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Abstract. A major obstacle in generalizing brain-computer interface (BCI) sys-
tems to previously unseen subjects is the subject variability of electroencephalog-
raphy (EEG) signals. To deal with this problem, the existing methods focus on
domain adaptation with subject-specific EEG data, which are expensive and time
consuming to collect. In this paper, domain generalization methods are introduced
to reduce the influence of subject variability in BCI systems without requiring any
information from unseen subjects. We first modify a deep adversarial network for
domain generalization and then propose a novel adversarial domain generaliza-
tion framework, DResNet, in which domain information is utilized to learn two
components of weights: unbiased weights that are common across subjects and
biased weights that are subject-specific. Experimental results on two public EEG
datasets indicate that our proposed methods can achieve a performance compara-
ble to and more stable than that of the state-of-the-art domain adaptation method.
In contrast to existing domain adaptation methods, our proposed domain gener-
alization approach does not require any data from test subjects and can simulta-
neously generalize well to multiple test subjects.

Keywords: Brain-computer interface · EEG subject variability · Domain
adaptation · Domain generalization · Domain residual network · Emotion
recognition · Vigilance estimation

1 Introduction

Brain-Computer Interface (BCI) systems focus on establishing a direct pathway
between a human brain and an external device. As a reliable indicator of the human
brain state, electroencephalography (EEG) has become a widely used modality in BCI
systems [11]. In the past decades, EEG-based BCI systems have attracted researchers’
interest and have been successfully applied in many applications [2]. However, the indi-
vidual differences across subjects in the functional and anatomical connectivity of the
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brain, head shapes, mental states, etc., have become a major obstacle for BCI applica-
tions in real-life scenarios [15]. Conventional models trained with data recorded from
one subject often fail to perform robustly on other subjects. Consequently, to obtain an
effective model for a new subject, data recollecting and model retraining are required;
unfortunately, such efforts are rather time consuming and expensive in practice.

Previous studies tackling the issue of subject variability can be classified into two
categories: subject-dependent models with calibration and subject-independent models
with features that are robust across subjects, according to the available information from
new subjects. Several researchers have explored subject-dependent approaches in which
the pretrained models are tuned with a small amount of calibration data recorded from
test subjects [12]. The calibration phase needs to be repeated whenever the models are
extended to new subjects; thus, good performance is achieved, but at a high cost. On the
other hand, subject-independent approaches focus on extracting features that are robust
across subjects for model training, thus achieving the necessary generalization ability
to provide accurate predictions for new subjects [19]. However, if the calibration phase
is removed, the models usually suffer compromised performance.

In recent years, efforts have been made to deal with the subject variability problem
in BCI systems using transfer learning methods [7]. In traditional machine learning
methods, it is assumed that the training data and test data are sampled from the same
distribution; however, this assumption usually cannot be satisfied for cross-subject BCI
systems. In contrast, transfer learning methods consider domain differences [18], thus
allowing models trained on source-domain data to generalize well to the target domain.
From the perspective of transfer learning, subject variability can be regarded as a kind
of domain shift, i.e., distribution differences across several related domains.

Two of the main branches of transfer learning, domain adaptation (DA) and domain
generalization (DG), are capable of reducing the influence of subject variability. DA
methods enhance the performance of a model on the target domain by eliminating
the domain shift between the source and target domains. Thus, these methods require
acquaintance with the target-domain data in the training phase in order to measure
the discrepancy between the source and target domains. Researchers have successfully
applied DAmethods in BCI systems [23]. In particular, deep adversarial models such as
Domain-Adversarial Neural Network (DANNs) have achieved significant performance
improvements [3,9]. However, since each individual is regarded as an independent
domain in EEG-based BCI systems, DA methods, which require data collection and
model training for each target domain (subject), are high in cost and low in efficiency. In
particular, information from target subjects is usually unavailable in real-world cross-
subject EEG-based BCI applications. One solution to these problems is to apply DG
methods in EEG-based BCI systems. DG methods can extract domain-invariant fea-
tures by exploiting domain differences across multiple source subjects without the need
to acquire any data from the target subjects [1]. Therefore, systems based on DGmodels
can perform robustly when applied to previously unseen domains.

