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Abstract
Objective. The data scarcity problem in emotion recognition from electroencephalography (EEG)
leads to difficulty in building an affective model with high accuracy using machine learning
algorithms or deep neural networks. Inspired by emerging deep generative models, we propose
three methods for augmenting EEG training data to enhance the performance of emotion
recognition models. Approach. Our proposed methods are based on two deep generative models,
variational autoencoder (VAE) and generative adversarial network (GAN), and two data
augmentation ways, full and partial usage strategies. For the full usage strategy, all of the generated
data are augmented to the training dataset without judging the quality of the generated data, while
for the partial usage, only high-quality data are selected and appended to the training dataset.
These three methods are called conditional Wasserstein GAN (cWGAN), selective VAE (sVAE), and
selective WGAN (sWGAN).Main results. To evaluate the effectiveness of these proposed methods,
we perform a systematic experimental study on two public EEG datasets for emotion recognition,
namely, SEED and DEAP. We first generate realistic-like EEG training data in two forms: power
spectral density and differential entropy. Then, we augment the original training datasets with a
different number of generated realistic-like EEG data. Finally, we train support vector machines
and deep neural networks with shortcut layers to build affective models using the original and
augmented training datasets. The experimental results demonstrate that our proposed data
augmentation methods based on generative models outperform the existing data augmentation
approaches such as conditional VAE, Gaussian noise, and rotational data augmentation. We also
observe that the number of generated data should be less than 10 times of the original training
dataset to achieve the best performance. Significance. The augmented training datasets produced by
our proposed sWGANmethod significantly enhance the performance of EEG-based emotion
recognition models.

1. Introduction

Emotion plays a significant role in how people think,
behave, and communicate. Artificial emotional intel-
ligence, which is also known as emotion AI or
affective computing, focuses on developing devices
and systems that can automatically recognize human
emotion andhas attracted considerable attention very

5 Author to whom any correspondence should be addressed.

recently (Somers 2019, Smith and Burke 2019). For
example, integrating emotion assessment in human-
computer interaction systems with emotion recogni-
tion canmake machines more intelligent and provide

more humanized interactions.Moreover, studies have
shown that some mental diseases, such as depres-
sion and autism, are relevant to emotions (Bocharov
et al 2017). The introduction of emotion AI to
these studies can create a high potential for treating
psychiatric diseases. Because emotion AI has many
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potential applications, attention is being focused on
the possibility of recognizing emotions from differ-
ent behavioral cues, such as facial expression (Liu
et al 2017), posture (Garber-Barron and Si 2012),
voice (Tanja et al 2009), and neurophysiological sig-
nals (Samara et al 2017). Among these signals, elec-
troencephalography (EEG) has been demonstrated as
one of the most reliable signals due to its high accur-
acy and objective benefits. In recent years, EEG-based
emotion recognition has attracted widespread atten-
tion from academics and industries (Wang et al 2014,
McFarland et al 2016, Meneses Alarcro and Fonseca
2017, Craik et al 2019, Fourati et al 2020). Research-
ers havemade considerable progress in feature extrac-
tion and model construction. However, these studies
are faced with a problem: the lack of training data.

Compared with visual and audio signals, which
can be easily accessed from standard datasets, data
acquisition is still one of the bottlenecks in EEG-
based emotion recognition tasks. There are mainly
five reasons: a) The price of EEG acquisition devices
for research is quite high. b) These experiments can-
not last for a long time because the subjects may
feel uncomfortable wearing EEG acquisition devices.
c) The raw EEG data are usually mixed with noise
and various artifacts, and researchers have to dis-
card some bad channels and data, which aggravates
the data scarcity problem. d) It is difficult to col-
lect precisely labeled data since the subjects may not
evoke emotion well in emotion recognition exper-
iments. e) There are only a few public EEG-based
emotion recognition datasets, such as SEED1 (Zheng
and Lu 2015, Zheng, Liu, Lu, Lu and Cichocki 2019),
DEAP2 (Koelstra et al 2012), DREAMER (Katsigian-
nis and Ramzan 2018), MAHNOB-HCI3 (Soleymani
et al 2012), and MPED (Song et al 2019). Moreover,
the scales of these datasets are much smaller than
those of public image datasets (e.g. ImageNet). These
factors limit the quantity of labeled training data for
EEG-based emotion recognition and hinder the per-
formance of emotion recognition models trained by
machine learning algorithms and deep neural net-
works.

It is common sense that amachine learningmodel
will bemore accuratewhen it can accessmore training
data. For example, the release of the trillion-word cor-
pus by Google improves text-based models (Halevy
et al 2009). Machine learning models can be more
robust and reliable when learning more effective fea-
tures from sufficient training data, especially for deep
learning models that need a vast quantity of train-
ing data. Deep learningmodels have recently achieved
remarkable results in the fields of computer vision,
speech recognition, and natural language processing

1http://bcmi.sjtu.edu.cn/~seed/index.html.
2http://www.eecs.qmul.ac.uk/mmv/datasets/deap/.
3https://mahnob-db.eu/hci-tagging/.

due to the accessibility of large datasets (Zhang et al
2018).

In the field of EEG-based emotion recognition,
Zheng and Lu used deep neural networks to recog-
nize three emotions and reached a compelling accur-
acy (Zheng and Lu 2015). In their work, they only
applied a two-layer deep belief network. The achieve-
ments in the image, speech, and natural language pro-
cessing fields indicate that there is considerable room
for further studying the problem of EEG-based emo-
tion recognition by leveraging the ability of deeper
neural networks. However, compared with shallow
layer models, deep-layer models use more parameters
and require a large number of labeled training data to
explore the potentials of deep neural networks. Con-
sequently, the primary issue that should be addressed
in EEG-based emotion recognition is to acquire suf-
ficient and high-quality training data.

Generating artificial data by applying a trans-
formation from the original data is one of the
conventional solutions to solving the data scarcity
problem. This approach is called data augmenta-
tion. Recently, various data augmentation methods
have been applied to generate EEG data (Krell and
Kim 2017, Lotte 2015, Wang et al 2018). Some
researchers have generated EEG data by applying a
geometric transformation to the original data and
reported the performance of classifiers improved by
adding the generated data. Other researchers have
focused on using deep generative models to gener-
ate artificial EEG data (Hartmann et al 2018). Com-
pared with signal-level transformation through geo-
metric transformation, the deep generative model
could learn the representation of the real distribu-
tion at a deeper level. However, the performance
of the classifier after data augmentation were not
demonstrated (Hartmann et al 2018). In our pre-
vious study, we generated realistic-like EEG fea-
tures by taking advantage of GANs (Luo and Lu
2018). Then, we compared the performance of affect-
ive models without and with appending the gen-
erated data to the training dataset. The experi-
mental results demonstrated that the GAN-based
data augmentation method could improve the per-
formance of affectivemodels. In this paper, we further
explore the generative methods based on the above
achievement.

It is common for classifiers to handle the high-
level features of EEG data in EEG-based emotion
recognition tasks. Therefore, this work focuses on
generating power spectral density (PSD) and differ-
ential entropy (DE) features, which are two com-
monly used features in emotion recognition tasks
(Zheng and Lu 2015,Duan et al 2013, Yang et al 2018).

