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Chemical reaction practicality is the core task among all symbol intelligence

based chemical information processing, for example, it provides indispensable

clue for further automatic synthesis route inference. Considering that chem-

ical reactions have been represented in a language form, we propose a new

solution to generally judge the practicality of organic reaction without con-

sidering complex quantum physical modeling or chemistry knowledge. While

tackling the practicality judgment as a machine learning task from positive

and negative (chemical reaction) samples, all existing studies have to carefully

handle the serious insufficiency issue on the negative samples. We propose an

1

ar
X

iv
:1

90
4.

09
82

4v
1 

 [
cs

.C
L

] 
 2

2 
A

pr
 2

01
9



auto-construction method to well solve the extensively existed long-term diffi-

culty. Experimental results show our model can effectively predict the practi-

cality of chemical reactions, which achieves a high accuracy of 99.76% on real

large-scale chemical lab reaction practicality judgment.

INTRODUCTION

Organic reactions including addition reactions (1), elimination reaction (2), substitution reac-

tions (3–5), pericyclic reactions (6), rearrangement reactions (7,8), redox reaction (9) have been

studied for hundreds of years. Owing to the development of organic methodology (10), hun-

dreds of millions of reactions have been practised and more and more compounds have been

produced. Nevertheless, the mechanism of organic reactions has not been completely under-

stood and the practicality of a new organic reaction still mainly relies on human judge from

expertise and the eventual exploratory synthesis verification.

Modeling the organic reactions through physical-level method, such as quantum mechani-

cal modeling, is a traditional way to recognize them, whereas it may lead to over-complicated

model with poor informative representation (11), even for simple reaction containing only sev-

eral atoms, is essentially difficult to model due to the need of considering the combinatorial

component arrangement using quantum chemistry method. Predicting a complicated chemi-

cal reaction under a certain condition is even much more challenging (12), because it requires

considering every transition-state, the combination between molecules and their given environ-

ment.

Instead, the latest symbol model for chemical reaction has been proposed, in which chem-

ical elements and molecules are regarded as symbols and reactions are considered as text with

chemical information. Consequently, most text processing methods including machine learn-

ing, especially deep learning, can be applied to the text in chemical language. Support Vector
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Machine (SVM) has been proved to be useful to predict the result of crystallization of templated

vanadium selenites (13). However, it requires complicated manual feature selection with a ba-

sis of necessary chemical knowledge. Information retrieval is also an effective way to predict

the products of organic reactions (14, 15), which presents a limited candidate set for ranking.

Continuous representation of molecules (16) provides a convenient method to automatically

generating chemical structures. More recently, some researchers (17) cast the reaction predic-

tion task as a translation problem by introducing a template-free sequence-to-sequence model,

trained end-to-end and fully data-driven and achieved an accuracy of 80.1% without relying on

auxiliary knowledge such as reaction rules. Recently, Abigail Doyle et al. (18) proposed the

random forest algorithm, which can accurately predict the yield of Buchwald Hartwig cross-

coupling reactions with many detailed features of materials in reactions, though their compu-

tational model can only process a kind of reaction and needs too much information about the

reactions.

Existing work using machine learning for chemical information processing falls either rely-

ing on strong chemical knowledge source or focusing on specific types of reactions. Distinctive

from previous studies, we provide a cutting-edge symbol alone model on chemical text of or-

ganic reactions from a general background. A complete data-driven method is proposed for

open type of chemical organic reactions, releasing the inconvenient prerequisite with chemical

prior knowledge. Without complex parameter setting or manual chemical knowledge based fea-

ture selection, our approach can automatically discover the salient features and reaction patterns

for effective reaction practicality judgment.

In recent years, natural language processing has popularly adopted embedding representa-

tion for text units which is a sort of low-dimensional continuous representation learned from

neural networks. Following the latest advance of deep language processing, embedding is also

used to represent chemical text segments for chemical reaction learning. Using a data-driven
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mode, our model will directly learn from a large scale of available reaction data. We use re-

action formulation collected from the publications for about 1.7 million reactions. Practicality

judgment can be straightforwardly formulized into a discriminative machine learning task over

two types of reactions, positive and negative. However, the latter, negative reactions, are seldom

reported in chemical literatures and thus usually hard collected. When quite a lot of positive

reactions are collocated with few negative ones, the machine learning models have to struggle

on seriously imbalanced training dataset. In this work, we propose an effective chemical rule

based method for negative reaction generation to cope such a long-term big challenge. Eventu-

ally, given the reactants and products, our model can accurately judge the reaction practicality.

