly with
lower dimension features. Comparing PCA and MRMR, it
is better to apply the MRMR algorithm for EEG-based
emotion recognition. Because the MRMR algorithm yields
the best emotion-relevant and minimal redundancy fea-
tures, it also preserves original domain information such
as channel and frequency bands, which have the most dis-
criminative information for emotion recognition after
transformation. This discovery helps us reduce the compu-
tations required for the features and the complexity of the
computational models.

Fig. 8 presents the distribution of the 20 top participant-
independent features selected using the correlation coeffi-
cient. These 20 top features were selected from the alpha fre-
quency bands at the electrode location FT8, the beta
frequency bands at electrode locations AF4, F6, F8, FT7,
FC5, FC6, FT8, T7, and TP7 and the gamma frequency band
at the electrode locations FP2, AF4, F4, F6, F8, FT7, FC5,
FC6, T7, and C5. These selected features are mostly from the
beta and gamma frequency bands and at the lateral tempo-
ral and frontal brain areas, which is consistent with the
above findings for the time frequency analysis.

5.2.4 Stability of the Emotion Recognition Model

over Time

It should be noted that SEED consists of 15 participants, and
each participant performed the experiments three times.
The interval between two sessions is one week or longer. By
using SEED, we evaluated whether the performance of our
emotion recognition model is stable with time. We split the
data from different sessions for one participant into training
data and testing data and trained the model using GELM.
The features employed here are the DE features extracted
from the total frequency bands after LDS smoothing.

The results are presented in Tables 6 and 7. From the
mean values of the accuracy and standard deviation, we
find that the accuracies obtained with the training set and

test set from the same sessions are much higher than those
obtained from different sessions. The performance of the
emotion recognition model is better with training data and
test data obtained from sessions performed for a short time.
In Table 6, a comparative mean classification accuracy of
79.28 percent is achieved using our emotion recognition
model with training and test datasets from different ses-
sions. This result implies that the relation between the varia-
tion of the emotional states and the EEG signal is stable for
one person over a period of time. With the passage of time,
the performance of the model may become worse. There-
fore, the adaption of the computational model should be
further studied in the future.

We now consider the situation of cross-participants and
examine the participant-independent emotion recognition
model. We employ a leave-one-out cross-validation to
investigate the classification performance in a participant-
independent approach and use linear SVM classifier with
DE features from five frequency bands as inputs. The
average accuracy and standard deviation with participant-
independent features are 60.93 and 13.95 percent, respec-
tively. These results indicate that the participant-indepen-
dent features are relatively stable and that it is possible
to build a common emotion recognition model. However,
on the other hand, the factors of individual differences
should be considered to build a more robust affective com-
puting model.

We have investigated how stable our emotion recogni-
tion model is across both participants and sessions, and we
find that the performance of the model across participants
and sessions is worse than that for a single experiment. In
general, we want to train the model on the EEG data from a
set of participants or sessions and perform inference on the
new data from other unseen participants or sessions. How-
ever, this is technically difficult due to individual differen-
ces across participants with the inherent variability of the
EEG measurements such as environmental variables [62].
Although different emotions share some commonalities of
neural patterns as we have reported above, they still contain
some individual differences for different participants and
different sessions, which may lead to changes in the under-
lying probability distribution from participant to participant
or from session to session. This is why the average accuracy
of the classifiers trained and tested on each individual par-
ticipant or session is much higher than that of a classifier
trained on a set of participants or sessions and tested on
other participants or sessions.

Fig. 8. Distribution of the 20 top participant-independent features
selected using the correlation coefficients.

TABLE 6
The Average Accuracies (%) of Our
Emotion Model Across Sessions

Stats. Train Test

First Second Third

Mean

First 90.83 72.55 67.22
Second 75.86 88.22 76.62
Third 76.28 78.17 87.80

Std.

