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Abstract—Robust vigilance estimation is essential for driving
and other tasks that require a high degree of vigilance. Many
approaches have been applied to estimating vigilance and much
endeavor is made to improve the performance of vigilance
estimating models. However, most of the existing approaches
require test data to have similar quality as training data, which is
difficult to be satisfied. In this paper, we adopt neural processes to
deal with noise EEG data problem encountered in real scenarios.
A publicly available dataset, SEED-VIG, is used to evaluate the
performance and robustness of the proposed neural processes
method. The dataset includes electroencephalography (EEG) and
the corresponding vigilance level annotations during simulated
driving. We compared the neural processes method with the
existing regression models. The experimental results demonstrate
that the neural processes are far better than all others in
robustness, meanwhile maintain high accuracy.

Index Terms—Neural processes, electroencephalography
(EEG), vigilance estimation, noise EEG data

I. INTRODUCTION

In human activities, there are many tasks that need people
to maintain a high degree of vigilance, such as driving, flying,
and security work. Reduced brain alertness not only affects
work performance, but also may cause serious consequences.
According to the National Highway Traffic Safety Admin-
istration, every year about 100,000 police-reported crashes
involve drowsy driving, including more than 1,550 fatalities
and 71,000 injuries [1]. Therefore, it is necessary to detect the
vigilance. At present, there are three main types of vigilance
estimation methods that have been mass-produced: detecting
steering wheel operation characteristics, detecting vehicle tra-
jectory, and judging by the driver’s facial expression. But the
common problem of these three methods is that when fatigue
is detected, fatigue has already occurred. They all lack the
function of predicting fatigue.

In recent years, the use of EEG signals to detect physio-
logical and mental states has developed rapidly. Our previous
studies show that using EEG signals to estimate vigilance has a
better performance [2]. However, EEG acquisition equipments
are generally expensive and inconvenient to wear. Often, high-
quality EEG data can only be acquired in the laboratory
environment, while the EEG data collected from real-world
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application environment are noisy, and even some data are
missing. Therefore, a flexible and robust algorithm becomes
necessary for the application of EEG-based vigilance estima-
tion.

In 2018, Garnelo et al. proposed a model called neural
processes [3]. Neural processes combine the advantages of
neural network and Gaussian process. They can not only learn
efficiently like a neural network, but also make full use of data
like a Gaussian process, and output the probability distribution
of a prediction result.

In this paper, we apply neural processes to vigilance esti-
mation based on EEG. We train a regression model to predict
the degree of fatigue. We also compare the effectiveness
and robustness of the neural processes method with support
vector regression (SVR), multilayer perceptron (MLP), Gaus-
sian process and continuous conditional neural fields (CCNF).
Experimental results indicate that the neural processes method
have much better robustness than all other models while
maintaining high accuracy.

The remainder of this paper is organized as follows. Section
2 introduces the structure and the principle of neural processes.
In section 3, we introduce the experiments settings. Section
4 presents experimental results and finally discussion and
conclusions are given in section 5.

II. MODEL

A. Neural processes as stochastic processes

In probability theory and related fields, a stochastic or
random process is a mathematical object usually defined as
a family of random variables. We denote this random process
as a random function, F : X → Y . For each finite sequence
x1:n = (x1, ..., xn) with xi ∈ X , the corresponding function
values Y1:n := (F (x1), ..., F (xn)). Let ρx1:n be the marginal
distribution of (F (x1), ..., F (xn)). Stochastic process needs to
meet two conditions: exchangeability and consistency.

Exchangeability means the joint distribution is invariant to
permutations of the elements in x1:n. Consistency means if a
part of the sequence is marginalized, the resulting marginal
distribution is the same as it is defined on the original
definition.978-1-7281-6215-7/20/$31.00 © 2020 IEEE
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Fig. 1. (a) The graphical model of neural processes. x and y correspond to the
data where y = f(x). Group C and T refer to context points and target points,
respectively. z is the global latent random variable. A filled circle means the
corresponding variable is observed. (b) The computational diagram of neural
processes. The solid part indicates the generation process. The dotted line
indicates the inference process of the latent variable z. Variables in square
boxes are intermediate representations. Letters ‘g’ and ‘h’ correspond to neural
networks that act as an encoder and a decoder, respectively. Letter ‘a’ is an
aggregator that aggregates the encoded representation of original x and y.