Our model pipeline is given as follows. We first preprocess the SMILES sequence of each re-

actant and product in atom-wise and adopt an unsupervised segmentation algorithm to tokenize

the resulting text into segments in a natural language processing way. Then the text or symbol

difference between reactants and products which stands for the reaction steps is extracted and

tagged from an edit distance detection operation on both sides of reaction text. For an effective

representation, all the resulting chemical text segments are presented in an embedding form so

that either the reactants or the products can be put into vector representation as well. At last, the

reactants and the products which are all in vectors are fed to a neural network for practicality

learning and judgment.

METHOD

For chemical reaction prediction, the key point is to effectively capture the internal relationships

between a reactant and the corresponding product representation along with Reaction Symbol

Distance (RSD). Note that we assume unreactive reactions will be always kept unreactive under

all possible, known reaction conditions, thus we remove all reaction conditions in our judgment.

This task is formulized into a language processing over the corresponding chemical text. As
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shown in Figure 1, the text segments of reactants and products are represented as vectors of

low-dimensional embedding representation. Then, a deep neural network is trained to learn

the chemical principles of reactions by transforming the feature representation of reactants and

products. After training, given a reaction text input, the model will judge the practicality.

Unsupervised Tokenization

SMILES (Simplified Molecular Input Line Entry System) is a line notation for entering and

representing molecules and reactions using short ASCII strings, which was initiated by David

Weininger at the USEPA Mid-Continent Ecology Division Laboratory in Duluth in the 1980s

(19). The primary reason SMILES is more useful than an extended connection table is that it is

a linguistic construct, rather than a computer data structure. SMILES is a true language, albeit

with a simple vocabulary (atom and bond symbols) and only a few grammar rules. SMILES

representations of structure can in turn be used as words in the vocabulary of other languages

designed for storage of chemical information and chemical intelligence. Some examples are

shown in Table 1.

At the very beginning, we remove the hydrogen atoms and the atom mappings from the reac-

tion string, and canonicalized the molecules. We treat chemical reaction described by SMILES

as a kind of text in natural language. Considering that chemical elements (atoms) and vari-

ous SIMILES bond symbols are characters in the chemical language, a sequence of SIMILES

which stands for chemical compound can be regarded as the corresponding sentence. Therefore

we need to mine the sequence to find a basic meaningful linguistic unit, word. As SMILES

encoding text does not provide a word segmentation with solid chemical meaning to facilitate

the chemical text processing, we turn to unsupervised tokenization solution in the existing natu-

ral language processing (20). Therefore, we adopt goodness measure based method to tokenize

each reactant, product text in SMILES into a sequence of words. LetW = {{wi, g(wi)}i=1,...,n}
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be a list of character n-grams (namely, word candidates) each associated with a goodness score

for how likely it is to be a true word from a linguistic/chemical perspective, where wi is a word

candidate and g(wi) is its goodness function.

The adopted segmentation algorithm is a greedy maximal-matching one with respect to a

goodness score.

{w∗, t∗} = argmax
w1...wi...wn=T

n∑
i=1

g(wi) (1)

It works on T to output the best current word w∗ repeatedly with T = t∗ for the next round as

follows, with each {w, g(w)} ∈ W .

