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Abstract—Multimodal signals are more powerful than uni-
modal data for emotion recognition since they can represent
emotions more comprehensively. In this paper, we introduce deep
canonical correlation analysis (DCCA) to multimodal emotion
recognition. The basic idea behind DCCA is to transform each
modality separately and coordinate different modalities into
a hyperspace by using specified canonical correlation analysis
constraints. We evaluate the performance of DCCA on five
multimodal datasets: the SEED, SEED-IV, SEED-V, DEAP, and
DREAMER datasets. Our experimental results demonstrate that
DCCA achieves state-of-the-art recognition accuracy rates on all
five datasets: 94.58% on the SEED dataset, 87.45% on the SEED-
IV dataset, 84.33% and 85.62% for two binary classification
tasks and 88.51% for a four-category classification task on the
DEAP dataset, 83.08% on the SEED-V dataset, and 88.99%,
90.57%, and 90.67% for three binary classification tasks on
the DREAMER dataset. We also compare the noise robustness
of DCCA with that of existing methods when adding various
amounts of noise to the SEED-V dataset. The experimental
results indicate that DCCA has greater robustness. By visualizing
feature distributions with t-SNE and calculating the mutual
information between different modalities before and after using
DCCA, we find that the features transformed by DCCA from
different modalities are more homogeneous and discriminative
across emotions.

Index Terms—Multimodal signal, Multimodal emotion recog-
nition, Multimodal deep learning, Deep canonical correlation
analysis, EEG, Eye movement.

I. INTRODUCTION

EMOTION strongly influences in our daily activities such
as interactions between people, decision making, learn-

ing, and working. To endow a computer with emotion per-
ception, understanding, and regulation abilities, Picard et al.
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developed the concept of affective computing, which aims
to be used to study and develop systems and devices that
can recognize, interpret, process, and simulate human af-
fects [1], [2]. Human emotion recognition is a current hotspot
in affective computing research. Since emotion recognition
is critical for applications such as affective brain-computer
interaction, emotion regulation and the diagnosis of emotion-
related diseases, it is necessary to build a reliable and accurate
model for recognizing human emotions.

Traditional emotion recognition systems are built with
speech signals [3], facial expressions [4], and non-
physiological signals [5]. However, in addition to clues from
external appearances, emotions contain reactions from the
central and peripheral nervous systems. Moreover, an obvious
drawback of using behavioral modalities for emotion recog-
nition is the uncertainty that arises in the case of individuals
who either consciously regulate their emotional manifestations
or are naturally suppressive. In contrast, EEG-based emotion
recognition has been proven to be a reliable method because of
its high recognition accuracy, objective evaluation and stable
neural patterns [6], [7], [8], [9].

For the above reasons, researchers have tended to study
emotions through physiological signals in recent years. These
signals are more accurate and difficult to deliberately change
by users. Lin and colleagues evaluated music-induced emotion
recognition with EEG signals and attempted to use as few
electrodes as possible [10]. Wang and colleagues used EEG
signals to classify positive and negative emotions and com-
pared different EEG features and classifiers [11]. Kim and
André showed that electromyogram, electrocardiogram, skin
conductivity, and respiration changes were reliable signals for
emotion recognition [12]. Võ et al. studied the relationship
between emotions and eye movement features, and they found
that pupil diameters were influenced by both emotion and
age [13].

Emotions are complex cognitive processes that involve
subjective experience, expressive behaviors, and psychophys-
iological changes. Due to the rich characteristics of human
emotions, it is difficult for single-modality signals to describe
emotions comprehensively. Therefore, recognizing emotions
with multiple modalities has become a promising method for
building emotion recognition systems with high accuracy [14],
[15], [16], [17], [18], [19]. Multimodal data can reflect emo-
tional changes from multiple perspective, which is conducive
to building a reliable and accurate emotion recognition model.

Multimodal fusion is one of the key aspects in taking
full advantage of multimodal signals. In the past few years,
researchers have utilized various methods to fuse different

ar
X

iv
:1

90
8.

05
34

9v
1 

 [
cs

.L
G

] 
 1

3 
A

ug
 2

01
9



2

modalities. Lu and colleagues employed feature-level concate-
nation, MAX fusion, SUM fusion, and fuzzy integral fusion
to merge EEG and eye movement features, and they found the
complementary properties of EEG and eye movement features
in emotion recognition tasks [20]. Koelstra and colleagues
evaluated the feature-level concatenation of EEG features
and peripheral physiological features, and they found that
participant ratings and EEG frequencies were significantly
correlated and that decision fusion achieved the best emo-
tion recognition results [21]. Sun et al. built a hierarchical
classifier by combining both feature-level and decision-level
fusion for emotion recognition tasks in the wild. The method
was evaluated on several datasets and made very promising
achievements on the validation and test sets [22].

Currently, with the rapid development of deep learning,
researchers are applying deep learning models to fuse multi-
ple modalities. Deep-learning-based multimodal representation
frameworks can be classified into two categories: multimodal
joint representation and multimodal coordinated representa-
tion [23]. Briefly, the multimodal joint representation frame-
work takes all the modalities as input, and each modality
starts with several individual neural layers followed by a
hidden layer that projects the modalities into a joint space. The
multimodal coordinated representation framework, instead of
projecting the modalities together into a joint space, learns
separate representations for each modality and coordinates
them into a hyperspace with constraints between different
modalities. Various multimodal joint representation frame-
works have been applied to emotion recognition in very
recent years [24], [25], [26], [27]. However, the multimodal
coordinated representation framework has not yet been fully
studied.

In this paper, we introduce a coordinated representa-
tion model named Deep Canonical Correlation Analysis
(DCCA) [28], [29] to multimodal emotion recognition. The
basic idea behind DCCA is to learn separate but coordinated
representations for each modality under canonical correlation
analysis (CCA) constraints. Since the coordinated representa-
tions are of the same dimension, we denote the coordinated
hyperspace by S.

Compared with our previous work [29], the main contribu-
tions of this paper on multimodal emotion recognition can be
summarized as follows:

1. We introduce DCCA to multimodal emotion recognition
and evaluate the effectiveness of DCCA on five bench-
mark datasets: the SEED, SEED-IV, SEED-V, DEAP, and
DREAMER datasets. Our experimental results on these
five datasets reveal that different emotions are disentan-
gled in the coordinated hyperspace S, and the trans-
formation process of DCCA preserves emotion-related
information and discards unrelated information.

2. We examine the robustness of DCCA and the existing
methods on the SEED-V dataset under different levels
of noise. The experimental results show that DCCA has
higher robustness than the existing methods under most
noise conditions.

3. By adjusting the weights of different modalities, DCCA
allows users to fuse different modalities with greater flex-

ibility such that various modalities contribute differently
to the fused features.

The remainder of this paper is organized as follows. Section
II summarizes the development and current state of multimodal
fusion strategies. In Section III, we introduce the algorithms
for the canonical correlation analysis, DCCA, the baseline
models utilized in this paper, and the mutual information neu-
ral estimation (MINE) algorithm. The experimental settings
are reported in Section IV. Section V presents and analyzes the
experimental results. Finally, conclusions are given in Section
VI.