For a particular stochastic process f , the joint distribution
is defined as:

ρx1:n(y1:n) =

∫
p(f)p(y1:n|f, x1:n) df (1)

To solve real-world problems, we represent the model as
following:

p(x, y1:n|x1:n) = p(z)
n∏

i=1

N (yi|g(xi, z), σ
2) (2)

where p(z) is a multivariate standard normal, and g(xi, z) is
a neural network.

B. The neural processes model

To have a better performance at test phase, neural processes
split the data into context data {x1:m, y1:m} and target data
{xm+1:n, ym+1:n} as is shown in Fig. 1. A proposed distri-
bution q(z|x1:n, y1:n) is introduced as variational posterior of
the latent variables z. So the optimization problem turns into:

argmax
Θ

log p(ym+1:n|x1:n, y1:m) (3)

where Θ represents all parameters of the model.
With the help of q(z|x1:n, y1:n), the evidence lower-bound

(ELBO) is given by:

log p(ym+1:n|x1:n, y1:m) ≥

Eq(z|x1:n,y1:n)

[
n∑

i=m+1

log p(yi|z, xi) + log
p(z|x1:m, y1:m)

q(z|x1:n, y1:n)

]

(4)

Note that in the above equation, conditional prior
p(z|x1:m, y1:m) is intractable. So, neural processes approxi-
mate it using the variational posterior q(z|x1:m, y1:m). Finally,
the evidence lower-bound (ELBO) turns out:

log p(ym+1:n|x1:n, y1:m) ≥ Eq(z|x1:n,y1:n)

[
n∑

i=m+1

log p(yi|z, xi)

]

−KL[q(z|x1:n, y1:n)||q(z|x1:m, y1:m)]
(5)
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Fig. 2. The structure of neural processes. Context points and target points
are encoded separately into representation r. The approximate multivariate
gaussian distributions qc and qt are extracted from representations. The KL
divergence of qc and qt are calculated, as part of the loss function which
we wish to minimize. z is sampled from qt. A decoder is constructed which
generates Yp from z and Xt. The distance between Yp and Yt is another part
of the loss function.

C. The algorithm for training and prediction

The detail processes of training and prediction are shown
in Fig. 2.

1) Training process: In the training process, input data
{X1:n, Y1:n} are organized into context set {X1:m, Y1:m} and
target set {X1:n, Y1:n}. Then a neural network acts as an
encoder that transforms {X1:m, Y1:m} and {X1:n, Y1:n} into
deep feature representations rc and rt, respectively. rc and rt
are aggregated into r by an aggregator which calculates the
means.

Another two neural networks are used to look for a multi-
dimensional Gaussian distribution close to r. These two neural
networks transform r into μ and Σ of the posterior distribution
of global latent variable z. Based on context points and target
points, we can draw two posterior distributions qc and qt. Then
we calculate the KL divergence of these two distributions.

Next, we sample qt to get z and construct another neural
network as a decoder to generate the distribution of marginal
distribution p(y|z, x). Then we calculate the sum of log-
probability of real y on the marginal distribution p(y|z, x).
Only ym+1:n are taken into account according to equation (8)
this time.

2) Prediction process: In the prediction process, some
context points xc, yc are needed. Context points are encoded
into the posterior distribution q using the trained encoder and
aggregator. Then z is sampled from q. Finally Xt and z are
used as inputs, and yp is obtained through the trained decoder.