In our work, we use Description Length Gain (DLG) as the goodness measurement for a

candidate character n-gram from the chemical text. In principle, the higher goodness score for

a candidate, the more likely it is to be a true word. DLG was proposed by Kit and Wilks (21) for

compression-based unsupervised segmentation. The DLG extracts all occurrences of xi..j from

a corpus X = x1x2...xn and its DLG goodness score is defined as

gDLG(xi..j) = L(X)− L(X[r → xi..j]⊕ xi..j), (2)

where X[r → xi..j] represents the resultant corpus by replacing all items of xi..j with a new

symbol r throughout X , and ⊕ denotes the concatenation operator. L(·) is the empirical de-

scription length of a corpus in bits that can be estimated by the Shannon-Fano code or Huffman

code as below, following classic information theory (22),

L(X)
.
= −|X|

∑
x∈V

p̂(x) log2 p̂(x), (3)

where |·| denotes the string length, V is the character vocabulary ofX and p̂(x) is x’s frequency

in X .
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Reaction Symbol Distance (RSD) Generation

To formally represent the text difference from reactants to products in a reaction formula, we

introduce the formal concept of Reaction Symbol Distance (RSD), which indicates how source

chemical text can be transformed into target one through a series of symbol inserting and delet-

ing operations. The text operation series can be decoded from calculating the edit distance (23).

Edit distance is used to quantify how dissimilar two strings are to one another by counting the

minimum number of operations required to transform one string into the other.

For a source sequence S = s1s2 . . . sn and the target sequence T = t1t2 . . . tm, the RSD

sequence R = r1r2 . . . rn is encoded by the following tags:

• AD indicates a string should be added right before the corresponding location.

• AR indicates the corresponding symbol should be replaced by the given string with the

tag.

• RR the corresponding symbol should be deleted.

• means that there is no operation at the location.

All compound sequences S and T are split into elements, and the resulting RSD from S to

T are illustrated in the Figure 2.

The data processing steps together with examples are summarized in Table 2. The same

preprocessing steps were applied to all datasets.

Embedding

In our adopted neural model, an embedding layer is used to map each element or segmented

word from a sequence into a vector with dimension d. Our model takes three types of inputs,

reactant, RSD and product. After embedding, the reactant sequence with nwords is represented
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as Rd×n. Similarly, we obtain the embeddings of the reactant sequence R, the RSD sequence S

and the product sequence P. Then, the input sequences are subsequently aggregated into two

compact representations through projection and concatenating:

M1 =

R
1
1 ⊕ S1

1
...

R1
h ⊕ S1

h

 ,M2 =

P
1
1 ⊕ S1

1
...

P1
h ⊕ S1

h

 (4)

Siamese Network

In order to learn the optimal representations of chemical reactants M1 and products M2 with

RSD, we propose to use a pair-based network structure called Siamese network which has been

proven as an effective framework for image matching (24), sequence similarity comparison

tasks (25,26). Since the negative reaction instances are extremely insufficient and most reported

yields concentrate in a narrow range, common neural network suffers from the imbalance learn-

ing difficulty. The structure of Siamese network consists of two identical branches that share

weights and parameters. Each branch poses a deep neural network for feature learning. In this

work, we adopt Long-Short Term Memory (LSTM) Network (27) as the branch component due

to its advance for sequence modeling. Figure 3 shows an LSTM based branch architecture. The

LSTM unit is defined as follows.

it = σ(Wi
wxt +Wi

hht−1 + bi), (5)

ft = σ(Wf
wxt +Wf

hht−1 + bf ), (6)

ut = σ(Wu
wxt +Wu

hht−1 + bu), (7)

ct = ft � ct−1 + it � tanh(Wc
wxt +Wc

hht−1 + bc), (8)

ht = tanh(ct)� ut, (9)

where σ stands for the sigmoid function and the � represents element-wiselayer to form a final

representation. multiplication. ⊕ denotes vector concatenation. it, ft,ut, ct,ht are the input
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gates, forget gates, memory cells, output gates and the current states, respectively. Given a

sequence input, the network computes the hidden sequence ht by applying the formulation for

each time step.

After embedding, the vectorized inputs M1 and M2 are separately fed to forward LSTM and

backward LSTM (BiLSTM) to obtain the internal features of two directions. The output for each

input is the concatenation of the two vectors from both directions: ht =
−→
ht ‖

←−
ht . Hence, we

have the processed representations of the reactant and product with RSD, M̂1 = BiLSTM(M1)

and M̂2 = BiLSTM(M2). Then, our model concatenates the representation of M̂1 and M̂2 to

a Multi-Layer Perception (MLP) layer to form a final representation. The output of the model

is activated by a sigmoid function to ensure the prediction is in [0,1].

y =
1

1 + ex
(10)

where x is the output of MLP and y is the prediction.