The work includes two emerging deep generative
models: variational autoencoder (VAE) (Kingma and
Welling 2014) and Wasserstein generative adversarial
network (WGAN) with gradient penalty (Arjovsky
et al 2017, Gulrajani et al 2017). We propose two
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Figure 1. Illustration of two data augmentation strategies used in this work.

data augmentation strategies: full usage of generated
data and partial usage of generated data. As illus-
trated in figure 1, the basic ideas behind the full usage
strategy and partial usage strategy are to use all of
the generated data and select part of the generated
data. Since we cannot guarantee that all of the gen-
erated data have high qualities, it is important for us
to decide how to use the generated data. For the full
usage strategy, we propose conditional Wasserstein
GAN (cWGAN) to control the category of the gener-
ated data. Then, we append all of the generated data
to the original training dataset without considering
their quality.

For the partial usage strategy, we propose two
methods called selective VAE (sVAE) and selective
WGAN (sWGAN) to generate data. In these two
methods, the generated data are unlabeled. And we
choose the generated data with high classification
confidence and append the selected data to the ori-
ginal training dataset. Unlike images, the generated
EEG features are high-dimensional data and are
intractable for humans to judge the quality of the gen-
erated data. Therefore, these two methods are based
on a simple idea, and the generated data are regarded
as high quality when they are classified with high clas-
sification confidence by a classifier trained by the ori-
ginal dataset. We use two conventional pattern classi-
fiers, SVMs and deep neural networks with shortcut
layers, to train affective models on two public EEG
datasets widely used for emotion recognition: SEED
and DEAP.

For a comparison study, we introduce three
conventional data augmentation methods for EEG-
based emotion recognition: conditional VAE (cVAE)
(Kingma and Welling 2014), which adopts a sim-
ilar generated strategy as cWGAN, Gaussian noise
method (Gau), which augments the datasets by
adding Gussain noise to the original data (Wang
et al 2018), and rotational data augmentationmethod

(RDA), which generates new data by applying a geo-
metric rotation to the original data (Krell and Kim
2017). We perform a systematic experimental study
to compare the proposed methods with these con-
ventional methods. We use 5-fold cross-validation
to measure the classification performance of differ-
ent augmented methods. The proposed framework is
illustrated in figure 2.

Themain contributions of this paper lie in the fol-
lowing aspects:

1. To the best of our knowledge, we adopt deep
generative methods to augment EEG training
data for emotion recognition for the first time.

2. We propose three methods for generating EEG
data based on different generative methods and
two different strategies for using the generated
data.

3. We carry out a systematic comparison between
different features, different generative meth-
ods and different classifiers on two EEG data-
sets. The experimental results demonstrate that
our proposed methods could make the affective
models have better performance on EEG-based
emotion recognition.

The rest of the paper is organized as follows. Sec-
tion 2 provides an overview of related work on gener-
ative methods, data augmentation methods for EEG-
based emotion recognition, and a brief introduc-
tion to deep neural networks. In section 3, we intro-
duce different methods in detail. Section 4 describes
the two datasets, SEED and DEAP, and presents the
details of our experimental settings. A systematic
comparison between different methods and the effi-
ciency of our proposed methods by conducting a
series of data augmentation experiments is presented
in section 5. Finally, in section 6, we present conclu-
sions about our work.

3
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Figure 2. Illustration of our proposed data augmentation framework. First, we extract the DE feature and PSD feature from two
EEG-based emotion recognition datasets, SEED (http://bcmi.sjtu.edu.cn/~seed/index.html) and DEAP
(http://www.eecs.qmul.ac.uk/mmv/datasets/deap/), respectively. Second, we use our proposed three methods to generate
realistic-like data and augment the original training dataset. Finally, we evaluate the performance of the proposed methods using
SVMs and DNNs with shortcut layers.

2. Related work

In this section, we briefly introduce relevant work
on EEG-based emotion recognition, deep generative
methods, data augmentation methods, and deep
neural networks.

2.1. EEG-based emotion recognition
EEG-based emotion recognition has received con-
siderable attention. Mühl et al introduced affect-
ive factors into traditional brain-computer interfaces
(BCIs) and presented the definition of affective brain-
computer interfaces (aBCIs) (Mühl et al 2014). Alar-
cao and Fonseca surveyed different EEG-based emo-
tion recognition methods and compared the main
aspects involved in the recognition process, includ-
ing stimuli, feature extraction methods, and classifi-
ers (Alarcao and Fonseca 2017). Jenke et al reviewed
feature extraction and selection methods for 33 EEG-
based emotion recognition studies (Jenke et al 2014).
Petrantonakis and Hadjileontiadis presented a novel
EEG-based feature extraction technique by employ-
ing higher-order crossings analysis (Petrantonakis
and Hadjileontiadis 2010).

Koelstra et al developed a publicly available EEG-
based emotion dataset called DEAP by recruiting 32
subjects to watch 40 music videos. Zheng and Lu
required 15 subjects to watch 15 selected Chinese
movie clips to elicit three emotions: happy, sad, and
neutral (SEED dataset) (Zheng and Lu 2015). Then,
they performed a systematic comparison between
various feature extraction, feature selection, feature
smoothing and classification methods in a three-
category EEG-based emotion recognition task and
showed the stable patterns of EEG in this task (Zheng
et al 2019).

2.2. Deep generative methods
Generative models aim to learn the data distribu-
tion of a given dataset using unsupervised learning
to generate new data with some variations and have
been widely studied in the field of machine learn-
ing. Recent advances in parameterizing these mod-
els using deep neural networks have allowed them

to scale to diverse data, including images, text, and
speech. Two of the most promising and efficient deep
generative models are the variational autoencoder
(VAE) (Kingma and Welling 2014) and generative
adversarial network (GAN) (Goodfellow et al 2014).

As a variation in the autoencoder, VAE aims
at generating new data only based on the given
data (Kingma and Welling 2014). It solves the vari-
ational inference problem that maximizes the mar-
ginalized data likelihood by using a generative net-
work (encoder) and a recognition network (decoder).
At the end of the training, the encoder can gener-
ate realistic-like data. VAEs have shown great poten-
tial in generating different data (Salimans et al 2015,
Kulkarni et al 2015, Gregor et al 2015).

As an emerging topic, GAN has attracted growing
interest. The idea of GAN is to sample noise from dis-
tributions such as Gaussian and transform them into
real data distributions. GANs are based on a mini-
max game theory that aims to find the Nash equi-
librium between the two components, generator and
discriminator. After the adversarial process, the gen-
erator can produce high-quality faked data. GANs
have shown promise in generating realistic-like data
in specific fields. Ledig et al proposed SRGAN for
image superresolution (Ledig et al 2017). Wu et al
proposed 3D-GAN to generate 3D objects from a
probabilistic space using volumetric convolutional
networks and generative adversarial networks (Wu
et al 2016). In addition, GANs have also been applied
to the generation of dialogue (Li et al 2017), electronic
health records (EHRs) (Choi et al 2017), and poly-
phonic music (Mogren 2016). Considering that the
original GAN has no control over modes of the gen-
erated data, Mirza and Osindero added the label as
an additional parameter to the generator and the dis-
criminator to control the category of the generated
data (Mirza and Osindero 2014).