II. RELATED WORK

One of the key problems in multimodal deep learning is
how to fuse data from different modalities. Multimodal fusion
has gained increasing attention from researchers in diverse
fields due to its potential for innumerable applications such
as emotion recognition, event detection, image segmentation,
and video classification [30], [31]. According to the level of
fusion, traditional fusion strategies can be classified into the
following three categories: 1) feature-level fusion (early fu-
sion), 2) decision-level multimodal fusion (late fusion), and 3)
hybrid multimodal fusion. With the rapid development of deep
learning, an increasing number of researchers are employing
deep learning models to facilitate multimodal fusion. In the
following, we introduce these multimodal fusion types and
their subtypes.

A. Feature-level fusion

Feature-level fusion is a common and straightforward
method to fuse different modalities. The features extracted
from the various modalities are first combined into a high-
dimensional feature and then sent as a whole to the mod-
els [32], [21], [20], [33], [34].

The advantages of feature-level fusion are two-fold: 1) it
can utilize the correlation between different modalities at an
early stage, which better facilitates task accomplishment, and
2) the fused data contain more information than a single
modality, and thus, a performance improvement is expected.
The drawbacks of feature-level fusion methods mainly reside
in the following: 1) it is difficult to represent the time syn-
chronization between different modality features, 2) this type
of fusion method might suffer the curse of dimensionality on
small datasets, and 3) larger dimensional features might stress
computational resources during model training.

B. Decision-level fusion

Decision-level fusion focuses on the usage of small classi-
fiers and their combination. Ensemble learning is often used
to assemble these classifiers. The term decision-level fusion
describes a variety of methods designed to merge the outcomes
and ensemble them into a single decision.

Rule-based fusion methods are most adopted in multimodal
emotion recognition. Lu and colleagues utilized MAX fusion,
SUM fusion, and fuzzy integral fusion for multimodal emotion
recognition, and they found the complementary nature of
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EEG and eye movement features by analyzing confusion
matrices [20]. Although rule-based fusion methods are easy
to use, the difficulty facing rule-based fusion is how to design
good rules. If rules are too simple, they might not reveal the
relationships between different modalities.

The advantage of decision-level fusion is that the decisions
from different classifiers are easily compared and each modal-
ity can use its best suitable classifier for the task.

C. Hybrid fusion

Hybrid fusion is a combination of feature-level fusion and
decision-level fusion. Sun and colleagues built a hierarchical
classifier by combining both feature-level and decision-level
fusion methods for emotion recognition [22]. Guo et al. built
a hybrid classifier by combining fuzzy cognitive map and
SVM to classify emotional states with compressed sensing
representation [35].

D. Deep-learning-based fusion

For deep learning models, different types of multimodal
fusion methods have been developed, and these methods can
be grouped into two categories based on the modality rep-
resentation: multimodal joint representation and multimodal
coordinated representation [23].

The multimodal joint representation framework takes all
the modalities as input, and each modality starts with several
individual neural layers followed by a hidden layer that
projects the modalities into a joint space. Both transformation
and fusion processes are achieved automatically by black-box
models and users do not know the meaning of the joint rep-
resentations. The multimodal joint representation framework
has been applied to emotion recognition [24], [25] and natural
language processing [36].

The multimodal coordinated representation framework, in-
stead of projecting the modalities together into a joint space,
learns separate representations for each modality but coordi-
nates them through a constraint. The most common coordi-
nated representation models enforce similarity between modal-
ities. Frome and colleagues proposed a deep visual semantic
embedding (DeViSE) model to identify visual objects [37].
DeViSE is initialized from two pre-trained neural network
models: a visual object categorization network and a skip-gram
language model. DeViSE combines these two networks by the
dot-product and hinge rank loss similarity metrics such that the
model is trained to produce a higher dot product similarity
between the visual model output and the vector representation
of the correct label than that between the visual output and
other randomly chosen text terms.

The deep canonical correlation analysis (DCCA) method,
which is another model under the coordinated representation
framework, was proposed by Andrew and colleagues [28].
In contrast to DeViSE, DCCA adopts traditional CCA as a
similarity metric, which allows us to transform data into a
highly correlated hyper-space.

III. METHODS

In this section, we first provide a brief description of tradi-
tional canonical correlation analysis (CCA) in Section III-A.
Based on CCA, we present the building processes of DCCA
in Section III-B. The baseline methods used in this paper are
described in Section III-C. Finally, the mutual information
neural estimation (MINE) algorithm is given in Section III-D,
which is utilized to analyze the properties of transformed
features implemented by DCCA in the coordinated hyperspace
S.

A. Canonical Correlation Analysis

Canonical correlation analysis (CCA) was proposed by
Hotelling [38]. It is a widely used technique in the statistics
community to measure the linear relationship between two
multidimensional variables. Hardoon and colleagues applied
CCA to machine learning [39].

Let (X1, X2) ∈ Rn1 × Rn2 denote random vectors with
covariance matrices (Σ11,Σ22) and cross-variance matrix Σ12.
CCA attempts to find linear transformations of (X1, X2),
(w∗1X1, w

∗
2X2), which are maximally correlated:

(w∗1 , w
∗
2) = arg max

w1,w2

corr(w′1X1, w
′
2X2)

= arg max
w1,w2

w′1Σ12w2√
w′1Σ11w1w′2Σ22w2

. (1)

Since Eq. (1) is invariant to the scaling of the weights w1 and
w2, Eq. (1) can be reformulated as follows:

(w∗1 , w
∗
2) = arg max

w′1Σ11w1=w′2Σ22w2=1

w′1Σ12w2, (2)

where we assume the projections are constrained to have unit
variance.

To find multiple results of (wi1, w
i
2), subsequent projections

are also constrained to be uncorrelated with previous projec-
tions, i.e., wi1Σ11w

j
1 = wi2Σ22w

j
2 = 0 for i < j. Combining

the top k projection vectors wi1 into a matrix A1 ∈ Rn1×k as
column vectors and similarly placing wi2 into A2 ∈ Rn2×k,
we then identify the top k ≤ min(n1, n2) projections:

maximize: tr(A′1Σ12A2)

subject to: A′1Σ11A1 = A′2Σ22A2 = I. (3)

To solve this objective function, we first define T =

Σ
−1/2
11 Σ12Σ

−1/2
22 , and we let Uk and Vk be the matrices

of the first k left singular and right singular vectors of T ,
respectively. Then the optimal objective value is the sum of
the top k singular values of T , and the optimum is obtained at
(A∗1, A

∗
2) = (Σ

−1/2
11 Uk,Σ

−1/2
22 Vk). This method requires the

covariance matrices Σ11 and Σ22 to be nonsingular, which is
usually satisfied in practice.

For the original CCA, the representations in the latent space
are obtained by linear transformations, which limit the scope
of application of CCA. To address this problem, Lai and
Fyfe [40] proposed kernel CCA, in which kernel methods
are introduced for nonlinear transformations. Klami and col-
leagues developed probabilistic canonical correlation analysis
(PCCA) [41]; later, they extended PCCA to a Bayesian-based
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CCA named inter-battery factor analysis [42]. There are many
other extensions of CCA such as tensor CCA [43], sparse
CCA [44], and cluster CCA [45].