In this paper, we aim to reduce subject variability in BCI systems without requir-
ing any information from target subjects through two kinds of DG approaches.
As the first approach, we adopt the Domain-Invariant Component Analysis (DICA) and
Scatter Component Analysis (SCA) methods, proposed in [16] and [5], respectively.
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We further apply deep adversarial networks to this problem by extending Domain-
Adversarial Neural Network (DANN) to the DG condition (DG-DANN). These meth-
ods can project features from different domains into a domain-invariant feature space
in which the dissimilarity among the domains can be reduced. Thus, the models can
achieve a better generalization ability on new subjects. As the second approach, we
exploit the information from the training domains to learn a set of regulated model
weights. Inspired by [8], we propose a novel framework called the Domain Residual
Network (DResNet) in which the network weights are explicitly divided into biased
weights that are exclusive to each individual domain and unbiased weights that are
shared by all domains. In this way, we can obtain a robust model that achieves a bet-
ter generalization ability for unknown domains by means of the unbiased weights. In
experiments, we evaluated the performance of these approaches on two different BCI
tasks. We chose SEED, a public emotion recognition EEG dataset, for the classification
evaluation and SEED-VIG, a public multimodal vigilance estimation dataset, for the
regression evaluation.

2 Methods

2.1 Domain Generalization Problem

Given the input space X and the output space Y , PXY is the set of all joint distributions
onX ×Y . We assume that the P i

XY ∈ PXY is observed from a distributionPPP . A domain
is denoted by Di = {Xi, Yi}, where the {Xi, Yi} = {(x1, y1), (x2, y2), ..., (xni

, yni
)}

are ni samples from the joint distribution P i
XY . Thus, we can obtain the marginal prob-

ability distribution P i
X and the conditional probability distribution P i

Y |X of domain Di.
For k domains D1,D2, ...,Dk, we assume that the marginal distributions are different
while the conditional distributions remain stable, i.e., P i

X �= P j
X , P i

Y |X ≈ P j
Y |X when

i �= j. In the domain generalization problem, we aim to find a function f : X → Y ,
which is insensitive to changes in PX , to represent the conditional distribution PY |X .
This f can be generalized to any previously unseen domain Dt = {Xt}, where the Xt

are sampled from the unknown distribution P t
X [1].

2.2 Domain-Invariant Component Analysis (DICA)

The goal of DICA is to find a low-dimensional feature subspace to minimize the dis-
crepancy across domains [16]. Specifically, distributions can be represented as points
in a reproducing kernel Hilbert space (RKHS) using the mean map function:

μ : Px → H : P �→
∫

X
k(x, ·)dP (x) =: μP . (1)

Suppose that we have data samples S = {Si}k
i=1 = {(xi

m, yi
m)ni

m=1}k
i=1 sampled

from k domains. DICA can be applied to learn an orthogonal transformation B that
minimizes the distributional variance across the different domains in a domain-invariant
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m-dimensional feature subspace. The empirical distributional variance of S after the
transformation can be calculated as:

V̂H(BS) = tr(BT KLKB). (2)

where K is the block kernel matrix, B is the coefficient matrix for transformation B,
and L is a coefficient matrix.

On the other hand, DICA also preserves the functional relationship P i
XY . Given

Φy = [ϕ(y1), ..., ϕ(yn)] and U = ΦT
y Φy , the final objective function of DICA is

max
B∈Rn×m

1
n tr(BT U(U + nεIn)−1K2B)

tr(BT KLKB + BKB)
, (3)

where ε is a kernel regularizer. For further details, readers are referred to [16].

2.3 Scatter Component Analysis (SCA)

The goal of SCA is to find a projection B into an m-dimensional space where (1) the
training domains are similar, (2) samples with the same label are similar, (3) samples
with different labels are separated, and (4) the variance of the whole training set is max-
imized [5]. These constraints are quantified by means of a new concept called scatter:

Ψφ(P ) := E
x∼P

[||μP − φ(x)||2H
]
, (4)

where || · ||H is the norm on H. The four constraints mentioned above are quantified in
terms of the following four scatters.