Although GANs have demonstrated great genera-
tion abilities, they have some problems, such as non-
convergence, mode collapse, and diminished gradi-
ent. Chief among them is training stability (noncon-
vergence), which is mainly caused by the adversarial
game. Some pioneering works focus on fixing this
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problem. Radford et al reported some network archi-
tecture recommendations about GANs and designed
a sophisticated network called DCGAN (Radford et al
2016). Their work made a great contribution to solv-
ing the instability problem of GANs’ training process.
However, DCGAN is designed for image generation
and requires specific design techniques, which lim-
its it to scale to other fields. For this reason, other
researchers have focused on altering the structure
(Berthelot et al 2017) or the loss function (Qi 2017) of
the original GAN to ensure training stability. Wasser-
stein GAN (WGAN) is one of the most dramatic
attempts to handle this problem (Arjovsky et al 2017).
Arjovsky et al regarded themini-max game asminim-
izing the Wasserstein distance between the two dis-
tributions and replaced the original loss function of
GAN by the Wasserstein distance. Their work signi-
ficantly improved the stability of GAN training while
maintaining the generation ability of GANs. In addi-
tion, WGAN requires no extra sophisticated network
designation and can be easily applied to the gen-
eration of different signals, such as EEG. Based on
WGAN, Gulrajani et al proposed using a gradient
penalty in the training, which improved the perform-
ance of WGAN (Gulrajani et al 2017).

2.3. Data augmentation
Data augmentation aims at generating new data of
the given dataset by applying transformations to the
original data while preserving the label (van Dyk
and Meng 2001). This method is commonly applied
to reduce overfitting and improve classification per-
formance (Krizhevsky et al 2012) since the generated
data have a similar data distribution to the original
data and can be used to increase the quantity of train-
ing data. In the field of image classification with small
data size, this technique has been successfully adop-
ted (Perez and Wang 2017). It is common to gen-
erate additional images by applying different distor-
tions, scaling, or moving window/pixel shifts to the
real images (Simard et al 2003). A similar technique
has also been adopted to generate EEG signals. Krell
and Su proposed rotational distortions that were sim-
ilar to affine/rotational distortions of images to gener-
ate artificial EEG signals (Krell and Kim 2017). Lotte
generated artificial EEG trials by the relevant com-
binations and distortions of the original trials (Lotte
2015). Wang et al generated EEG features by directly
adding different Gaussian noises to the original fea-
ture and applied deep neural networks to verify the
effect (Wang et al 2018). All of the abovementioned
methods reported that the performance of the classi-
fiers was improved by data augmentation.

Some pioneering works have focused on aug-
menting data by GANs, which demonstrated great
generative ability. Zheng et al adopted DCGAN to
generate images and used artificial images for person

reidentification tasks (Zheng et al 2017). Their res-
ults presented the feasibility of GAN-based data aug-
mentation. They also reported that the classifier was
less prone to overfitting by adding generated train-
ing samples. By applying a CycleGAN to augment
the training dataset, Zhu et al improved the clas-
sification accuracy of the emotion recognition task
based on images (Zhu et al 2018). For EEG signal
generation, Hartmann et al proposed EEG-GAN to
generate raw EEG signals (Hartmann et al 2018). In
their work, they presented a series of evaluation met-
rics to demonstrate the potential for GANs to gen-
erate EEG data. However, they did not report the
performance of the classifier when adding the gener-
ated EEG data to the training dataset. In our previ-
ous work, we extended the GAN-based augmentation
method to EEG-based emotion recognition (Luo and
Lu 2018). The experimental results demonstrated the
efficiency of our data augmentationmethod for EEG-
based emotion recognition.

2.4. Deep neural networks
Deep neural networks have beenwidely applied to the
fields of computer vision (Hinton and Salakhutdinov
2006, Simonyan and Zisserman 2014), natural lan-
guage processing (Mikolov et al 2013) and speech
recognition (Dahl et al 2011). Although deep neural
networks obtain exciting results in these fileds, they
still suffer from problems such as the curse of depth.
It is difficult to train a neural network effectively with
too many layers. To solve this problem, He et al pro-
posed a residual learning framework called Resnet
(He et al 2016), which had shortcuts between layers to
transform the information. Inspired by this, we apply
the deep neural network (DNN) with shortcut layers
as one of our classifiers.

3. Method

In this section, we first give a brief introduction
to VAE and WGAN. Then, we present our three
deep generativemodels, cWGAN, sVAE, and sWGAN.
Next, we describe three conventional data augment-
ation methods, cVAE, Gau, and RDA. Finally, we
briefly describe DNN with shortcut layers.

3.1. VAE
The VAE is a latent variable generative model that
consists of an encoder and a decoder. This model
combines variational inference with the conventional
autoencoder framework. The encoder encodes x into
a latent representation space z, where x represents
a real datapoint and has weights and biases λ. We
denote the encoder qλ(z|x). The decoder outputs the
probability distribution of real data given the latent
representation z. It has weights and biases ϕ, which is
denoted by pϕ(x|z).
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The generativemodel aims tomaximize the prob-
ability of each x in the training set according to

p(x) =

ˆ
p(x|z)p(z)dx. (1)

However, this integral requires exponential time
to compute. In practice, p(x|z) will be nearly zero for
most z, which contributes almost nothing to estimate
p(x). The VAE attempts to sample z, which is likely
to produce x, by approximating the posterior p(z|x)
with qλ(z|x). It uses the Kullback-Leibler (KL) diver-
gence, which measures the distance between two dis-
tributions:

KL(qλ(z|x)||p(z|x)) = Ez∼q[log(qλ(z|x))− log(p(z|x))]
= Ez∼q[log(qλ(z|x))− log(p(x|z))
− log(p(z))]+ log(p(x)).

(2)

The goal of KL divergence is to find the parameter
λ to minimize this divergence. However, it is still
impossible to compute the KL divergence directly
since p(x) appears in the formula, which is intract-
able as mentioned above. We can define the following
function:

ELBO=−Ez∼q[log(qλ(z|x))− log(p(x|z))
− log(p(z))], (3)

where ELBO represents the evidence lower bound.
Combining equations (3) with the KL divergence and
rewrite, p(x) can be rewritten as

log(p(x)) = ELBO+KL(qλ(z|x)||p(z|x)). (4)

Note that the KL divergence is always greater than or
equal to zero according to Jensen’s inequality. There-
fore, minimizing the KL divergence is equivalent to
maximizing ELBO.

Now, we can decompose the ELBO into a sum
where each term depends on a single datapoint since
no datapoint shares its latent zwith another datapoint
in VAE.We can write the ELBOi for a single datapoint
i (the ith datapoint) as

ELBOi =−Ez∼q[log(qλ(z|xi))− log(p(xi)|z))
− log(p(z))]+ log(p(xi))

= Ez∼q[log(pλ(xi|z))]−KL(qλ(z|xi)||p(z)),
(5)

where the first term is the expected log-likelihood
and the second term is the negative KL divergence
between the encoder distributions qλ(z|xi) and p(z).
The first term forces the decoder to learn to recon-
struct the data from latent representation, and poor
reconstruction results in a large cost in this loss
function. The second term can also be viewed as

Wasserstein

distance

G

D

Figure 3. The network of cWGAN. Here, xr,yr,xg,z, G, and
D represent one real sample, real label, generated sample,
noise, generator, and discriminator, respectively.

a regularizer, which measures how much informa-
tion is lost when using qλ(z|xi) to represent p(z).
The encoder receives a penalty if it outputs latent
representations z that are different from those from
p(z). This term maintains the diversity of the latent
representation.