First 8.64 10.29 10.42
Second 7.71 8.59 15.34
Third 11.47 13.41 10.97
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6 CONCLUSIONS AND FUTURE WORK

In this paper, we have systematically evaluated the perfor-
mance of different popular methods for feature extraction,
feature selection, feature smoothing and pattern classifica-
tion for emotion recognition on our SEED dataset and
the public DEAP dataset. From the experimental results, we
have found that GELM with the differential entropy
features outperforms other methods. We have achieved
the best average classification accuracies of 69.67 and
91.07 percent on the DEAP and SEED datasets, respectively.
The comparative classification accuracies achieved show the
reliability and superior performance of ourmachine learning
methods in comparison with the existing approaches. We
have utilized these methods to investigate the stability of
neural patterns over time.

On our SEED dataset, an average classification accuracy
of 79.28 percent is achieved with training and testing data-
sets from different sessions. The experimental results indi-
cate that neural signatures and stable EEG patterns
associated with positive, neutral and negative emotions do
exist. We have found that the lateral temporal areas activate
more for positive emotions than negative emotions in the
beta and gamma bands, the neural patterns of neutral emo-
tions have higher alpha responses at parietal and occipital
sites, and the negative emotion patterns have significant
higher delta responses at parietal and occipital sites and
higher gamma responses at prefrontal sites. The experiment
results also indicate that the stable EEG patterns across

sessions exhibit consistency among repeated EEG measure-
ments of the same participant.

In this study, we investigated the stable neural patterns
of three emotions: positive, neutral and negative. For
future work, more categories of emotions will be studied,
and we will evaluate extending the generalization of our
proposed approach to more categories of emotions. The
order of presentation is the same for different sessions in
this study. We are developing a larger stimuli database for
emotion experiments and make the stimuli different for
different sessions. Moreover, several important factors
such as gender, age, and race should be considered. To
render the automatic emotion recognition models to be
adaptable, factors such as individual differences and tem-
poral evolution should be considered. One possible way of
dealing with these problems is to adopt transfer learning
techniques [63], [64], [65], [66].
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TABLE 7
The Classification Accuracies (%) of the Training and Test Data from Different Sessions Using GELM

Participant Train Test Participant Train Test

1st 2nd 3rd 1st 2nd 3rd

#1
1st 91.62 60.26 60.26

#2
1st 100.00 68.28 60.84

2nd 68.28 80.2 68.28 2nd 85.12 71.68 81.65
3rd 68.28 52.53 92.56 3rd 85.12 80.42 90.82

#3
1st 95.95 100.00 75.51

#4
1st 100.00 68.28 68.28

2nd 76.95 97.04 82.95 2nd 83.02 100.00 91.69
3rd 80.20 88.08 68.93 3rd 76.81 100.00 100.00

#5
1st 75.94 59.61 61.05

#6
1st 79.70 71.60 53.83

2nd 80.78 75.00 69.65 2nd 67.92 80.78 55.71
3rd 56.50 54.48 98.12 3rd 70.30 71.75 86.27

#7
1st 90.39 66.69 66.47

#8
1st 75.07 67.77 51.01

2nd 67.49 95.81 59.83 2nd 72.83 91.33 45.95
3rd 83.60 81.79 74.93 3rd 59.61 75.94 73.05

#9
1st 91.98 80.56 78.47

#10
1st 85.12 70.38 69.29

2nd 81.36 100.00 95.95 2nd 60.12 86.05 87.14
3rd 93.42 95.52 93.42 3rd 87.07 83.02 95.74

#11
1st 96.24 67.99 76.01

#12
1st 86.78 74.86 63.29

2nd 77.89 85.33 95.59 2nd 84.39 91.62 68.06
3rd 65.39 66.04 100.00 3rd 75.58 83.45 73.48

#13
1st 93.71 76.88 92.63

#14
1st 100.00 86.27 64.02

2nd 70.38 90.75 94.00 2nd 76.23 86.42 77.67
3rd 84.10 87.21 100.00 3rd 91.69 82.15 89.31

#15
1st 100.00 68.79 67.34
2nd 85.12 91.26 75.14
3rd 66.47 70.16 80.35

‘1st’, ‘2nd’, and ‘3rd’ denote the data obtained from the first, second, and third experiments, respectively, for a participant.
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