Domain Scatter. Given N samples {x1, ..., xN} from a k-domain distribution set
{P i

X}k
i=1 on X , the domain scatter is defined with μ = 1

k

∑k
i=1 μP i

X
as

Ψ({μP i
X

}k
i=1) =

1
k

k∑
i=1

||μ − μP i
X

||2, (5)

Class Scatter. Assuming the label set is {1, ..., C}, we denote the conditional distri-
bution on X by P l

X|t =
1
k

∑k
i=1 P i

XY , for Y = t. Therefore, the within-class scatter is
defined as

C∑
t=1

ΨB◦φ(P̂ s
X|yt

) = Tr(BT QsB) (6)

and the between-class scatter is defined as

ΨB({μP̂ l
X|yt

}C
t=1) = Tr(BT PsB), (7)

where Ps =
∑C

t=1 nt(mt − m)(mt − m)T and Qs =
∑C

t=1 KtHtK
T
t , with

mk = 1
nt

∑i
nt

k(·, xit), m = 1
N

∑N
i=1 k(·, xi), [Kt]ij = [k(xit, xjt)], and Ht =

Int
− 1

nt
1nt

1T
nt
.
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Total Scatter. Given the total domain as calculated from the mean of the k domain
distributions, namely, PX = 1

k

∑k
i=1 P i

X , the total scatter can be derived by using B
and K as follows:

ΨB◦φ(P̂X) = Tr(
1
N

BT KKB). (8)

The objective function of SCA for the DG problem is expressed as

argmax
B∈RN×m

ΨB◦φ(P̂X) + Ψ({μP l
X|t=k

}C
k=1)

Ψ({μP i
X

}k
i=1) +

∑C
t=1 ΨB◦φ(P l

X|t)
, (9)

where β, δ > 0 are hyperparameters. The objective function can be further rewritten as

(
(1 − β)

N
KK + βP )B∗ = (δKLK + K + Q)B∗Λ, (10)

where B∗ = [b1, ..., bm] represents the first m eigenvectors and Λ = diag(λ1, ..., λm)
represents the corresponding eigenvalues. According to [5], the solution to Eq. (9) con-
sists of the m leading eigenvectors in Eq. (10).

2.4 Domain Generalization in Domain-Adversarial Neural Network

DANN is a deep adversarial domain adaptation model [3]. In this paper, we extend the
DANN concept to the case of domain generalization (DG-DANN).

Specifically, there are three components in DG-DANN. Initially, the feature extrac-
tor Gf learns a feature mapping Gf (x; θf ) = f(Wfx + bf ), where features are pro-
jected with an activation function f and parameters θf = {Wf , bf} ∈ R

d×p × R
d.

Secondly, the label predictor Gy predicts the labels of the inputs by means of a function
Gy(Gf (X); θy). The prediction loss on a sample (xi, yi) for a prediction ŷi is denoted
by Ly(ŷi, yi). Finally, the domain classifier Gd(Gf (X); θd) judges the source domain
of each input feature.

In DA problems, the inputs are sampled from one source domain and one target
domain. Thus, the domain classifier Gd is a binary classifier. According to [3], the loss
of a binary Gd is defined as

Ld(Gd(Gf (xi)), di) = di log
1

Gd(Gf (xi))
+ (1 − di) log

1
1 − Gd(Gf (xi))

(11)

for a sample (xi, yi, di), where di is the binary domain label of sample xi.
In DG problems, the training data consist of N samples (xi, yi, di) from k different

known domains. Following the idea of finding a domain-invariant feature space, we
generalize the domain classifier Gd to a k-class domain classifier. Therefore, the loss of
Gd can be modified as follows:

Ld(Gd(Gf (xi)), di) = log
1

Gd(Gf (xi))di

. (12)



Reducing Subject Variability with Adversarial Domain Generalization 35

For brevity, we denote the loss of Gd by Ld(d̂i, di), where d̂i is the domain predic-
tion for xi. Therefore, the loss function of the DG-DANN is formulated as

E(θf , θy, θd) =
1
N

N∑
i=1

Ly(ŷi, yi) − λ
1
N

N∑
i=1

Ld(d̂i, di). (13)

During optimization, the DANN is trained through a special layer called Gradient
Reversal Layer (GRL), which connects Gf and Gd. The GRL can be ignored during
forward propagation and reverses the gradient passed backward from Gd to Gf [3].
The optimization can be integrated as follows:

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf , θy, θ̂d),

(θ̂d) = argmax
θd

E(θ̂f , θ̂y, θd).
(14)

2.5 Domain Residual Network (DResNet)

Another option for adversarial domain generalization is to utilize the domain informa-
tion of the training domains to regulate the model parameters. We assume that each
P i

XY ∈ PXY is a sample from a distribution PPP . Thus, the domain shift can be regarded
as the bias affecting observations of the true common spacePPP . According to [8], we can
explicitly define the bias for each known training domain and approximate the parame-
ters of the common space by undoing these biases. The common unbiased weights and
the individual biased weights for each domain can be jointly trained to improve the gen-
eralization ability of the model. Based on the DG-DANN concept, we propose a novel
model called the Domain Residual Network (DResNet) model.

In the DResNet model, the feature extractor Gf of the DG-DANN model is
extended. The unbiased weights in Df , which are shared by all domains, are denoted by
θc

f . In contrast, the domain biases are explicitly described by biased weights θδi
f , which

are unique for each known training domain Di. Therefore, the parameters in each layer
of Gf are formulated as follows:

θi
f = θc

f + θδi
f = {W c

f + W δi
f , bc

f + bδi
f }. (15)

Hence, given an input x from domain i, each layer of the feature extractor Gf in
DResNet is organized as follows:

Gf (x; θi
f ) = f

(
(W c

f x + bc
f ) + (W δi

f x + bδi
f )

)
. (16)

During backward propagation, for a sample (xi, yi, di) from domain Di, the gra-
dient in Gf simultaneously updates only the domain-specific θδi

f and the common θc
f .

After optimization, only the label predictor Gy and the common part of the feature
extractor Gf are activated. The DResNet architecture is described in Fig. 1.
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Fig. 1. The DResNet architecture. The colors for each domain in the training set indicate different
domain shifts. For the test subjects, the domain shifts are unknown, and only the unbiased weights
are activated. (Color figure online)

3 Experimental Setup

3.1 The SEED Dataset

The SEED1 dataset is a public affective EEG dataset for emotion recognition. For
SEED, 15 healthy subjects were recruited to be the participants in 3 sessions of exper-
iments. Each experiment consisted of 15 trials of Chinese emotional film clips, which
were selected in a preliminary study to induce 3 kinds of emotional states: positive,
negative and neutral. The subjects were requested to exhibit their own corresponding
emotions while watching the affective film clips. During the experiment, 62-electrode
EEG signals were recorded in accordance with the international 10–20 system using an
ESI Neuroscan system. The EEG signals were first downsampled to 200Hz and then
processed with a bandpass filter of 1–75 Hz. Finally, differential entropy (DE) features
were extracted with nonoverlapping 1 s time windows in the five frequency bands (δ:
1–3 Hz, θ: 4–7 Hz, α: 8–13 Hz, β: 14–30 Hz, and γ: 31–50 Hz) [22]. For each subject,
3394 samples of 310-dimensional features were collected.

3.2 The SEED-VIG Dataset

The SEED-VIG2 dataset is a public multimodal vigilance estimation dataset including
EEG and electrooculography (EOG) signals [24]. Using SMI eye tracking glasses, the

1 http://bcmi.sjtu.edu.cn/∼seed/seed.html.
2 http://bcmi.sjtu.edu.cn/∼seed/seed-vig.html.

http://bcmi.sjtu.edu.cn/~seed/seed.html
http://bcmi.sjtu.edu.cn/~seed/seed-vig.html
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data were labeled with the percentage of eye closure (PERCLOS) [4], which is a contin-
uous number varying from 0 (drowsy) to 1 (alert). For SEED-VIG, 23 subjects partici-
pated in the driving experiment, which was conducted in a simulation system consisting
of a large screen, a real car and a corresponding software system. Forehead EEG and
EOG signals were collected during the experiment with 4 electrodes using a ESI Neu-
roscan system. The data were first downsampled to 125Hz and then segmented with
nonoverlapping 8 s time windows. To separate the EEG and EOG components from the
mixed signals, we applied the independent component analysis method. We extracted
DE features from the EEG components in adjacent nonoverlapping 2Hz bands within
the range from 1Hz to 50Hz, thus obtaining 100-dimensional EEG features. On the
other hand, the EOG components were processed with the Mexican hat wavelet trans-
form to extract 36 eye movement features, including blinks, saccades and fixation. By
concatenating the EEG and EOG features, 885 samples of 136-dimensional features
were extracted for each subject.