In VAE, the choice of p(x|z) is often a Gaussian
distribution. Then, the first term of ELBOi can also be
viewed as the reconstruction loss. The VAE assumes
p(z)=N(0, I) and qλ(z|xi) = N(µ(xi),Σ(xi)), where
N represents a Gaussian distribution. Therefore, the
second term of ELBOi can be formalized as:

KL(qλ(z|xi)||p(z)) = KL(N(µ(xi),Σ(xi))||N(0, I))

=
1

2
(tr(Σ(xi))+µ(xi)

Tµ(xi)

− k− log(det(Σ(xi)))), (6)

where k is the dimension of the Gaussian distribution
and tr(xi) is the trace function. We define Σ(xi) as a
diagonal matrix, so the formula can be rewritten as

KL(qλ(z|xi)||p(z)) =
1

2

∑
k

[Σ(xi)+µ2(xi)− 1

− logΣ(xi)]. (7)

In practice, we use logΣ(xi) instead ofΣ(xi) since it is
more numerically stable to take the exponent. Hence,
the final goal of VAE is

max
λ,ϕ

ELBO=
∑
i

ELBOi

=
∑
i

∑
k

[(xi − x̂i)
2 +

1

2
(Σ(xi)+µ2(xi)

− 1− logΣ(xi))], (8)

where x̂i is the reconstructed data, and µ(xi) and
logΣ(xi) are both calculated by the neural network.

3.2. WGAN
A typical GAN consists of two competing parts, which
are both parameterized as deep neural networks. A
generator G produces synthetic data given a noise
variable input, while a discriminator D attempts to
identify whether a sample comes from the real data

6
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distribution Xr or the generated data distribution Xg .
In other words, the discriminator is trained to estim-
ate the probability of a given sample from the real data
distribution. The generator is optimized to trick the
discriminator to offer a high probability for the gen-
erated data. The two parts are optimized simultan-
eously to find a Nash equilibrium. More formally, the
procedure can be expressed as a mini-max function:

min
θG

max
θD

L(Xr,Xg) = Exr∼Xr [log(D(xr))]

+Ez∼Z[log(1−D(G(z)))]

= Exr∼Xr [log(D(xr))]

+Exg∼Xg [log(1−D(xg))], (9)

where θg and θd represent the parameters of the gen-
erator and discriminator, respectively, and Z can be a
uniform noise distribution or a Gaussian noise distri-
bution.

The function is optimized in two steps: (i) Max-
imize it by fixing G and Xg , and obtain the optimum
of D; (ii) Minimize the function by the optional D,
and then minimize the Jensen-Shannon divergence
between Xr and Xg . The game achieves equilibrium
if and only if Xr = Xg.

Although GAN has shown great success in real-
istic data generation, it suffers from somemajor prob-
lems, such as nonconvergence, mode collapse and
diminished gradient. Researchers believed that the
Jensen-Shannon divergence could lead to vanishing
gradients, which was the main reason for the GAN’s
instability. In real-world tasks such as image genera-
tion, the distribution of real images always lies in low-
dimensionalmanifolds, and the distribution of gener-
ated images also rests in low-dimensional manifolds.
The two distributions are almost certainly disjoint
and have no overlaps. In this situation, the Jensen-
Shannon divergence between the two distributions is
a fixed number, which cannot provide useful gradi-
ents for GAN training.

Arjovsky et al (2017) adopted theWasserstein dis-
tance, which is also called the earth mover’s distance
(EM distance), in GAN training to solve the instabil-
ity problem. The distance formula for the continuous
probability domain is

W(Xr,Xg) = inf
γ∼Π(Xr,Xg)

E(xr,xg)∼γ [||xr − xg||], (10)

whereΠ(Xr,Xg) is the set of all possible joint probab-
ility distributions betweenXr andXg . For theWasser-
stein distance, even if the two distributions have no
overlaps, it can still provide useful and smooth gradi-
ents for GAN training. However, it is difficult to
implement the infimum of equation (10). An altern-
ative method for calculating the Wasserstein distance

in reality is to apply its Kantorovich-Rubinstein dual-
ity:

W(Xr,Xg) =
1

K
sup

||f||L≤K
Exr∼Xr [f(xr)]

−Exg∼Xg [f(xg)], (11)

where f denotes the set of 1-Lipschitz functions and
K is a constant number. In realistic implementations,
f is replaced by discriminator D and ||f||L ≤ K is
replaced by ||D||L ≤ 1.

There are many methods for realizing the 1-
Lipschitz constraint in WGAN. One possible method
is to restrict the parameters of the discriminator in
a limited range, such as -0.1 to 0.1. However, this
weight-clipping method will introduce some prob-
lems. The model may produce poor quality data and
does not converge since clipping reduces the capacity
of the model. Another method is to use gradient pen-
alty (Gulrajani et al 2017). In this method, an extra
penalty term is added to the loss function:

min
θG

max
θD

L(Xr,Xg) = Exr∼Xr [D(xr)]

−Exg∼Xg [D(xg)]

−λEx̂∼X̂[(||∇x̂D(x̂)||2 − 1)2],
(12)

where λ is a hyperparameter controlling the trade-
off between the original objective and gradient pen-
alty, and x̂ denotes the data points sampled from the
straight line between the real distribution Xr and the
generated distribution Xg :

x̂= αxr +(1−α)xg,

α∼ U[0,1],xr ∼ Xr,xg ∼ Xg. (13)

3.3. cWGAN
In this paper, we propose the cWGAN and apply it to
EEG-based emotion recognition. As shown in figure
3, we can generate data with specified categories by
using cWGAN. This method is based on the gradient
penalty version ofWGAN. The cWGAN is formulated
as

max
θD

L(Xr,Xg,Yr) = Exr∼Xr,yr∼Yr [D(xr|yr)]

−Exg∼Xg,yr∼Yr [D(xg|yr)]
−λEx̂∼X̂,yr∼Yr

[(||∇x̂|yrD(x̂|yr)||2 − 1)2], (14)

min
θG

L(Xg,Yr) =−Exg∼Xg,yr∼Yr [D(xg|yr)], (15)

where Y r represents the category distribution of the
real data, and x̂ is defined in equation (13). In this

7
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work, λ is set to 10 because we find that this value
could make the training procedure more stable in
our preliminary experiment. The last term in equa-
tion (14) penalizes the model if the gradient norm
moves away from its target norm. The Lipschitz con-
straint is realized, and the model almost loses no
capacity. Thus, cWGAN can generate data with high
quality and converge quickly. Since the discriminator
loss (D-loss) is the The Wasserstein distance between
the two conditional distributions can represent the
training procedure for cWGAN.

Algorithm 1 The work flow of sVAE and sWGAN

Input: Real dataset Xr = {xir}mi=1 and corresponding
labels Yr = {yir}mi=1 and thre_hold
Output: Generated data Xg = {xig}ni=1 and correspond-

ing labels Yg = {yig}ni=1

1. Xg,Yg = Null,Null
2. repeat
3. Xall_g = sVAE(Xr , noise) or Xall_g =
sWGAN(Xr , noise)
4. Xtr,Ytr = Xr ∪Xg,Yr ∪Yg
5. model= classifier_train(Xtr , Y tr)
6. Yall_g, class_conf= classifier_test(model, Xall_g)
7. fori in Xall_g

8. if class_conf[i] > thre_hold
9. Xg,Yg = Xg ∪Xall_g[i], Yg ∪Yall_g[i]
10. end if
11. end for
12. until len(Xg)== n
13. returnXg, Yg

3.4. sVAE and sWGAN
In cWGAN, we append all of the generated data to the
training dataset. Here, we consider another strategy in
which partially generated data are adopted to enlarge
the training dataset in sVAE and sWGAN. These two
methods are based on the observation that the gen-
erated data have different qualities, and only gener-
ated data with high quality are selected as new train-
ing data. This procedure has two steps: a) we generate
some data by VAE or WGAN; b) we choose the gen-
erated data with high quality to enlarge the dataset.
We repeat the above two steps until we obtain enough
training data.