B. Deep Canonical Correlation Analysis

In this paper, we introduce deep canonical correlation
analysis (DCCA) to multimodal emotion recognition. DCCA
was proposed by Andrew and colleagues [28], and it computes
representations of multiple modalities by passing them through
multiple stacked layers of nonlinear transformations. Figure 1
depicts the structure of DCCA used in this paper.

CCA

O =f (X ) O!=f!(X!)

X� X�

∆W� ∆W�

Fusion

α α!

classifier

Fig. 1. The structure of DCCA. Different modalities are transformed by
different neural networks separately. The outputs (O1, O2) are regularized by
the traditional CCA constraint. Various strategies can be adopted to fuse O1

and O2, and we use the weighted sum fusion method as shown in Eq. (11). We
update the parameters to maximize the CCA metric of different modalities,
and the fused features are used to train a classifier.

Let X1 ∈ RN×d1 be the instance matrix for the first
modality and X2 ∈ RN×d2 be the instance matrix for the
second modality. Here, N is the number of instances, and d1

and d2 are the dimensions of the extracted features for these
two modalities, respectively. To transform the raw features of
two modalities nonlinearly, we build two deep neural networks
for the two modalities as follows:

O1 =f1(X1;W1), (4)
O2 =f2(X2;W2), (5)

where W1 and W2 denote all parameters for the non-linear
transformations, O1 ∈ RN×d and O2 ∈ RN×d are the outputs
of the neural networks, and d denotes the output dimension of
DCCA. The goal of DCCA is to jointly learn the parameters
W1 and W2 for both neural networks such that the correlation
of O1 and O2 is as high as possible:

(W ∗1 ,W
∗
2 ) = arg max

W1,W2

corr(f1(X1;W1), F2(X2;W2)). (6)

We use the backpropagation algorithm to update W1 and
W2. The solution to calculating the gradients of the ob-
jective function in Eq. (6) was developed by Andrew and
colleagues [28]. Let Ō1 = O′1 − 1

NO
′
11 be the centered

output matrix (similar to Ō2). We define Σ̂12 = 1
N−1 Ō1Ō

′
2,

Σ̂11 = 1
N−1 Ō1Ō

′
1 + r1I. Here, r1 is a regularization constant

(similar to Σ̂22). The total correlation of the top k components
of O1 and O2 is the sum of the top k singular values of matrix
T = Σ̂

−1/2
11 Σ̂12Σ̂

−1/2
22 . In this paper, we take k = d, and the

total correlation is the trace of T :

corr(O1, O2) =

(
tr(T ′T )

)1/2

. (7)

Finally, we calculate the gradients with the singular decom-
position of T = UDV ′,

∂corr(O1, O2)

∂O1
=

1

N − 1
(2∇11Ō1 +∇12Ō2), (8)

where

∇11 =− 1

2
Σ̂
−1/2
11 UDU ′Σ̂

−1/2
11 , (9)

∇12 =Σ̂
−1/2
11 UV ′Σ̂

−1/2
22 , (10)

and ∂corr(O1, O2)/∂O2 has a symmetric expression.
After the training of the two neural networks, the trans-

formed features O1, O2 ∈ S are in the coordinated hyperspace
S. In the original DCCA [28], the authors did not explic-
itly describe how to use transformed features for real-world
applications via machine learning algorithms. Users need to
design a strategy to take advantage of the transformed features
according to their application.

In this paper, we use a weighted sum fusion method to
obtain the fused features as follows:

O = α1O1 + α2O2, (11)

where α1 and α2 are weights satisfying α1 + α2 = 1. The
fused features O are used to train the classifiers to recognize
different emotions. In this paper, an SVM classifier is adopted.

According to the construction processes mentioned above,
DCCA brings the following advantages to multimodal emotion
recognition:
• By transforming different modalities separately, we can

explicitly extract transformed features for each modal-
ity (O1 and O2) so that it is convenient to examine
the characteristics and relationships of modality-specific
transformations.

• With specified CCA constraints, we can regulate the non-
linear mappings (f1(·) and f2(·)) and make the model
preserve the emotion-related information.

• By using a weighted sum fusion (under the condition
α1 + α2 = 1), we can assign different priorities to
these modalities based on our priori knowledge. A larger
weight represents a larger contribution of the correspond-
ing modality to the fusion features.

C. Baseline methods
1) Concatenation Fusion: The concatenation fusion is a

type of feature-level fusion. The feature vectors from two
modalities are denoted as X1 = [x1

1, · · · , x1
n] ∈ Rn and

X2 = [x2
1, · · · , x2

m] ∈ Rm, and the fused features can be
calculated with the following equation:

Xfusion = Concat([X1, X2])

= [x1
1, · · · , x1

n, x
2
1, · · · , x2

m]. (12)
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2) MAX Fusion: The MAX fusion method is a type of
decision-level fusion method that chooses the class of the
maximum probability as the prediction result. Assuming that
we have K classifiers and C categories, there is a probability
distribution for each sample Pj(Yi|xt), j ∈ {1, · · · ,K}, and
i ∈ {1, · · · , C}, where xt is a sample, Yi is the predicted
label, and Pj(Yi|xt) is the probability of sample xt belonging
to class i generated by the j-th classifier. The MAX fusion
rule can be expressed as follows:

Ŷ = arg max
i
{arg max

j
Pj(Yi|xt)}. (13)

3) Fuzzy Integral Fusion: The fuzzy integral fusion is also
a type of decision-level fusion [46], [47]. A fuzzy measure
µ on the set X is a function: µ : P(X) → [0, 1], which
satisfies the two axioms: 1) µ(∅) = 0 and 2) A ⊂ B ⊂
X implies µ(A) ≤ µ(B). In this paper, we use the discrete
Choquet integral to fuse the multimodal features. The discrete
Choquet integral of a function f : X → R+ with respect to
µ is defined by

Cµ(f) :=

n∑
i=1

(
f(xi)− f(xi−1)

)
µ(A(i)), (14)

where ·(i) indicates that the indices have been permuted such
that 0 ≤ f(x(1)) ≤ · · · ≤ f(x(n)), A(i) := {x(i), · · · , x(n)},
and f(x(0)) = 0.

In this paper, we utilize the algorithm proposed by Tanaka
and Sugeno [48] to calculate the fuzzy measure. The algorithm
attempts to find the fuzzy measure µ, which minimizes the to-
tal squared error of the model. Tanaka and Sugeno proved that
the minimization problem can be solved through a quadratic
programming method.

4) Bimodal Deep AutoEncoder (BDAE): BDAE was pro-
posed by Ngiam and colleagues [33]. In our previous work,
we applied BDAE to multimodal emotion recognition [24].