III. DATA DESCRIPTION AND PREPROCESSING

A. The SEED-VIG Dataset

To collect EEG data, a simulated driving system was
developed in our previous work. The system is composed of
a large LCD screen and a real vehicle without unnecessary
engine and other components. The vehicle was modified so
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the participants can operate the vehicle in the screen in front
of them through the steering wheel. The LCD screen displays
a four-lane highway scene which is primarily straight and
monotonous, so as to induce fatigue in the subjects.

A total of 23 volunteers with an average age of 23.3 years
participated in the fatigue driving experiments and 12 of
them are female. All of the subjects had normal or corrected
vision. Before the experiment, caffeine, tobacco, and alcohol
that affect the nervous system were prohibited. Subjects were
required to participate in the experiment in the afternoon or
late at night to easily cause driving fatigue. The experiment
lasted about 2 hours, during which the data were recorded.
Both EEG and forehead EOG signals were recorded during
the fatigue driving experiment. But only EEG data are used
in this paper. For the EEG signals, 11-channel EEG signals
from the posterior site and 6-channel EEG signals from the
temporal site were recorded according to the international 10-
20 electrode system.

B. Vigilance annotations

An annotation called PERCLOS measure is adopted to
measure subjects’ fatigue. PERCLOS indicates percentage of
eye closure. So the value of PERCLOS is between 0 (high
vigilance) and 1 (low vigilance).

C. Feature extraction from EEG

The raw EEG data are split into 885 segments. Each
segment contains 8 seconds of raw data. A band-filter was
applied to transform the raw data into 25 2-Hz frequency
bands, that is frequency bands of 1∼2 Hz, 2∼4 Hz, ... ,
and 48∼50 Hz. Differential entropy (DE) [4], [5] features are
extracted from each frequency band. The calculation formula
for differential entropy is:

h(X) =
1

2
log 2πeσ2 (6)

Then we applied linear dynamic system to make the DE
features smoother.

D. Experiment settings and metrics

In order to make the neural processes method learn the EEG
features of all of the 23 subjects’ sober and fatigue state, the
data are divided into 10 parts without shuffling, of which parts
1, 3, 5, 7, and 9 are used as the training set and parts 2, 4, 6,
8, and 10 are used as the test set.

We selected three evaluation indicators, Pearson’s correla-
tion coefficient (PCC), root-mean-square error (RMSE), and
coefficient of determination (R2). Typically, a small RMSE,
and a large PCC and R2 indicate a better performance.

To evaluate the effectiveness and robustness of the proposed
neural processes method, we chose support vector machine
regression (SVR), Gaussian process with RBF kernel (GP),
multilayer perceptron with 5 hidden layers and each layer
with 200 units (MLP) and continuous conditional neural field
(CCNF) to perform a systematic comparison study on the
SEED-IVG1 dataset.

1http://bcmi.sjtu.edu.cn/˜seed/download.html

TABLE I
AVERAGE PERFORMANCE AND STANDARD DEVIATIONS OF THREE

COMMONLY USED MODELS, CONTINUOUS CONDITIONAL NEURAL FIELD,
AND NEURAL PROCESSES

SVR GP MLP CCNF NP

PCC AVG 0.7413 0.5932 0.7614 0.7719 0.7646
STD 0.0247 0.1165 0.029 0.0371 0.0225

RMSE AVG 0.1411 0.1714 0.1292 0.1195 0.1271
STD 0.0021 0.0068 0.0031 0.0017 0.002

R2 AVG 0.403 -0.1545 0.463 0.5046 0.5275
STD 0.1527 1.6273 0.2464 0.1708 0.055

IV. EXPERIMENTAL RESULTS

A. Performance without noise

In this section, we evaluated the performance of three con-
ventional models (SVR, MLP, GP) and continuous conditional
neural field (CCNF) to compare with the neural processes
method by using all data as input without any noise. As we
can see in Table 1, the proposed neural processes (NP) method
achieves the best results on R2 which is 0.5275, and achieves
close results to the best score on PCC and RMSE.

B. Performance with noise

In real scenarios, the collected EEG signals often contain
noises. In order to examine the robustness of the proposed
neural processes method, we use two ways to add different
proportions of noises. In order to make the experiment more
reliable, all data go through a Standard Scaler change, making
its value range similarly.