In this work, we use the classification confidence
to examine data quality. We first train a classifier with
the original training dataset and then use the trained
classifier to classify the generated data, and only data
with high classification confidence (higher than the
thre_hold) are appended to the training dataset. We
train a new classifier with the appended dataset and
repeat the two steps mentioned above until we have
enough generated data. We present the algorithm in
Algorithm 1.

3.5. cVAE
In this method, we aim to generate data with the
specified category. As shown in figure 4, to control
the generated category, an extra label is added to the

μ

Σ
Enc Dec

Figure 4. The network of cVAE. Here, xr,yr,xg,µ,Σ,z, Enc,
and Dec represent one real sample, real label, generated
sample, mean value, standard deviation, resampled noise,
encoder, and decoder, respectively.

encoder and decoder. We first feed the training data
point and the corresponding label to the encoder,
then we concatenate the hidden representation with
the corresponding label and feed it to the decoder to
train the network. Then, we can generate data with
the specified label by feeding the decoder with the
noise sampled from theGaussian distribution and the
assigned label after the training process. Therefore,
the cVAE (Kingma and Welling 2014) can be formu-
lated as,

max
λ,ϕ

ELBO=
∑
i

ELBOi =
∑
i

∑
k

[(xi − x̂i)
2

+
1

2
(Σ(xi|yi)+µ2(xi|yi)− 1− logΣ(xi|yi))].

(16)

3.6. Gaussian noise
One of the straightforward augmentation methods is
adding Gaussian noise (Gau) to the original train-
ing data, whose probability density function obeys a
Gaussian distribution:

pG(z) =
1

σ
√
2π

e−
(z−µ)2

2σ2 , (17)

where z is a random variable, µ means expectation
and σ is the standard deviation. In our experiment,
µ is set to 0 and σ is set to 0.001. Intuitively, more
training data can be generated while preserving the
characteristics of the original data by addingGaussian
noise.

3.7. Rotational data augmentation
Rotational data augmentation (RDA) was proposed
by Krell and Kim (2017), which aims to create data
with strong spatial robustness, since there might be
spatial shifts of EEG caps within sessions and between
sessions during the experiments. To address this prob-
lem, RDA generates artificial data associated with
the electrodes’ new positions by adding rotations on
three coordinates. According to their result (Krell and
Kim 2017), augmentation around the y-axis and z-
axis increased the performance, especially around the
z-axis. Therefore, we choose to perform the rota-
tions around the z-axis. Specifically, we set an angle
between 12

◦
and 24

◦
over all subjects and calculate

the new data by interpolation based on radial basis
functions.
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3.8. Classifier
In this paper, we implement two kinds of classifiers:
SVMs and deep neural networks.

The deep neural network is a neural network with
multiple hidden layers. Here, we randomly add some
residual functions between two layers. The idea of the
residual function is borrowed from Resnet (He et al
2016). The residual function is a way to avoid the
problem of vanishing gradients, and it does this by
using shortcuts to jump over some layers. Because the
numbers of different nodes are different, the dimen-
sions of input and output are different. Therefore, we
can use a linear projection to match the dimensions.
This function can be expressed as follows:

y= F(x)+Wsx, (18)

where x and y are the input and output vectors,
respectively, F(x) =W2σ(W1x), which means two
fully connected layers and a ReLU function, σ,
between them, and W s is the linear projection to
change the dimension. The output should go through
another ReLU function before it is passed to the next
layer.

4. Experimental settings

In this section, we describe the details about the two
datasets, data preprocessing, performance evaluation,
and hyperparameters. For reproducing the results of
this paper and enhancing the cooperation in related
research fields, the datasets and codes used in this
study will be freely available to the academic com-
munity.

4.1. Dataset description
The SEED dataset (Zheng and Lu 2015) contains the
EEG signals of 15 participants. They were required
to watch 15 well-prepared video clips that can eli-
cit exactly one of the three kinds of emotion: pos-
itive, neutral, and negative. The criteria of film clip
selection ensure that Each clip is well-edited to cre-
ate coherent emotion eliciting and maximizing emo-
tional meanings. In addition, each clip can expli-
citly elicit one exact kind of emotion, and the time
of the clips is enough but not too long to elicit the
participants’ corresponding emotion sufficiently. The
order of presentation is arranged so that two film clips
targeting the same emotion are not shown consecut-
ively. Each participant took part in the experiment
three times with an interval of at least 7 days. The sig-
nals were sampled at a rate of 1 000 Hz with an ESI
NeuroScan System from a 62-electrode headset.

The DEAP dataset (Koelstra et al 2012) con-
tains the EEG and peripheral physiological signals
of 32 participants as they watched 40 one-minute-
long excerpts of music videos. The music videos
were selected from 120 one-minute extracts of music
videos rated from an online self-assessment by 14–16

volunteers based on valence, dominance, arousal, like,
and familiarity. Valence, arousal, dominance and like
were rated directly after each trial on a continuous 9-
point scale using a standard mouse self-assessment.
The signals were sampled at 512 Hz with 48 channels.
(32 EEG channels, 12 peripheral physiological chan-
nels including galvanic skin response and temperat-
ure, 3 unused channels and 1 status channel). The sig-
nals from EEG channels are sampled according to an
international 10–20 system.

4.2. Data preprocessing
Previous works have shown that the DE feature of
EEG signals is efficient for EEG-based emotion recog-
nition (Zheng and Lu 2015, Zheng et al 2019, Yang
et al 2018). Therefore, we generateDE features to aug-
ment the datasets. We also generate the PSD feature,
which is a conventional feature for EEG-based emo-
tion recognition, to verify ourmethod. Since both the
SEED and DEAP datasets have been preprocessed, we
use the short-time Fourier transform (STFT) with a
1-s-long nonoverlapping overleaping Hanning win-
dow to extract the PSD feature of the EEG signal from
the two datasets directly. For the Gaussian distribu-
tion, the DE feature is defined as

h(X) =−
ˆ ∞

−∞

1√
2πσ2

exp
(x−µ)2

2σ2
log

1√
2πσ2

exp
(x−µ)2

2σ2
dx=

1

2
log2πeσ2, (19)

where X represents the Gaussian distribution
N(µ,σ2), and π and e are constants. Shi et al (2013)
demonstrated that the value of DE is equal to the
logarithmic spectral energy for a fixed-length EEG
sequence in a certain band. According to their result,
we extracted the DE feature from the preprocessed
EEG signal of the two datasets.

Considering the dynamic characteristics of EEG-
based emotion recognition tasks, we employ the lin-
ear dynamic system approach to filter the PSD and
DE features, which has also been adopted in previous
works (Zheng and Lu 2015, Zheng et al 2019).

PSD and DE features are extracted from five fre-
quency bands: δ: 1–3 Hz, θ: 4–7 Hz, α: 8–13 Hz,
β: 14–30 Hz, and γ: 31–50 Hz for the SEED data-
set (Zheng and Lu 2015). Therefore, both of these
features have 310 dimensions (62 channels × 5 fre-
quency bands). For each experiment, there were 3 394
labeled samples. In this work, we viewed the SEED
dataset as a three-category classification problem.