A building block of BDAE is the restricted Boltzmann
machine (RBM). The RBM is an undirected graph model,
which has a visible layer and a hidden layer. Connections
exist only between the visible layer and hidden layer , and
there are no connections in the visible layer or in the hidden
layer. In this paper, we adopted the BernoulliRBM in Scikit-
learn1 [49]. The visible variables v ∼ Bern(p) are binary
stochastic units of dimension M , which means that the input
data should be either binary or real valued between 0 and 1,
signifying the probability. The hidden variables also satisfy a
Bernoulli distribution h ∈ {0, 1}N . The energy is calculated
with the following function:

E(v,h; θ) = −
M∑
i=1

N∑
j=1

Wijvihj −
M∑
i=1

bivi −
N∑
j=1

ajhj , (15)

where θ = {a,b,W} are parameters, Wij is the symmetric
weight between the visible unit i and the hidden unit j, and bi
and aj are the bias terms of the visible unit and hidden unit,

1https://scikit-learn.org/stable/modules/generated/sklearn.neural network.
BernoulliRBM.html

respectively. With an energy function, we can obtain the joint
distribution over the visible and hidden units:

p(v,h; θ) =
1

Z(θ)
exp(E(v,h; θ)), (16)

Z(θ) =
∑
v

∑
h

exp(E(v,h; θ)), (17)

where Z(θ) is the normalization constant. Given a set of
visible variables {vn}Nn=1, the derivative of the log-likelihood
with respect to the weight W can be calculated from Eq. (16):

1

N

N∑
i=1

∂ log p(vn; θ)

∂Wij
= EPdata [vihj ]− EPmodel [vihj ]. (18)

The BDAE training procedure includes encoding and de-
coding. In the encoding phase, we train two RBMs for EEG
features and eye movement features, and the hidden layers
are denoted as hEEG and hEye. These two hidden layers are
concatenated together, and the concatenated layer is used as
the visual layer of a new upper RBM. In the decoding stage,
we unfold the stacked RBMs to reconstruct the input features.
Finally, we use a back-propagation algorithm to minimize the
reconstruction error.

D. Mutual Information Neural Estimation

Mutual information is a fundamental quantity for measuring
the relationship between variables. The mutual information
quantifies the dependence of two random variables X and Z
with the following equation:

I(X;Z) =

∫
X×Z

log
dPXZ

dPX ⊗ PZ
dPXZ , (19)

where PXZ is the joint probability distribution, and PX =∫
Z
dPXZ and PZ =

∫
X
dPXZ are the marginals.

The mutual information neural estimation (MINE) was
proposed by Belghazi and colleagues [50]. MINE is linearly
scalable in dimensionality as well as in sample size, trainable
through a back-propagation algorithm, and strongly consistent.

The idea behind MINE is to choose F to be the family of
functions Tθ : X × Z → R parameterized by a deep neural
network with parameters θ ∈ Θ. Then, the deep neural network
is used to update the estimated mutual information,

I(X;Z) ≥ IΘ(X;Z), (20)

where IΘ is defined as

IΘ(X;Z) = sup
θ∈Θ

EPXZ [Tθ]− log(EPX⊗PZ [eTθ ]). (21)

The expectations in Eq. (21) are estimated using empirical
samples from PXZ and PX ⊗ PZ or by shuffling the samples
from the joint distribution, and MINE is defined as

̂I(X;Z)n = sup
θ∈Θ

EP(n)
XZ

[Tθ]− log(EP(n)
X ⊗P̂

(n)
Z

[eTθ ]), (22)

where P̂ is the empirical distribution associated with n i.i.d.
samples. The details on the implementation of MINE are
provided in Algorithm 1.
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Algorithm 1 Mutual Information Calculation between Two
Modalities with MINE

Input: Features extracted from two modalities:
X = {x1, · · · , xn}, Z = {z1, · · · , zn}

Output: Estimated mutual information
θ ←initialize network parameters
repeat

1. Draw b mini-batch samples from the joint distribution:
(x(1), z(1)), . . . , (x(b), z(b)) ∼ PXZ

2. Draw b samples from the Z marginal distribution:
z̄(1), . . . , z̄(b) ∼ PZ

3. Evaluate the lower bound:
V(θ)← 1

b

∑
Tθ(x

(i), z(i))− log( 1
b

∑
eTθ(x(i),z(i)))

4. Evaluate bias-corrected gradients:
Ĝ(θ)← ∇̃θV(θ)

5. Update the deep neural network parameters:
θ ← θ + Ĝ(θ)

until Convergence

We modify the code of the MINE algorithm written by
Masanori Yamada2; the code used in this paper can be down-
loaded from GitHub3.

IV. EXPERIMENTAL SETTINGS

A. Datasets

To evaluate the effectiveness of DCCA for multimodal emo-
tion recognition, five multimodal emotion recognition datasets
are selected for experimental study in this paper.

1) SEED dataset4: The SEED dataset was developed by
Zheng and Lu [6]. A total of 15 Chinese film clips of three
emotions (happy, neutral and sad) were chosen from a pool
of materials as stimuli used in the experiments. Before the
experiments, the participants were told the procedures of the
entire experiment. During the experiments, the participants
were asked to watch the selected 15 movie clips, and report
their emotional feelings. After watching a movie clip, the
subjects were given 45 seconds to provide feedback and 15
seconds to rest. In this paper, we use the same subset of the
SEED dataset as in our previous work [20], [24], [25] for the
comparison study.

The SEED dataset contains EEG signals and eye move-
ment signals. The EEG signals were collected with an ESI
NeuroScan system at a sampling rate of 1000 Hz from a 62-
channel electrode cap. Eye movement signals were collected
with SMI eye tracking glasses5.

2) SEED-IV dataset: The SEED-IV dataset was first pro-
posed in [15]. The experimental procedure was similar to that
of the SEED dataset, and 72 film clips were chosen as stimuli
materials. The dataset contains emotional EEG signals and
eye movement signals of four different emotions, i.e., happy,
sad, neutral, and fear. A total of 15 subjects (7 male and 8
female) participated in the experiments. For each participant,

2https://github.com/MasanoriYamada/Mine pytorch
3https://github.com/csliuwei/MI plot
4http://bcmi.sjtu.edu.cn/home/seed/index.html
5https://www.smivision.com/eye-tracking/product/eye-tracking-glasses/

three sessions were performed on different days, and each
session consisted of 24 trials. In each trial, the participant
watched one of the movie clips.

3) SEED-V dataset: The SEED-V dataset was proposed
in [51]. The dataset contains EEG signals and eye movement
signals for five emotions (happy, sad, neutral, fear, and dis-
gust). A total of 16 subjects (6 male and 10 female) were
recruited to participate in the experiment, and each of them
performed the experiment three times. During the experiment,
the subject were required to watch 15 movie clips (3 clips for
each emotion). The same devices were used in the SEED-V
dataset as in the SEED and SEED-IV datasets. The SEED-
V dataset used in this paper will be freely available to the
academic community as a subset of SEED6.

4) DEAP dataset: The DEAP dataset was developed by
Koelstra and colleagues [21] and is a multimodal dataset for
the analysis of human affective states. The EEG signals and
peripheral physiological signals (EOG, EMG, GSR, respiration
belt, and plethysmograph) of 32 participants were recorded as
each watched 40 one-minute long excerpts of music videos.
Participants rated each video in terms of the levels of arousal,
valence, like/dislike, dominance, and familiarity.

5) DREAMER dataset: The DREAMER dataset is a
multimodal emotion dataset developed by Katsigiannis and
Ramzan [52]. The DREAMER dataset consists of 14-channel
EEG signals and 2-channel ECG signals of 23 subjects (14
males and 9 females). During the experiments, the participants
watched 18 film clips to elicit 9 different emotions including
amusement, excitement, happiness, calmness, anger, disgust,
fear, sadness, and surprise. After watching a clip, the self-
assessment manikins were used to acquire subjective assess-
ments of valence, arousal, and dominance.