Training objectives

For practicality judgment, we use binary cross entropy as the loss function.

L = − 1

N

n∑
t=1

[ytlogŷt + (1− yt)log(1− ŷt)] (11)

where ŷt denotes the prediction, yt is the target and t denotes the data index.

DATA

The reaction data for our model evaluation has 5 sources, (1) a public chemical reaction dataset

USPTO, (2) a large scale of reaction dataset extracted from reports of Chemical Journals with

High Impact factors (CJHIF), (3) ruled generated negative chemical reactions by Chemical.AI
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laboratory1, (4) real failed reactions from Chemical.AI partner laboratories and (5) real reactions

from Chemical.AI laboratories.

Statistics

• Positive reactions from USPTO (USPTO)

This public chemical reaction dataset was extracted from the US patents grants and appli-

cations dating from 1976 to September 2016 (28) by Daniel M. Lowe (29). The portion

of granted patents contains 1,808,938 reactions described using SMILES 2. Such reac-

tion strings are composed of three groups of molecules: the reactants, the reagents, and

the products, which are separated by a ‘>’ sign. After data cleaning with RDKit (30),

an open-source cheminformatics and machine learning tool, it remained 269,132 items at

last.

• Positive reactions from CJHIF(CJHIF)

3,219,165 reactions mined from high impact factor journals3 with reagent, solvent and

catalyst information, in addition with yield. After data cleaning and selection, we used

remaining 1,763,731 items at last.

• Rule-generated negative reactions from Chemical.AI (Chemical.AI-Rule)

For every product in the positive reaction sets, we adopt a set of chemical rules to gen-

erate all possible reactions which may output the respective products. Then we filter the

resulted reactions by a very large known positive reaction set from Chemical.AI (which

contains 20 million known reactions collected from chemical literatures and patents).

Namely, all the remained unreported reactions are taken as negative reactions. Due to

1http://www.chemical.ai
2https://figshare.com/articles/Chemical_reactions_from_US_patents_

1976-Sep2016_/5104873
3The journal list is attached in the Supplemental Material.
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memory limitation, we keep 100K rule-generated negative reactions in our dataset.

Our idea for auto-construction of negative chemical reaction samples is actually quite

intuitive, that is, we simply regard no-show reactions from any known literature are quite

possibly negative ones. Only if the reference positive reaction set is large enough, we can

receive quite reliable negative reasons from such filtering.

• Real negative reactions from Chemical.AI (Chemical.AI-Real-1)

12,225 real failed reactions from chemical experiment record of Chemical.AI partner

laboratories. After data deduplication and canonicalization, it remained 8,797 reactions.

• Real reactions from Chemical.AI (Chemical.AI-Real-2)

24,514 real reactions from chemical experiment record of Chemical.AI partner labora-

tories, in which there are 16,137 positive reactions and 8,377 negative reactions, where

the productivity of negative reactions is 0%. This data set is equally split into two parts:

training set and test set.

Setup

For practicality judgment, we let the two positive sets collocate with the two negative dataset to

form four combinations. The distributions of positive and negative reaction from the train/dev/test

sets are in Table 3.

In our experiments, the ratio of the training set and the test set is 9:1 and 10% of the train-

ing set is held out as development (dev) set4. For practicality judgment, since there are no

negative samples from USPTO dataset, we use the positive reactions from CJHIF and USPTO

to pair the real negative and rule-generated negative samples from Chemical.AI. For the data

4Dev set is used to supervise the training process in case of over-fitting or under-fitting in deep learning scenerio.
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collected from laboratories (Chemical.AI-Real-2), we take them as the test set to examine the

generalization ability of our model.

Considering the calculation efficiency, we specify a max length of 100 words for each

SMILES sequence and apply truncating or zero-padding when needed. The embedding weights

are randomly initialized with the uniformed distribution in the interval [-0.05, 0.05].

Evaluation metrics

Our practicality judgment evaluation is based on the following metrics: Accuracy, Precision,

Recall and F1-score. Four types of predictions are as shown in Table 4.