We also extracted PSD and DE features for the
DEAP dataset. Since the δ band was filtered in this
dataset, we only computed the two features of four
frequency bands: θ, α, β, and γ. In this time, both
features had 128 dimensions (32 channels × 4 fre-
quency bands). Each experiment had 2,400 labeled
samples. Here, we adopted a four-category emotion
model using valence and arousal values: high valence
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(level > 5) and high arousal (level > 5), high valence
(level > 5) and low arousal (level ≤ 5), low valence
(level ≤ 5) and high arousal (level > 5), and low
valence (level > 5) and high arousal (level > 5).

4.3. Evaluation details
We adopted 5-fold cross-validation, which has been
applied in the existing study (Zheng et al 2019), for
each experiment on the two datasets. For each time, 4
folds of the dataset were selected as the original train-
ing data and 1 fold was selected as the test data. The
division of each dataset was the same as Zheng et al’s
work.

Moreover, we added different numbers of the arti-
ficial sample generated by different data augmenta-
tion methods to each original training dataset. And
the test data which only contained the real data was
the same for each data augmentation experiment. In a
word, we trained 5 recognitionmodels and computed
the average recognition accuracy of the five models as
the recognition accuracy of each data augmentation
experiment. Eachmodel had the same hyperparamet-
ers.

For a specific generated number and data aug-
mentation method, we regarded the average accur-
acy of all data augmentation experiments as the
final accuracy and the standard deviations of these
experiments as the final standard deviation. For the
SEED dataset, there were 45 experiments and nearly
678 samples for each fold. For the DEAP dataset,
there were 32 experiments and 480 samples for each
fold.

4.4. Hyperparameter details
The hyperparameter settings of Gau and RDA meth-
ods have been mentioned above.

For cVAEmethod, to optimize the network struc-
ture, we performed a random search on the number
of network layers. The number of layers was searched
from 2 to 4 for both encoder and decoder. The num-
ber of hidden nodes for each layer was randomly
searched. The dimensions of auxiliary labels were 3
for SEED and 4 for DEAP. For sVAE method, we had
a similar search strategy as cVAE.

For cWGAN method, we also performed a ran-
dom search on the number of network layers. The
number of layers was searched from 3 to 5 for both
generator and discriminator. The number of hidden
nodes for each layer was randomly searched. And the
dimensions of auxiliary labels were 3 for SEED and
4 for DEAP. For sWGAN method, we had a similar
search strategy as cWGAN.

For sVAE and sWGAN methods, the thre_hold in
Algorithm 1 was randomly searched from 0.4 to 0.99.

In the SVM classifier, we used the linear kernel.
The parameter c was searched from 2−10 to 210 to find
the optimal value.

We performed a random search on the number of
network layers and size of batches of classifier of deep

neural network. The number of layers was searched
from 4 to 8. The size of batches was randomly selec-
ted from 128, 256 and 512. Both networks with resid-
ual functions and without residual functions were
searched. For the network with residual functions,
the residual functions were applied every two layers.
The input dimension was determined by the corres-
ponding input feature, and the dimension of the out-
put label was 3 for the SEED dataset and 4 for the
DEAP dataset. The number of hidden nodes for each
layer was randomly searched. The ReLU activation
function was used for all hidden layers. We normal-
ize PSD and DE features before feeding them to the
networks.

In addition, we appliedAdamoptimizer to optim-
ize all the networks mentioned above. And the initial
learning rate was randomly selected from 0.00 001 to
0.001.

5. Experiments and results

In this section, we first perform a systematic exper-
imental study to evaluate the effectiveness and gen-
eralization ability of our methods. We augmented
different EEG-based emotion datasets by different
features generated by our methods. We apply dif-
ferent classifiers to evaluate the performances of
these generative methods. We also compare our pro-
posed methods with conventional generative meth-
ods. Then, we visualized the generated data to show
why our proposed methods work. Finally, we dis-
cuss the characteristics of the proposed methods and
future work.

5.1. Different number of appended training data
We first conducted data augmentation experiments
on the SEED dataset and use the SVM as the clas-
sifier. Each experiment had 3,394 samples. We gen-
erated 0, 200, 500, 1000, 3000, 5000, 10 000, 15 000
and 20 000 artificial samples of the two features and
added them to the original training datasets. Here, ‘0’
indicates that we only use the original training data-
set without data augmentation. We did not gener-
ate more samples because we found that most of the
experiments reach their peaks before 20 000 samples
were appended. The remaining experiments reached
their peaks when 20 000 samples were appended. And
the p− values between sWGANmethod and the con-
ventional methods are all less than 0.01.

We compared the performances of different data
augmentation methods when applying the PSD fea-
ture, as shown in table 1. The average accuracy was
60.3% when we only used the original training set.
For conventional methods, cVAE reached its best
mean accuracy of 63.4% when 3 000 samples were
appended. Gau reached its optimal performance of
63.1% when adding 10 000 samples into the ori-
ginal training set. RDA had the best performance
of 63.2% when 500 samples were appended. For

10



J. Neural Eng. 17 (2020) 056021 Y Luo et al

Table 1.Mean accuracies/standard deviations of SVMs on the SEED dataset and appending datasets using PSD feature generated by
different methods. ‘↑’ represents the maximize accuracy improvement of different methods and has the same meaning in tables 2, 3,
and 4.
XXXXXXXXXmethods

No. of append
0 200 500 1000 3000 5000 10 000 15 000 20 000 ↑

cVAE+ SVM 60.3/15.9 62.7/15.7 62.8/15.4 63.4/14.6 63.4/14.8 63.3/14.3 62.5/14.8 61.8/14.8 61.6/14.5 3.1

Gau+ SVM 60.3/15.9 61.4/15.6 61.7/15.5 61.7/15.7 62.5/15.4 62.5/15.6 63.1/15.0 62.7/15.5 62.8/15.4 2.8

RDA+ SVM 60.3/15.9 62.6/15.7 63.2/15.4 62.9/15.8 62.0/15.6 62.1/15.2 61.5/15.8 61.9/15.9 61.1/16.3 2.9

cWGAN+ SVM 60.3/15.9 62.7/15.5 63.6/15.6 63.5/15.6 64.0/15.6 64.4/15.5 65.0/15.6 65.2/15.5 64.9/15.5 4.9

sVAE+ SVM 60.3/15.9 62.7/16.9 62.6/16.6 63.3/16.6 62.8/16.9 63.1/16.5 63.4/17.4 63.5/17.2 63.2/17.4 3.2

sWGAN+ SVM 60.3/15.9 65.2/14.5 66.0/14.8 66.8/14.9 67.0/14.7 67.0/14.7 67.4/14.8 67.3/15.2 67.7/15.1 7.4

Table 2.Mean accuracies/standard deviations of SVMs and deep neural network (DNNs) with shortcut layers on the SEED dataset and
appending datasets using DE feature generated by different methods.
XXXXXXXXXmethods

No. of append
0 200 500 1000 3000 5000 10 000 15 000 20 000 ↑

cVAE+ SVM 84.3/8.7 84.8/8.7 85.2/8.6 85.2/8.6 84.9/8.5 84.9/8.5 84.5/8.9 84.0/8.9 84.0/8.9 0.9

cVAE+ DNN 83.3/8.2 83.9/9.3 84.9/8.5 86.1/8.0 86.5/7.5 86.1/8.2 85.1/7.8 85.1/8.5 86.1/8.2 3.2

Gau+ SVM 84.3/8.7 84.6/8.7 84.8/8.6 84.9/8.6 85.1/8.5 85.0/8.6 85.0/8.7 84.8/8.6 84.8/8.5 0.8