B. Feature extraction

1) EEG feature extraction: For EEG signals, we extract
differential entropy (DE) features using short-term Fourier
transforms with a 4-second Hanning window without over-
lapping [53], [54]. The differential entropy feature is used to
measure the complexity of continuous random variables. Its
calculation formula can be written as follows:

h(X) = −
∫
X

f(x) log
(
f(x)

)
dx, (23)

where X is a random variable and f(x) is the probability
density function of X. For the time series X, obeying the
Gauss distribution N(µ, σ2), its differential entropy can be
calculated as follows:

h(X) = −
∞∫
−∞

1√
2πσ2

e−
(x−µ)2

2σ2 log
( 1√

2πσ2
e−

(x−µ)2

2σ2

)
dx

=
1

2
log 2πeσ2. (24)

Shi and colleagues [54] proved that EEG signals within a
short time period in different frequency bands are subject to
a Gaussian distribution by the Kolmogorov-Smirnov test, and
the DE features can be calculated by Eq. (24).

6http://bcmi.sjtu.edu.cn/home/seed/index.html
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We extract DE features from EEG signals (from the SEED,
SEED-IV and SEED-V datasets) in five frequency bands for
all channels: delta (1-4 Hz), theta (4-8 Hz), alpha (8-14 Hz),
beta (14-31 Hz), and gamma (31-50 Hz). There are in total
62 × 5 = 310 dimensions for 62 EEG channels. Finally we
adopt the linear dynamic system method to filter out noise and
artifacts [55].

For the DEAP dataset, the raw EEG signals were downsam-
pled to 128 Hz and preprocessed with a bandpass filter from
4 to 75 Hz. We extract the DE features from four frequency
bands (theta, alpha, beta, and gamma). As a result, there are
128 dimensions for the DE features.

2) ECG feature extraction: In previous ECG-based emotion
recognition studies, researchers extracted time-domain fea-
tures, frequency-domain features, and time-frequency-domain
features from ECG signals for emotion recognition [52],
[56], [57]. Katsigiannis and Ramzan extracted power spectral
density (PSD) features of low frequency and high frequency
from ECG signals [52]. Hsu and colleagues extracted power
for three frequency bands: a very-low-frequency range (0.0033
– 0.04 Hz), a low-frequency range (0.04 – 0.15 Hz), and a
high-frequency range (0.15 – 0.4 Hz) [56].

However, previous studies have shown that ECG signals
have a much wider frequency range. In the early stage of ECG
research, Scher and Young showed that ECG signals contain
frequency components as high as 100 Hz [58]. Recently,
Shufni and Mashor also showed that there are high-frequency
components (up to 600 Hz) in ECG signals [59]. Tereshchenko
and Josephson reviewed studies on ECG frequencies and noted
that “the full spectrum of frequencies producing the QRS
complex has not been adequately explored” [60].

Since there are no standard frequency separation methods
for ECG signals [60], we extract the logarithm of the average
energy of five frequency bands (1– 4 Hz, 4 – 8 Hz, 8 – 14 Hz,
14 – 31 Hz, and 31 – 50 Hz) from two ECG channels of the
DREAMER dataset. As a result, we extract 10-dimensional
features from the ECG signals.

3) Eye movement features: The eye movement data in the
SEED dataset recorded using SMI ETG eye-tracking glasses5

provide various types of parameters such as pupil diameters,
fixation positions and durations, saccade information, blink
details, and other event statistics. Although emotional changes
cause fluctuations in pupil diameter, environmental luminance
is the main reason for pupil diameter changes. Consequently,
we adopt a principal component analysis-based method to
remove the changes caused by lighting conditions [16].

The eye movement signals acquired by SMI ETG eye-
tracking glasses contain both statistical features, such as blink
information, and computational features such as temporal
and frequency features. Table I shows all 33 eye movement
features used in this paper. Therefore, the total number of
dimensions of the eye movement features is 33.

4) Peripheral physiological signal features: For peripheral
physiological signals from the DEAP dataset, we calculate
statistical features in the temporal domain, including the max-
imum value, minimum value, mean value, standard deviation,
variance, and squared sum. Since there are 8 channels for

TABLE I
SUMMARY OF EXTRACTED EYE MOVEMENT FEATURES.

Eye movement parameters Extracted features

Pupil diameter (X and Y)

Mean, standard deviation,
DE in four bands
(0–0.2Hz,0.2–0.4Hz,
0.4–0.6Hz,0.6–1Hz)

Disperson (X and Y) Mean, standard deviation
Fixation duration (ms) Mean, standard deviation
Blink duration (ms) Mean, standard deviation

Saccade
Mean and standard deviation of
saccade duration(ms) and
saccade amplitude(◦)

Event statistics

Blink frequency,
fixation frequency,
fixation duration maximum,
fixation dispersion total,
fixation dispersion maximum,
saccade frequency,
saccade duration average,
saccade amplitude average,
saccade latency average.

the peripheral physiological signals, we extract 48 (6 × 8)-
dimensional features.

C. Model training

For the SEED dataset, the DE features of the first 9 movie
clips are used as training data, and those of the remaining
6 movie clips are used as test data. In this paper, we build
subject-dependent models to classify three types of emotions
(happy, sad, and neutral), which is the same as in our previous
work [20], [24], [25].

A similar training-testing separation scheme is applied to
the SEED-IV dataset. There are 24 trials for each session, and
we use the data from the first 16 trials as the training data
and the data from the remaining 8 trials as the test data [15].
DCCA is trained to recognize four emotions (happy, sad, fear,
and neutral)

For the SEED-V dataset, the training-testing separation
strategy is the same as that used by Zhao et .al [61]. We
adopt three-fold cross-validation to evaluate the performance
of DCCA on five emotion (happy, sad, fear, neutral, and
disgust) recognition tasks. Since the participant watched 15
movie clips (the first 5 clips, the middle 5 clips and the last
5 clips) and participated in three sessions, we concatenate
features of the first 5 clips from three sessions (i.e., we
concatenate features extracted from 15 movie clips) as the
training data for fold one (with a similar operation for folds
two and three).

For the DEAP dataset, we build a subject-dependent model
with a 10-fold cross-validation on two binary classification
tasks and a four-emotion recognition task:
• Binary classifications: arousal-level and valence-level

classification with a threshold of 5.
• Four-category classification: high arousal, high valence

(HAHV); high arousal, low valence (HALV); low arousal,
high valence (LAHV); and low arousal, low valence
(LALV).

For the DREAMER dataset, we utilize leave-one-out cross-
validation (i.e., 18-fold validation) to evaluate the performance
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TABLE II
SUMMARY OF THE DCCA STRUCTURES FOR FIVE DIFFERENT DATASETS

Datasets #Hidden Layers #Hidden Units Output Dimensions
SEED 6 400±40, 200±20, 150±20, 120±10, 60±10, 20±2 20
SEED-IV 7 400±40, 200±20, 150±20, 120±10, 90±10, 60±10, 20±2 20
SEED-V 2 searching for the best numbers between 50 and 200 12
DEAP 7 1500±50, 750±50, 500±25, 375±25, 130±20, 65±20, 30±20 20
DREAMER 2 searching for the best numbers between 10 and 200 5

of DCCA on three binary classification tasks (arousal, valence,
and dominance), which is the same as that used by Song et
al. [62].