Accordingly, we can calculate the performance of Accuracy, Precision, Recall and F1-score

as follows.

Accuracy =
TP + TN

TP + TN + FN + FP
, (12)

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

F1-score =
2× Precision× Recall

Precision + Recall
(15)

EXPERIMENT

Practicality Judgment

Given input sequences, the model will output the reaction success probabilities. To evaluate the

result, a threshold is required to distinguish from positive or negative predictions. According

to our preliminary experiments, the threshold is set to 0.55. The experimental result is shown

in Table 8. We observe the positive reactions could be recognized essentially (nearly 99%).

5This is also the common setting for binary classification tasks and our quantitive study shown in Figure 5 also
verifies the optimal setting.
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Though the proportion of positive and negative cases is over 30:1, our model also ensures a

high negative F1-score more than 72%. Besides the rule-based negative dataset have a higher

Negative-F1-score. From the statistics of the datasets, we know the rule-based negative dataset

is much bigger than the Chemical.AI-Real-1, which not only alleviates the imbalance between

positive and negative examples but also increases the diversity of negative examples.

Generalization Ability

In order to demonstrate the generation ability of our learning model, we report the judgment

results on Chemical.AI-Real-2 dataset with different training settings in Table 9.

As the Chemical.AI-Real-2 comes from true laboratory record, our model prediction is ac-

tually evaluated in these real chemical experiments. Note that these negative reactions were

expected to work by experienced chemists, which means they are literally correct in chemistry

rules and the chemists must encounter difficulties to predict the practicality of these reactions.

Therefore, when our model gives correct practicality predication over these actually failed re-

actions, it means that our model performs better than human experts in these cases.

As we know, it is difficult to get sufficient enough failed reactions because they are rarely re-

ported in literature. Meanwhile negative examples are indispensable in discriminative machine

learning on these two types of reactions. Here we show that rule-generated negative reactions

for training set building may yield remarkable prediction accuracy in real chemical reaction

records by considering that the rule negative samples perform best among all training settings

in Table 9. This opens a new way in the research of chemistry reaction prediction.

To have an insight of how the thresholds affect the model performance on the Chemical.AI-

Real-2 dataset, we record the predication results by ranging the thresholds from 0.1 to 1 with

step=0.1. The visualization results are shown Figure 5, which shows the best performance when

the threshold is 0.5.
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Figure 6 illustrates the ROC (Receiver Operating Characteristic) curve which relates to the

diagnostic ability of a binary classifier system, and the Area under the Curve (AUC) of ROC is

80.90%, which means this model can perform quite well when the threshold sets rightly.

Incremental Experiment

Different datasets may have different statistical distribution characteristics on reaction types.

To fully examine the capacity of our model, we conduct a series of incremental experiments by

mixing a small part of different dataset to the origin one and using the rest as test set.

We divided the Chemical.AI-Real-2 dataset into two parts, the incremental set and test set

in the ratio of 1:1. Than we add different sized parts of the incremental set with ratios [0.1, 0.2,

..., 0.9, 1.0] to the training set (USPTO + Chemical.AI-Real-1) and conduct the experiments,

respectively.

The results in Figure 4 show that even there is only a small amount of data added into the

training set as the same source as the test set, the judgment results will be improved greatly.

DLG Segmentation

The adopted unsupervised tokenization over the SMILES text is based on a set of words with

significant DLG scores in terms of the goodness measure methods. Despite its usefulness in our

computational process, we also observe their chemical meaning. Table 5 lists a small part of the

words with high DLG scores. For example, it is not strange to any chemists that the structure of

metal complex is the key to many organic reactions and in the words list, we find the number and

the metallic element are always put in a same fragment which means that the ligands’ position

information attaching to the metallic element is useful for a better and more accurate embedding

representation in our model. At the meanwhile, most of ordinary functional groups are also in

the same fragment, like C=C, C#C, C=O and C#N, which means the model regards them as a

14



group to process the reaction like what organic chemists do in their research. We also find that

the ring structure in a molecule is always divided in different fragments. Though seemingly

irrational, the model actually recognizes different functional parts in a ring for more targetedly

processing, which is indeed helpful to extract the reaction pattern in the later process.