Gau+ DNN 83.3/8.2 85.9/7.6 85.7/7.9 85.0/8.5 85.6/7.3 85.3/8.3 86.2/8.2 84.9/8.5 85.8/7.8 2.9

RDA+ SVM 84.3/8.7 85.4/9.0 85.5/9.1 85.5/9.0 85.4/8.9 85.6/8.8 84.7/9.1 84.3/9.3 84.3/9.3 1.3

RDA+ DNN 83.3/8.2 85.7/9.9 83.4/9.5 82.1/9.7 78.2/9.6 77.6/10.9 77.6/10.1 74.6/8.9 75.7/9.1 2.4

cWGAN+ SVM 84.3/8.7 87.0/8.6 87.2/8.5 86.8/8.4 87.0/8.4 87.0/8.5 87.4/8.0 87.4/7.9 87.1/7.9 3.1

cWGAN+ DNN 83.3/8.2 86.6/7.7 89.2/7.9 89.7/8.3 91.6/6.7 90.9/7.9 90.6/7.9 90.6/8.8 90.7/7.8 8.3

sVAE+ SVM 84.3/8.7 87.4/7.9 87.5/7.6 87.8/7.6 86.8/8.1 86.1/8.6 85.2/8.7 84.7/8.1 84.5/8.1 3.5

sVAE+ DNN 83.3/8.2 85.8/8.8 86.8/7.3 87.5/8.6 87.2/6.8 84.1/6.7 84.0/6.5 82.2/6.2 80.4/6.6 4.2

sWGAN+ SVM 84.3/8.7 87.9/8.4 88.9/8.3 89.7/7.9 90.1/7.6 90.7/7.8 90.8/7.7 90.8/7.3 90.8/7.4 6.5

sWGAN+ DNN 83.3/8.2 91.4/7.2 91.5/6.4 93.5/5.7 93.5/5.8 93.0/5.8 93.1/5.6 91.7/6.0 92.2/5.7 10.2

Table 3.Mean accuracies/standard deviations of SVMs on the DEAP dataset and appending datasets using PSD feature generated by
different methods.
XXXXXXXXXmethods

No. of append
0 200 500 1000 3000 5000 10 000 15 000 20 000 ↑

cVAE+ SVM 42.7/9.6 43.7/9.5 44.5/8.7 44.2/9.3 44.9/8.8 44.6/8.8 44.1/8.9 44.1/9.1 43.4/9.1 2.2

Gau+ SVM 42.7/9.6 43.2/9.5 43.6/9.2 43.7/9.8 43.9/9.7 44.5/9.3 44.0/9.6 43.9/9.6 43.9/9.5 1.8

RDA+ SVM 42.7/9.6 42.8/10.0 43.0/9.7 44.1/9.2 44.3/9.2 44.9/8.5 44.7/8.9 44.9/9.0 45.2/8.9 2.5

cWGAN+ SVM 42.7/9.6 44.1/9.6 44.2/9.7 44.8/9.1 44.9/8.8 45.0/8.9 44.9/8.7 44.9/9.0 44.8/9.2 2.3

sVAE+ SVM 42.7/9.6 44.7/8.4 45.1/8.1 45.6/8.5 45.6/8.3 45.8/8.3 46.1/8.2 46.1/8.5 45.9/8.7 3.4

sWGAN+ SVM 42.7/9.6 45.8/10.6 45.8/11.0 46.4/10.4 46.7/10.3 46.9/10.4 47.1/10.1 47.4/10.0 47.6/9.9 4.9

Table 4.Mean accuracies/standard deviations of SVMs and deep neural networks with shortcut layers on the DEAP dataset and
appending datasets using DE feature generated by different methods.
XXXXXXXXXmethods

No. of append
0 200 500 1000 3000 5000 10 000 15 000 20 000 ↑

cVAE+ SVM 45.4/8.2 46.3/8.1 46.8/8.0 47.2/7.8 47.9/7.7 47.8/7.7 48.1/7.6 48.0/7.7 47.8/7.6 2.7

cVAE+ DNN 44.9/4.0 46.6/4.4 45.8/3.8 45.5/4.9 45.7/4.6 46.5/4.9 45.7/3.9 45.9/3.6 45.9/4.5 1.7

Gau+ SVM 45.4/8.2 46.1/8.0 46.0/8.2 46.1/8.1 46.1/8.1 45.9/8.2 46.0/8.2 45.8/8.1 45.8/8.2 0.7

Gau+ DNN 44.9/4.0 45.9/3.7 46.9/4.2 45.5/4.1 45.5/4.5 46.2/4.6 45.8/4.5 45.6/4.6 46.2/4.5 2.0

RDA+ SVM 45.4/8.2 45.9/8.2 45.9/8.2 46.1/8.5 46.3/8.1 46.3/8.1 46.1/7.8 46.0/7.8 45.9/7.9 0.9

RDA+DNN 44.9/4.0 46.3/4.5 46.8/4.3 46.1/3.7 46.1/4.7 46.0/4.1 45.8/3.4 45.1/3.7 45.9/4.1 1.9

cWGAN+ SVM 45.4/8.2 47.3/8.2 47.9/8.2 48.0/8.3 48.8/8.3 48.9/8.7 48.5/8.4 48.2/8.8 48.0/8.9 3.5

cWGAN+ DNN 44.9/4.0 45.4/4.4 45.9/4.0 47.2/5.1 47.0/4.4 46.9/4.8 47.1/4.6 47.5/4.5 46.9/4.8 2.6

sVAE+ SVM 45.4/8.2 47.6/7.1 48.3/7.1 48.2/7.3 48.3/6.8 48.4/6.8 48.1/7.1 48.2/7.0 48.1/7.1 3.0

sVAE+ DNN 44.9/4.0 47.3/3.9 47.7/4.6 47.6/4.2 47.3/4.2 49.3/5.0 47.7/5.3 47.7/4.4 47.6/6.0 4.4

sWGAN+ SVM 45.4/8.2 47.6/7.7 47.9/7.5 48.7/7.4 49.6/7.2 49.9/6.8 50.3/7.0 50.8/6.9 50.4/6.7 5.4

sWGAN+ DNN 44.9/4.0 47.2/4.1 47.7/4.7 47.6/4.4 48.2/4.9 49.1/5.6 47.5/4.6 48.5/5.2 47.6/5.3 4.2
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Figure 5.Mean accuracies (Acc) and standard deviations (Std) of different methods on different classifiers and datasets: (a) Acc
and Std of SVMs on the SEED dataset and appending datasets using DE feature generated by different methods; (b) Acc and Std
of DNNs on the SEED dataset and appending datasets using DE feature generated by different methods; (c) Acc and Std of SVMs
on the DEAP dataset and appending datasets using DE feature generated by different methods; (d) Acc and Std of DNNs on the
DEAP dataset and appending datasets using DE feature generated by different methods.

(a) Positive-real (b) Neutral-real (c) Negative-real 

(d) Positive-generated (e) Neutral-generated (f) Negative-generated

0 0.2 0.4 0.6 0.8 1

Figure 6. Topographic maps of the scalp for real and generated DE features (cWGAN) in the SEED dataset.

our methods, cWGAN achieved its best mean accur-
acy of 65.2% when 15 000 samples were appen-
ded. When 15 000 samples were appended, sVAE

reached its best mean accuracy of 63.5%. sWGAN
achieved its best mean accuracy of 67.7% when 20
000 samples were appended. According to table 1, our
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methods achieved better performance than conven-
tional methods. sWGAN had the best performance
among all the methods.