For these five different datasets, DCCA uses different hid-
den layers, hidden units, and output dimensions. Table II sum-
marizes the DCCA structures for these datasets. For all five
datasets, the learning rate, batch size, and regulation parameter
of DCCA are set to 0.001, 100, and 1e−8, respectively.

V. EXPERIMENTAL RESULTS

A. SEED, SEED-IV, and DEAP Datasets
In this section, we summarize our previous results on SEED,

SEED-IV, and DEAP datasets [29]. Table III lists the results
obtained by seven existing methods and DCCA on the SEED
dataset. Lu and colleagues applied concatenation fusion, MAX
fusion and fuzzy integral to fuse multiple modalities and
demonstrated that the fuzzy integral fusion method achieved
the accuracy of 87.59% [20]. Liu et al. [24] and Tang et
al. [25] improved multimodal methods, obtaining accuracies
of 91.01% and 94.58%, respectively. Recently, Yang and col-
leagues [8] build a single-layer feedforward network (SLFN)
with subnetwork nodes and achieved an accuracy of 91.51%.
Song and colleagues [62] proposed DGCNN and obtained a
classification accuracy of 90.40%. As seen from Table III,
DCCA achieves the best result of 94.58% among the eight
different methods.

TABLE III
THE MEAN ACCURACY RATES (%) AND STANDARD DEVIATIONS (%) OF

SEVEN EXISTING METHODS AND DCCA ON THE SEED DATASET

Methods Mean Std
Concatenation [20] 83.70 -
MAX [20] 81.71 -
FuzzyIntegral [20] 87.59 19.87
BDAE [24] 91.01 8.91
DGCNN [62] 90.40 8.49
SLFN with subnetwork nodes [8] 91.51 –
Bimodal-LSTM [25] 93.97 7.03
DCCA 94.58 6.16

Table IV gives the results of five different methods on the
SEED-IV dataset. We can observe from Table IV that for the
SVM classifier, the four emotion states are recognized with a
75.88% mean accuracy rate, and the BDAE model improved
the result to 85.11%. DCCA outperforms the aforementioned
two methods, with an 87.45% mean accuracy rate.

Two classification schemes are adopted on the DEAP
dataset. Table V shows the results of binary classifications.
As we can observe, DCCA achieves the best results in
both arousal classification (84.33%) and valence classification
(85.62%) tasks.

TABLE IV
THE MEAN ACCURACY RATES (%) AND STANDARD DEVIATIONS (%) OF

FOUR EXISTING METHODS AND DCCA ON THE SEED-IV DATASET

Methods Mean Std
Concatenation 77.63 16.43
MAX 68.99 17.14
FuzzyIntegral 73.55 16.72
BDAE [15] 85.11 11.79
DCCA 87.45 9.23

For the four-category classification task on the DEAP
dataset, Zheng and colleagues [7] adopted the GELM model
and achieved an accuracy of 69.67%. Chen et al. [63] proposed
a three-stage decision framework that outperformed KNN and
SVM with an accuracy rate of 70.04%. The DCCA model
achieved a mean accuracy rate of 88.51%, which is more than
18% higher than the existing methods.

TABLE V
THE MEAN ACCURACY RATES (%) AND STANDARD DEVIATION (%) OF

THREE EXISTING METHODS AND DCCA FOR THE TWO BINARY EMOTION
CLASSIFICATION TASKS ON THE DEAP DATASET.

Methods Arousal Valence
BDAE [24] 80.50/3.39 85.20/4.47
MESAE [27] 84.18/- 83.04/-
Bimodal-LSTM [25] 83.23/2.61 83.82/5.01
DCCA 84.33/2.25 85.62/3.48

TABLE VI
THE MEAN ACCURACY RATES (%) AND STANDARD DEVIATIONS (%) OF

TWO EXISTING METHODS AND DCCA FOR THE FOUR-CATEGORY
CLASSIFICATION TASK ON THE DEAP DATASET.

Methods Acc
Three-stage decision Framework [63] 70.04/-
GELM [7] 69.67/-
DCCA 88.51/8.52

From the experimental results mentioned above, we can see
that DCCA outperforms the existing methods on the SEED,
SEED-IV, and DEAP datasets.

B. SEED-V Dataset

We examine the effectiveness of DCCA on the SEED-V
dataset, which contains multimodal signals of five emotions
(happy, sad, fear, neutral, and disgust).

We perform a series of experiments to choose the best output
dimension and fusion coefficients (α1 and α2 in Eq. (11)) for
DCCA. We adopt the grid search method with output dimen-
sions ranging from 5 to 50 and coefficients for the EEG fea-
tures ranging from 0 to 1, i.e. α1 = [0, 0.1, 0.2, · · · , 0.9, 1.0].
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Since α1 + α2 = 1, we can calculate the weight for the other
modality via α2 = 1 − α1. Figure 2 shows the heat map of
the experimental results of the grid search. Each row in Fig.
2 gives different output dimensions, and each column is the
weight of the EEG features (α1). The numbers in blocks are
the accuracy rates, which are rounded to integers for simplicity.
According to Fig. 2, we set the output dimension to 12 and the
weight of the EEG features to 0.7 (i.e., α1 = 0.7, α2 = 0.3).
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Fig. 2. Selection of the best output dimension and EEG weight of DCCA on
the SEED-V dataset. Each row represents the number of output dimensions,
and each column denotes the weight (α1) of the EEG features.
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Fig. 3. Comparison of the confusion matrices of different methods on the
SEED-V dataset. Subfigures (a), (b), and (c) are the confusion matrices from
[61] for SVM classifiers of unimodal features and BDAE model of multimodal
features. Subfigure (d) is the confusion matrix of DCCA.

Table VII summarizes the emotion recognition results on the
SEED-V dataset. Zhao and colleagues [61] adopted feature-
level concatenation and the bimodal deep autoencoder (BDAE)
for fusing multiple modalities, and achieved mean accuracy
rates of 73.65% and 79.70%, respectively. In addition to
feature-level concatenation, we also implement MAX fusion
and fuzzy integral fusion strategies here. As shown in Table

VII, the MAX fusion and fuzzy integral fusion yielded mean
accuracy rates of 73.14% and 73.62%, respectively. The mean
accuracy rate of DCCA is 83.08%, which is the best result
among the five fusion strategies.

TABLE VII
THE MEAN ACCURACY RATES (%) AND STANDARD DEVIATIONS (%) OF

FOUR EXISTING METHODS AND DCCA ON THE SEED-V DATASET

Methods Mean Std
Concatenation [61] 73.65 8.90
MAX 73.17 9.27
FuzzyIntegral 73.24 8.72
BDAE [61] 79.70 4.76
DCCA 83.08 7.11

Figure 3 depicts the confusion matrices of the DCCA
model and the models adopted by Zhao and colleagues [61].
Figures. 3(a), (b) and (c) are the confusion matrices for the
EEG features, eye movement features, and the BDAE model,
respectively. Figure 3(d) depicts the confusion matrix for the
DCCA model. From Figs. 3(a), (b), and (d), for each of the
five emotions, DCCA achieves a higher accuracy, indicating
that emotions are better represented and more easily classified
in the coordinated hyperspace S transformed by DCCA.