3.3 Evaluation Details

To compare the DG and DAmethods in terms of prediction accuracy, we adopted leave-
one-subject-out cross-validation. In each iteration, for the DG methods, we selected
one subject as the test domain and the others as the training domains, while for the DA
methods, all training subjects were considered as one source domain and the test subject
as the target domain. According to the total numbers of subjects, 15 and 23 iterations
were performed for SEED and SEED-VIG, respectively.

For comparison in terms of generalization ability, we designed another setting called
leave-multiple-random-subjects-out cross-validation, which also consisted of several
iterations. In each iteration, one-third of the subjects were randomly selected as the
test domains and the others as the training domains. To maintain the granularity of the
evaluation, the numbers of iterations in this setting were the same as in the first setting.

For the kernel-based conventional methods, we adopted a linear kernel function. A
subset of the samples in SEED (1000 samples for each subject) was randomly selected
as the training data because of the practical infeasibility of loading all the training data
due to the limited available memory and computation time. For dimensional reduction,
the number of subspace dimensions was selected from the range of {10, 20, ..., 120}.
For the shallow models, the parameters were randomly sought in the range {2n|n ∈
{−10, ..., 10}}. For the deep models, we applied the Adam optimizer and a random
search strategy. The search spaces for the learning rate and the hyperparameter λ for
GRL were set to {2n × 10−4|n ∈ [−10, 10]} and {10n|n ∈ [−5,−1]}, respectively.

4 Results and Discussion

4.1 Leave-one-subject-out Evaluation

Emotion Recognition. The performance of the DG methods for the classification task
was evaluated on the SEED dataset. We adopted the leave-one-subject-out evaluation
scheme and compared the DG methods with several conventional DA methods, such as
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TCA [17] and TPT [20], as well as deep DA methods, such as DANN [3], DAN [10]
and WGANDA [13]. Table 1 presents the mean accuracies (Avg) and standard devia-
tions (Std). The baseline SVM method shows relatively poor performance due to the
subject variability between the training subjects and the test subject. Among the shal-
low methods, TPT outperforms the other methods with an accuracy of 75.17% [23],
while SCA and DICA achieve lower accuracy but more stable performance. Among
the deep methods, WGANDA achieves the best performance with a mean accuracy
of 87.07% [13]. In addition, the deep DG methods are also effective, exhibiting com-
parable performance, with DResNet being slightly better than DG-DANN. In general,
the DA methods perform the best due to the additional information from the test sub-
ject. However, the DA methods require a large amount of unlabeled data from the test
subjects to measure the discrepancy between the source and target domains. By com-
parison, the DG methods are capable of achieving the same level of prediction accuracy
as the DA methods while requiring no data from the test subjects.

Table 1. Leave-one-subject-out evaluation results for classification on SEED

Baseline Domain adaptation methods Domain generalization methods

SVM TCA TPT DANN DAN WGAN-DA DICA SCA DG-DANN DResNet

Avg 0.5818 0.6400 0.7517 0.7919 0.8381 0.8707 0.6941 0.6633 0.8430 0.8530

Std 0.1385 0.1466 0.1283 0.1314 0.0856 0.0714 0.0779 0.1060 0.0832 0.0797

Vigilance Estimation. We also investigated the effectiveness of the proposed DG
methods for the regression task on the SEED-VIG dataset. The Pearson correlation
coefficient (PCC) and the root-mean-square error (RMSE) were calculated for the eval-
uation. Support vector regression (SVR) with a linear kernel was chosen as the baseline
method for vigilance estimation. We compared the DG methods with two shallow DA
methods, TCA [17] and GFK [6], as well as the latest deep DA methods, DANN [3]
and ADDA [21]. As shown in Table 2, the DG models achieve stable performance that
is comparable to that of the DA models; ADDA shows the best accuracy, with a PCC
of 0.8442 and an RMSE of 0.1405 [9]. The performance of DResNet (PCC: 0.8440,
RMSE: 0.1420) is quite similar to that of the state-of-the-art methods on the same task,
even without additional data from the test subjects. In terms of performance stability,
DResNet and DG-DANN outperform the other methods. These results are consistent
with the conclusions summarized for the emotion recognition task.