Ablation Experiment

We investigate the effect of different features in our model by removing them one by one. As

shown in Table 6 all the features contribute to the performance of our final system. If we remove

either RSD or DLG Tokenizaton, the performance drops. This result indicates that both features

play an important and complementary role in the feature representation.

Recurrent Neural Network Types

We also compare Siamese network with the different standard recurrent neural networks -

LSTM, BiLSTM, GRU and BiGRU, and the comparison of the results is demonstrated in Table

7. Obviously, Siamese network outperforms all the others, especially on the negative cases,

which shows Siamese network could effectively handle the data imbalance issue.

Significance in Chemistry

In practice, we have shown that our model uses the rule-based generated data as negative ex-

amples to train the model, while in the test, our model obtains significant judgment accuracies

in real reaction record. It means that our model has been capable of extracting the feature of

both positive and negative examples and filtering the bias introduced by rule, which shows re-

markable modeling ability and will helps to improve the development of chemical engineering.

During the test, we find that model can recognize some reactions which seems to be impractical

but can react actually and some reactions which seems to be reactive but cannot react actually.

Figure 7 and Figure 8 show such highly confused examples.

15



CONCLUSION

We present a deep learning model to model real-world chemical reactions and unearth the fac-

tors governing reaction outcomes only from symbol representation of chemical information. In

contrast to conventional methods which require massive manual features or are only evaluated

on small datasets for specific reaction types, our approach is much more simple, end-to-end

and effective. Especially, we use a rule-based method to generate unlimited negative samples,

and the results evaluated on real reaction records show satisfactory judgment performance. In

a distinctive perspective, this work reveals the great potential to employ deep learning method

to help chemists judge the practicality of chemical reactions and develop more efficient exper-

imental strategies to reduce the cost of invalid experiments. The resultant model can be used

more than practicality judgment, but has a potential to help effective synthesis route design

which has been an ongoing task in our current study and chemical practice.6
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Figure 3: Siamese Network with LSTM based branch architecture.
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Figure 4: The result in our incremental experiment.
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Figure 5: Threshold effect of our model on Chemical.AI-Real-2 dataset.
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Figure 6: ROC Curve of our model on Chemical.AI-Real-2 dataset.
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Figure 7: Positive-like cases in the test set and “X” means it cannot react actually.
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Figure 8: Negative-like cases in the test set and “O” means it can react actually.
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SMILES Name SMILES Name
CC ethane [OH3+] hydronium ion
O=C=O carbon dioxide [2H]O[2H] deuterium oxide
C#N hydrogen cyanide [235U] uranium-235
CCN(CC)CC triethylamine F/C=C/F E-difluoroethene
CC(=O)O acetic acid F/C=C\F Z-difluoroethene
C1CCCCC1 cyclohexane N[C@@H](C)C(=O)O L-alanine
c1ccccc1 benzene N[C@H](C)C(=O)O D-alanine

Table 1: Examples of SMILES

Step Example (reactants > reagents > products)
1) Original string [C:1]([C:3]1[CH:8]=[CH:7][CH:6]=[CH:5][C:4]=1

[OH:9])#[N:2].[CH2:10]([CH:12]1[O:14][CH2:13]
1)Cl>N1CCCCC1>[O:14]1[CH2:13][CH:12]1[CH2:10]
[O:9][C:4]1[CH:5]=[CH:6][CH:7]=[CH:8][C:3]=1
[C:1]#[N:2]

2) Atom-mapping removal
and canonicalization

ClCC1CO1.N#Cc1ccccc1O>N1CCCCC1>N#Cc1ccccc1OC
C1CO1

3) Tokenization atom-wise Cl C C 1 C O 1 . N # C c 1 c c c c c 1 O > N
1 C C C C C 1 > N # C c 1 c c cc c 1 O C C 1
C O 1

4) DLG segmentation ClC C 1 CO1. N#Cc 1cccc c1 O > N1CC CCC 1>
N#Cc 1cccc c1 O C C 1 C O 1

Table 2: Data processing steps. The tokens are separated by a space and individual molecules
by a point token.