From Figs. 3(a) and (c), compared with the unimodal results
of the EEG features, the BDAE model achieves worse classifi-
cation results on the happy emotion, suggesting that the BDAE
model might not take full advantage of different modalities
for the happy emotion. Comparing Figs. 3(c) and (d), DCCA
largely improved the classification results on disgust and happy
emotion recognition tasks compared with the BDAE model,
implying that DCCA is more effective in fusing multiple
modalities.

To analyze the coordinated hyperspace S of DCCA, we uti-
lized the t-SNE algorithm to visualize the space of the original
features and the coordinated hyperspace of the transformed
features and fused features. Figure 4 presents a visualization
of the features from three participants. The first row shows
the original features, the second row depicts the transformed
features, and the last row presents the fused features. The
different colors stand for different emotions, and the different
markers are different modalities. We can make the following
observations:
• Different emotions are disentangled in the coordinated

hyperspace S. For original features, there are more over-
laps among different emotions (different colors present-
ing substantial overlap), which lead to poorer emotional
representation. After the DCCA transformation, different
emotions become relatively independent, and the overlap-
ping areas are considerably reduced. This indicates that
the transformed features have improved emotional repre-
sentation capabilities compared with the original features.
Finally, after multimodal fusion, different emotions (‘�’
of different colors in the last row) are completely sepa-
rated, and there is no overlapping area, indicating that the
merged features also have good emotional representation
ability.

• Different modalities have homogeneous distributions in
the coordinated hyperspace S. To make this observation
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Fig. 4. Feature distribution visualization by the t-SNE algorithm. The original features, transformed features, and fused features from the three subjects are
presented. The different colors stand for different emotions, and the different markers indicate different features.
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Fig. 5. Distributions of EEG and eye movement features for the sad emotion. The transformed features have more compact distributions from both inter-
modality and intra-modality perspectives.

more obvious, we separate and plot the distributions
of the EEG and eye movement features under the sad
emotion in Fig. 5. From the perspectives of both inter-
modality and intra-modality distributions, the original
EEG features (‘◦’ marker) and eye movement features
(‘×’ marker) are separated from each other. After the
DCCA transformation, the EEG features and the eye
movement features have more compact distributions, in-
dicating that the coordinated hyperspace preserves shared
emotion-related information and discards irrelevant infor-
mation.

Figures 4 and 5 qualitatively show that DCCA maps original
EEG and eye movement features into a coordinated hyperspace
S where emotions are better represented since only emotion
related information is preserved.

Furthermore, we calculated the mutual information of the
original features and transformed features to support our
claims quantitatively. Figure 6 presents the mutual information
of three participants estimated by MINE. The green curves
depict the mutual information of the original EEG and eye
movement features, and the red curves are the estimated mu-
tual information of the transformed features. The transformed
features have more mutual information than the original fea-
tures, indicating that EEG and eye movement features in the
coordinated hyperspace provide more shared emotion-related
information, which is consistent with observations from Figs.
4 and 5.
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Fig. 6. Mutual information (MI) estimation with MINE. The green curve shows the estimated MI for the original EEG features and eye movement features.
The red curve depicts the MI for the transformed features. The x axis is the epoch number of the deep neural network used to estimate MI, and the y axis
is the estimated MI. Moving average smoothing is used to smooth the curves.

C. Robustness Analysis on the SEED-V Dataset

EEG signals have a low signal-to-noise ratio (SNR) and
are easily interfered with by external environmental noise.
To compare the noise robustness of DCCA with that of the
existing methods, we designed two experimental schemes
on noisy datasets: 1) we added Gaussian noise of different
variances to both the EEG and eye movement features. To
highlight the influence of noise, we added noise to the nor-
malized features since the directly extracted features are much
larger than the generated noise (which is mostly less than
1). 2) Under certain extreme conditions, EEG signals may be
overwhelmed by noise. To simulate this situation, we randomly
replace different proportions (10%, 30%, and 50%) of EEG
features with noise with a normal distribution (X ∼ N (0, 1)),
gamma distribution (X ∼ Γ(1, 1)), and uniform distribution
(X ∼ U [0, 1]). Specifically, for DCCA, we also examine the
effect of different weight coefficients on the robustness of the
model. In this paper, we compare the performance of three
different combinations of coefficients, i.e., α1 = 0.3 (DCCA-
0.3), α1 = 0.5 (DCCA-0.5), and α1 = 0.7 (DCCA-0.7).

1) Adding Gaussian noise: First, we investigate the robust-
ness of different weight combinations in DCCA after adding
Gaussian noise of different variances to both the EEG and
eye movement features. Figure 7 depicts the results. Although
the model achieves the highest classification accuracy when
the EEG weight is set to 0.7, it is also more susceptible to
noise. The robustness of the model decreases as the weight
of the EEG features increases. Since a larger EEG weight
leads to more EEG components in the fused features, we might
conclude that EEG features are more sensitive to noise than
are eye movement features.

Next, we compare the robustness of different models under
Gaussian noise with different variances. Taking both classi-
fication performance and robustness into consideration, we
use DCCA with an EEG weight set to 0.5. Figure 8 shows
the performances of the various models. The performance
decreases with increasing variances of the Gaussian noise.
DCCA obtains the best performance when the noise is lower
than or equal toN (0, 1). The performance of the fuzzy integral
fusion strategy exceeds DCCA when the noise is stronger
than or equal to N (0, 3). The BDAE model performs poorly
under noisy conditions even when minimal noise is added to

the training samples, the performance of the BDAE model is
greatly reduced.
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Fig. 7. Performance of DCCA with different weight combinations when
adding Gaussian noise of different variances. The robustness of DCCA
decreases as the weight of the EEG features increases.
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Fig. 8. Model performances after adding Gaussian noise of different variances.
The accuracies drops after noise is added to the original training data. DCCA
obtains the best performance when the noise is less than N (0, 1). When the
noise is stronger than N (0, 3), the fuzzy integral fusion strategy performed
best.

2) Replacing EEG features with noise: Table VIII shows
the detailed emotion recognition accuracies and standard de-
viations after replacing 10%, 30%, and 50% percent of the
EEG features with different noise distributions. The recogni-
tion accuracies decrease with increasing noise proportions. In
addition, the performances of seven different settings under
different noise distributions are very similar, indicating that
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TABLE VIII
RECOGNITION RESULTS (MEAN/STD (%)) AFTER REPLACING DIFFERENT PROPORTIONS OF EEG FEATURES WITH VARIOUS TYPES OF NOISE. FIVE