1) Adding Gaussian noises: We add noises that obey Gaus-
sian distribution N(0, 0.25), N(0, 0.5), N(0, 1), N(0, 3), and
N(0, 5) to the test data sequentially. The performance of the
five models is shown in Fig. 3. The neural processes method
has much better robustness while maintaining high accuracy.
Even with the addition of 5 times the standard deviation of
the input data, our neural processes method can still obtain an
acceptable accuracy.
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Fig. 3. After adding different levels of Gaussian noises, the performance of
the five methods on RMSE (a) and PCC (b). The horizontal axis denotes the
deviation of the Gaussian distribution added as noise to the test data.

2) Replacing EEG with Gaussian noise: In real scenario,
there will be some situations, such as the electrode falling
off and causing part of the input to be completely replaced
by noise. In order to verify the robustness of the model in
this case, we gradually replaced 2, 4, 6, ..., and 16 of the 17
channels with white noise obeying the Gaussian distribution of
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N(0, 1). The experimental results are shown in Fig. 4. It can be
seen that the neural processes method performs significantly
better than other models in this case.

3) Performance with loss input: Since it is expensive and
inconvenient to wear all 17 channels in practical applications,
we try to gradually reduce the number of channels and inves-
tigate whether the neural processes method can still perform
vigilance estimation. Since random sampling is involved in
the calculation of neural processes, we make ten repeated
predictions for each group of inputs (the red line in Fig. 5),
and calculate the average of the ten prediction results as the
final prediction result (the black line in Fig. 5).

The experimental results are shown in Fig. 5. As the
number of input channels decreases, the volatility of neural
processes’s prediction increases each time, but the average of
the prediction can still be very close to the true value (blue
line in Fig. 5).

Since the test data of the other four comparison models must
maintain the same dimensions as the training data, comparison
experiments cannot be performed.

V. DISCUSSION AND CONCLUSION

In this study, we introduced the neural processes method
into vigilance estimation from EEG, compared it with three
conventional methods, SVR, GP and MLP, and continuous
conditional neural field (CCNF) and evaluated the robustness
of the neural processes method. The main contributions of
this paper are as follows: (1) The neural processes method
has better performance than SVR, GP, MLP, CCNF on R2

for vigilance estimation from EEG. (2) The neural processes
method has very good anti-noises ability. (3) Neural processes
does not require the test data and training data to have the same
dimension.

As can be seen from Fig. 5, even if the inputs of test data
contain very little information, the neural processes method
can still accurately estimate vigilance. The reason is that neural
processes believes that the vigilance level Y is determined
by the input X (the EEG signals) and the hidden variables
Z which represents the randomness of the EEG signals.
During the training process, a random number of random input
electrodes are chosen to optimize the distribution of Z in each
iteration. Thus, in the prediction process, no matter which of
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Fig. 4. The performance of the five models with different numbers of feature
points replaced by noise. The horizontal axis is the number of channels
replaced by noise.

Fig. 5. The performance of the neural processes method when the number of
input channels are gradually reduced. The blue line is the PERCLOS value.
The red line indicates the prediction result obtained by ten samplings. The
black line is the average of ten sampling results. The number in the upper
left corner of each picture indicates the number of channels included in the
input.

the input electrodes are missing, the distribution of Z can
participate in the prediction as the prior and provide a stable
and accurate result.

However the neural processes method still has its limita-
tions. As learned from previews studies and also this study,
the distribution of the EEG signals varies enormously from
subject to subject. In practical applications, it is difficult to
train a customized model for all the subjects. Therefore, some
transfer learning techniques should be considered for neural
processes to be better applied in practical applications.

To sum up, the results of three robustness estimating ex-
periments demonstrated that the neural processes method has
a relatively good performance in vigilance estimation and is
outstanding in robustness. Due to its structural characteristics,
we believe that the neural processes method is a promising
approach to practical applications.
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