Data Case train dev test

CJHIF + Chemical.AI-Real-1
Positive 1,406,259 156,251 173,624
Negative 7,178 798 874

USPTO + Chemical.AI-Real-1
Positive 217,992 24,221 26,919
Negative 7,176 797 877

CJHIF + Chemical.AI-Rule
Positive 1,428,673 158,741 89,948
Negative 158,689 17,632 10,052

USPTO + Chemical.AI-Rule
Positive 217,799 24,200 90,221
Negative 24,421 2,713 9,779

Chemical.AI-Real-2
Positive 8,069 - 8,082
Negative 4,202 - 4,175

Table 3: Distributions of positive and negative reaction from the train/dev/test sets in four
combinations.
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Predicted Positive Predicted Negative
True Positive TP FN
True Negative FP TN

Table 4: Possible prediction results

Word DLG Score Word DLG Score
[Rh]789%10 78.18 [Ru++]5678 74.61
Mo+6]89%10 68.77 3[Zn++]579 66.74
Mg]Br)cc1. 52.68 ccc3)[Ru++ 49.01
C#C[Mg]Br 47.60 C=OBr[Mg] 40.02
\C=C/I 20.09 (C#N) 7.68

Table 5: Examples of SMILES words from DLG segmentation

USPTO + Chemical.AI-Real-1 USPTO + Chemical.AI-Rule
Features Case Precision Recall F1 Acc Precision Recall F1 Acc

Full P 98.83 99.21 99.02 97.92 97.89 96.72 97.30 96.26N 72.45 63.83 67.88 91.47 93.94 92.68

w/o RSD
P 98.81 98.80 98.81 97.78 97.21 96.54 96.87 95.62N 63.27 63.63 63.45 90.58 92.31 91.44

w/o Tokenization
P 98.58 99.01 98.79 97.53 96.69 92.33 94.46 93.34N 64.87 56.21 60.23 84.56 91.53 86.31

w/o RSD & P 98.68 98.61 98.65 97.32 95.75 93.58 94.65 93.31
Tokenization N 58.28 59.41 58.84 83.77 88.87 86.24

Table 6: Ablation study for practicality judgment(F1 Score on Positive case / Negative case)
(%)

Model Case Precision Recall F1-score Accuracy

Siamese
Positive 98.83 99.21 99.02

97.92
Negative 72.45 63.83 67.88

LSTM
Positive 98.78 98.92 98.85

97.77
Negative 65.24 60.49 63.83

BiLSTM
Positive 98.87 99.04 98.96

97.97
Negative 68.87 65.34 67.06

GRU
Positive 99.13 98.53 98.83

97.74
Negative 61.92 73.43 67.19

BiGRU
Positive 98.83 99.18 99.01

97.93
Negative 71.78 64.08 67.71

Table 7: Comparison of F1-score for practicality judgment on USPTO + Chemical.AI-Real-
1(%)
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Data Case Precision Recall F1-score Accuracy

CJHIF + Chemical.AI-Real-1
P 99.82 99.95 99.88

99.76
N 86.09 63.73 72.24

USPTO + Chemical.AI-Real-1
P 98.83 99.21 99.02

97.92
N 72.45 63.83 67.88

CJHIF + Chemical.AI-Rule
P 96.19 99.91 98.02

97.96
N 95.15 75.98 84.49

USPTO + Chemical.AI-Rule
P 97.89 96.72 97.30

98.97
N 91.47 93.94 92.68

Table 8: Results for practicality judgment (%)

Training Data Case Precision Recall F1-score Accuracy

CJHIF + Chemical.AI-Real-1
P 66.00 85.81 74.61

61.49
N 34.42 14.42 20.32

USPTO + Chemical.AI-Real-1
P 66.19 26.31 37.65

42.98
N 37.65 34.15 73.99

CJHIF + Chemical.AI-Rule
P 72.03 79.05 75.38 64.75
N 50.01 40.57 44.80

USPTO + Chemical.AI-Rule
P 70.03 66.15 68.03

60.31
N 42.64 41.58 42.10

Table 9: Results for practicality judgment in Chemical.AI-Real-2 dataset (%)
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