FUSION STRATEGIES UNDER VARIOUS SETTINGS ARE COMPARED, AND THE BEST RESULTS FOR EACH SETTING ARE IN BOLD

Methods No noise Gaussian Gamma Uniform
10% 30% 50% 10% 30% 50% 10% 30% 50%

Concatenation 73.65/8.90 70.08/8.79 63.13/9.05 58.32/7.51 69.71/8.51 62.93/8.46 57.97/8.14 71.24/10.56 66.46/9.38 61.82/8.35
MAX 73.17/9.27 67.67/8.38 58.29/8.41 51.08/7.00 67.24/10.27 59.18/9.77 50.56/6.82 67.51/9.72 60.14/9.28 52.71/7.84
FuzzyIntegral 73.24/8.72 69.42/8.92 62.98/7.52 57.69/8.70 69.35/8.70 62.64/8.90 57.56/7.19 69.16/8.16 64.86/9.37 60.47/8.32
BDAE 79.70/4.76 47.82/7.77 45.89/7.82 44.51/7.43 45.27/6.68 45.75/7.91 45.09/8.37 46.13/8.17 46.88/7.14 45.50/9.59
DCCA-0.3 79.04/7.32 76.57/7.63 73.00/7.36 69.56/7.02 76.87/7.99 73.06/7.00 70.03/7.17 75.69/6.34 73.22/6.50 70.01/6.66
DCCA-0.5 81.62/6.95 77.92/6.63 71.77/6.55 65.21/6.24 78.29/7.38 72.45/6.14 65.75/6.08 78.28/7.16 73.20/6.96 68.01/7.08
DCCA-0.7 83.08/7.11 76.27/7.02 68.48/5.54 57.63/5.15 76.82/7.01 68.54/6.02 58.58/5.44 77.39/8.43 69.80/5.63 61.58/5.38

noise distributions have limited influences on the recognition
accuracies.

To better observe the changing tendency, we plot the average
recognition accuracies under different noise distributions with
the same noise ratio. Figure 9 shows the average accuracies
for DCCA with different EEG weights. It is obvious that the
performances decrease with increasing noise percentages and
that the model robustness is inversely proportional to the ratio
of the EEG modality. This is the expected performance. Since
we only randomly replace EEG features with noise, larger
EEG weights will introduce more noises to the fused features,
resulting in a decrease in model robustness.

Similar to Fig. 7, we also take DCCA-0.5, as a compromise
between performance and robustness to compare with other
multimodal fusion methods. Figure 10 depicts the trends of
the accuracies of several models. It is obvious that DCCA
performs the best, the concatenation fusion achieves a slightly
better performance than the fuzzy integral fusion method, and
the BDAE model again presents the worst performance.

Combining Figs. 8 and 10, DCCA obtains the best perfor-
mance under most noisy situations, whereas the BDAE model
performed the worst under noisy conditions. This might be
caused by the following:

• As already discussed in previous sections, DCCA attemps
to preserve emotion-related information and discard ir-
relevant information. This property prevents the model
performance from rapidly deteriorating by neglecting
negative information introduced by noise.

• The BDAE model minimizes the mean squared error
which is sensitive to outliers [64]. The noisy training
features will cause the weights to deviate from the normal
range, resulting in a rapid decline in model performance.

D. DREAMER Dataset

For DCCA, we choose the best output dimensions and
weight combinations with a grid search. We select the output
dimension from the set [5, 10, 15, 20, 25, 30] and the EEG
weight α1 in [0, 0.1, · · · , 0.9, 1.0] for three binary classi-
fication tasks. Figures 11(a), (b), and (c) depict the heat
maps of the grid search for arousal, valence, and dominance
classifications, respectively. According to Fig. 11, we choose
α1 = 0.9 and α2 = 0.1 for the arousal classification, α1 = 0.8
and α2 = 0.2 for the valence classification, and α1 = 0.9 and
α2 = 0.1 for the dominance classification.
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Fig. 9. Performance of DCCA with different weight combinations after
replacing the EEG features with noise.
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Fig. 10. The trends of the average recognition accuracies of different noise
distributions under the same noise ratio. The x-axis is the noise replacement
ratio, and the y-axis stands for the mean accuracies.

For BDAE, we select the best output dimensions from
[700, 500, 200, 170, 150, 130, 110, 90, 70, 50], and leave-one-
out cross-validation is used to evaluate the BDAE model.

Table IX gives comparison results of the different meth-
ods. Katsigiannis and Ramzan released this dataset, and they
achieved accuracy rates of 62.32%, 61.84%, and 61.84%
on arousal, valence and dominance classification tasks, re-
spectively [52]. Song and colleagues conducted a series of
experiments on this dataset with SVM, graphSLDA, GSCCA,
and DGCNN. DGCNN achieved accuracy rates of 85.54% for
arousal classification, 86.23% for valence classification, and
85.02% for dominance classification. From Table IX, we can
see that BDAE and DCCA adopted in this paper outperform
DGCNN. For BDAE, the recognition results for arousal,
valence, and dominance are 88.57%, 86.64%, and 89.52%,
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Fig. 11. Selecting the best output dimension and weight combinations of
DCCA on the DREAMER dataset. The X-axis represents the weight for the
EEG features, and the Y -axis represents the output dimensions.

respectively. DCCA achieves the best performance among all
seven methods: 88.99%, 90.57%, and 90.67% for arousal,
valence, and dominance level recognitions, respectively.

TABLE IX
COMPARISON OF PERFORMANCES (MEAN/STD, %) ON THE DREAMER

DATASET. THREE BINARY CLASSIFICATION TASKS ARE EVALUATED:
AROUSAL-LEVEL, VALENCE-LEVEL, AND DOMINANCE-LEVEL

CLASSIFICATIONS

Methods Arousal Valence Dominance
Fusion EEG & ECG [52] 62.32/- 61.84/- 61.84/-
SVM [62] 68.84/24.92 60.14/33.34 75.84/20.76
GraphSLDA [62] 68.12/17.53 57.70/13.89 73.90/15.85
GSCCA [62] 70.30/18.66 56.65/21.50 77.31/15.44
DGCNN [62] 84.54/10.18 86.23/12.29 85.02/10.25
BDAE 88.57/4.40 86.64/7.48 89.52/6.18
Our method 88.99/2.84 90.57/4.11 90.67/4.33

VI. CONCLUSION

In this paper, we have introduced deep canonical correlation
analysis (DCCA) to multimodal emotion recognition. We have
systematically evaluated the performance of DCCA on five
multimodal emotion datasets (the SEED, SEED-IV, SEED-V,
DEAP and DREAMER datasets) and compared DCCA with
the existing emotion recognition methods. Our experimental
results demonstrate that DCCA is superior to the existing
methods for multimodal emotion recognition.

We have analyzed properties of the transformed features in
the coordinated hyperspace S. By applying t-SNE method, we
have found qualitatively that: 1) different emotions are better
represented since they are disentangled in the coordinated
hyperspace; and 2) different modalities have compact distri-
butions from both inter-modality and intra-modality perspec-
tives. We have applied mutual information neural estimation
(MINE) algorithm to compare the mutual information of

original features and transformed features quantitatively. The
experimental results show that the features transformed by
DCCA have higher mutual information, indicating that DCCA
transformation processes preserve emotion-related information
and discard irrelevant information.

We have investigated the robustness of DCCA on noised
datasets under two schemes. By adding Gaussian noise of
different variances to both EEG and eye movement features,
we have demonstrated that DCCA performs best when the
noise is smaller than or equal to N(0, 1). After replacing
10%, 30%, and 50% percentage of EEG features with normal
distribution, gamma distribution, and uniform distribution,
we have shown that DCCA has the best performance for
multimodal emotion recognition.
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