Table 2. Leave-one-subject-out evaluation results for regression on SEED-VIG

Baseline Domain adaptation methods Domain generalization methods

SVR TCA GFK DANN ADDA DICA DG-DANN DResNet

PCC Avg 0.7606 0.7786 0.7907 0.8402 0.8442 0.7733 0.8320 0.8440

Std 0.2314 0.2152 0.1260 0.1535 0.1336 0.1382 0.1000 0.0935

RMSE Avg 0.1689 0.1596 0.1910 0.1427 0.1405 0.2007 0.1470 0.1420

Std 0.0673 0.0544 0.0636 0.0588 0.0514 0.0674 0.0444 0.0402
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4.2 Leave-multiple-random-subjects-out Evaluation

As mentioned above, for practical BCI applications, DA methods become ineffective
when extended to multiple unknown test subjects with only one well-trained model.
To evaluate the generalization ability of the DG models under these circumstances, we
adopted the leave-multiple-random-subjects-out cross-validation scheme. The experi-
mental results of the baseline SVM method and all DG methods on SEED and SEED-
VIG are shown in Tables 3 and 4, respectively. The performance drops slightly due to
the decreased size of the training set. Here, DResNet outperforms the other methods
on both datasets, achieving an accuracy improvement of 27.57% compared to the SVM
model on SEED and a PCC improvement of 0.0887 compared to the baseline SVR
model on SEED-VIG.

Table 3. Leave-multiple-random-subjects-out evaluation results on SEED

SVM DICA SCA DG-DANN DResNet

Avg 0.5413 0.6435 0.6083 0.8146 0.8170

Std 0.1348 0.0896 0.0505 0.0788 0.0737

Table 4. Leave-multiple-random-subjects-out evaluation results on SEED-VIG

SVR DICA DG-DANN DResNet

PCC Avg 0.7499 0.7719 0.8294 0.8386

Std 0.1980 0.1841 0.1541 0.1532

RMSE Avg 0.2068 0.1735 0.1604 0.1569

Std 0.0587 0.0468 0.0782 0.0735

4.3 Discussion

To further investigate the effectiveness of the DG models on features extracted from
different domains, we visualized the features from the leave-one-subject-out evaluation
using the t-SNE algorithm [14]. The visualization results are depicted in Fig. 2. The
first row shows the raw features from the datasets, while the second row shows the
features extracted by the DResNet feature extractor. In the first column, the features
are colored in accordance with their source subjects. In the second column, the blue
points represent the training data, and the red points represent the test data. Finally, we
visualize all features in accordance with their labels in the third column. The features
from SEED are colored with red, blue and green, which represent positive, negative and
neutral emotions, respectively. The features from SEED-VIG are colored in accordance
with their PERCLOS labels, where the red points denote lower vigilance levels.
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(a) SEED Feature Visualization (b) SEED-VIG Feature Visualization

Fig. 2. Domain generalization feature visualization.

Firstly, the phenomenon of subject variability is clearly evident in the raw features
in the first colume. After DResNet processing, the subject variability is significantly
reduced since the data from different domains are evenly mixed together. In addition,
the figures in the second colume demonstrate the reason for the remarkable perfor-
mance of the DG models, since the training data and test data are aligned with similar
distributions. Furthermore, it can be observed that the DResNet features vary smoothly
with their labels in the third column and thus can be more easily predicted by the label
predictor.

5 Conclusion

In this paper, we focused on reducing the influence of EEG subject variability on BCI
systems for unknown subjects. DG methods were introduced to address this problem
without needing to collect additional information from the test subjects. Following two
different approaches to DG, we generalized the DANN concept and then proposed a
novel framework called DResNet. In evaluations on classification and regression tasks,
we compared our methods with other DA and DG methods on two public datasets
related to different topics. We applied two different schemes for evaluation in terms
of prediction accuracy and generalization ability. The experimental results show that
the proposed methods are effective for solving the subject variability problem in cross-
subject BCI systems for unknown users.
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