Table 2 illustrates the results of the data aug-
mentation methods for the DE feature. For SVM,
the baseline was 84.3%. For conventional data
augmentation methods, cVAE reached its best result
of 85.2%when 1000 sampled data points were appen-
ded. The best accuracy for Gau was 85.1% with 3000
augmented data points. The best mean accuracy of
RDA was 85.6% when 5000 samples were appended.
For our methods, cWGAN reached its best mean
accuracy of 87.4% when appending 15 000 samples.
For the two selective augmentation methods, sVAE
achieved the best mean accuracy of 87.8% when 1000
samples were appended, and sWGAN achieved the
best mean accuracy of 90.8% when 10 000 samples
were appended.

5.2. Classification with deep neural networks
To increase the reliability of the performance compar-
ison of different data augmentation approaches, we
also implemented deep neural networks with short-
cut layers to build the affective models. Consider-
ing that the DE feature is better for the PSD fea-
ture in emotion recognition tasks and that the PSD
feature had similar improvements in terms of the
mean accuracy with the DE feature, we only aug-
mented the training data with the DE features when
using the DNN as the classifier. The baseline was
83.3%. For conventional methods, cVAE, Gau, and
RDA reached the best mean accuracy of 86.5% (3000
samples), 86.2% (10 000 samples), and 85.7% (200
samples), respectively. For our proposed methods,
the best mean accuracy of cWGAN is 91.6% when
we added 3000 samples. The two selective methods
obtained the best mean accuracy of 87.5% and 93.5%
when we added 1000 samples, respectively. The res-
ults in table 2 demonstrate that our methods had
better performance than conventional methods. The
sWGAN achieved the best performance for both clas-
sifiers.

5.3. Generated data with two different features
For theDEAPdataset, we also used different data aug-
mentationmethods to augment PSD andDE features.
Each experiment had 2400 samples. We generated the
same number of samples as mentioned above.

Table 3 shows the mean accuracies and stand-
ard deviations of PSD data augmentation. The
mean accuracy of the 4-category emotion recogni-
tion model was 42.7% when we only used the ori-
ginal training data. For conventional methods, cVAE
reached the best mean accuracy of 44.9% when 3000
samples were appended. The best performance for
Gau was 44.5% when 5000 samples were appended.
RDA reached the best mean accuracy of 45.2% when
20,000 samples were appended. For our methods,
cWGAN obtained the best mean accuracy of 45.0%

when we added 5000 generated samples to the ori-
ginal training dataset. sVAE had the best mean accur-
acy of 46.1% when 15 000 samples were generated.
sWGAN achieved its best mean accuracy of 47.6%
when 20 000 samples were appended. Our methods
also showed better performance, and sWGANhad the
best performance in terms of accuracy.

Table 4 presents the results of DE data augment-
ation. For SVM, the baseline was 45.4%. For conven-
tional methods, cVAE had the best mean accuracy
of 48.1% when 10 000 samples were appended. The
best accuracy for Gau was 46.1% when we appended
1000 samples. RDA obtained the best mean accur-
acy of 46.3% when the number of appended samples
was 3000. For our methods, cWGAN obtained the
best mean accuracy of 48.9% when 5000 samples
were appended. sVAE reached the best mean accur-
acy of 48.4% when 5000 samples were appended, and
sWGAN obtained the best mean accuracy of 50.8%
when 15 000 samples were appended.

For DNN, the classification accuracy was 44.9%
when no data augmentation method was applied.
For conventional methods, cVAE, Gau, and RDA
reached the best mean accuracies of 46.6% (200
samples), 46.9% (500 samples), and 46.8% (500
samples), respectively. For our methods, cWAGN,
sVAE, and sWGAN achieved the best mean accuracy
of 47.5% (15 000 samples), 49.3% (5000 samples),
and 49.1% (5000 samples). We also observed that our
methods showed better performance than conven-
tional methods. sWGAN had the best mean accur-
acy when applying SVM as the classifier, while sVAE
had the best performance when applying DNN as the
classifier.

As we can see from the above results, the DE
feature had better mean accuracies than the PSD
feature on both datasets, and the standard devi-
ations were smaller. These results were consistent
with previous studies (Zheng and Lu 2015, Zheng
et al 2019). In addition, compared with conven-
tional methods, our methods were more efficient
for improving the performance of emotion recog-
nition models. For the SEED dataset, the mean
accuracy improved 10.2% with DE features when
we used sWGAN as the data augmentation method
and adopted DNN as the classifier. The DEAP
dataset had the highest improvement of 5.4% in
terms of mean accuracy when sWGAN was adop-
ted as the data augmentation method and SVM
was used as the classifier. Moreover, the data aug-
mentation methods were more efficient for DNN in
most cases.

In addition, we observe that all the data augment-
ation methods (both ours and conventional meth-
ods) reached their peaks, and then their performance
decayed when we gradually increased the number of
appended samples. However, for our methods, most
of the experiments still showed better performance
compared with their baselines when appending fewer
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than 20,000 generated samples. Although experi-
ments with different datasets, features, classifiers, and
methods reached different peaks, our results show
that the peaks appeared before the training datasets
were enlarged 10 times.

As shown in figure 5, we plotted the mean
accuracies and standard deviations of different meth-
ods on different classifiers and datasets. We only
shown the results of DE feature because DE feature
had better performance than PSD feature and the
two features had the similar tendency in terms of
mean accuracy. And the results of Gau and RDA were
averaged. Compared with the conventional meth-
ods, our methods had better mean accuracies in
the most experiments. Besides, GAN-based meth-
ods (cWGAN and sWGAN) shown better perform-
ance than VAE-based (cVAE and sVAE) methods in
most cases. Moreover, the selective methods (sVAE
and sWGAN) were better than conditional methods
(cVAE and cWGAN) inmost of the experiments. Spe-
cially, sWGAN always had better mean accuracies
than cWGAN.

5.4. Visualization of the generated data
We visualize the generated data with two methods,
two-dimensional circular view of the scalp and two-
dimensional visualization using t-SNE, to show why
our proposed methods work. We selected cWGAN as
the generated method and the SEED dataset (DE fea-
ture) to represent our results since sVAE and sWGAN
have similar vision performance.

Figure 6 depicts the two-dimensional circular
view of the scalp. The generated data have a similar
data distribution as the real data. For positive emo-
tion, the lateral areas of both real and generated data
are more activated in beta and gamma bands than
the other two emotions. For neutral emotion, both
the real and generated data had high alpha responses.
For negative emotion, high gamma responses at pre-
frontal sites appeared in real and generated data.
These phenomena indicated that our methods can
capture the information of the real data distribution.
Therefore, the generated samples can be appended to
the training set to enhance the performance of the
affective models.

As shown in figure 7, we plotted the distribu-
tions of real and generated DE features (generated
by cWGAN) by t-SNE (Maaten and Hinton 2008).
Data from each emotion was clustered in the latent
space, and the generated data were close to the corres-
ponding real data, which implies that the generated
data carry enough realistic information. This phe-
nomenon also indicates that the data generated by our
methods can be used to augment the training dataset.

In addition, the distribution of real data was
sparse, and the boundaries of different categories in
the data manifold were not obvious. The generated
data supplemented the training data manifold, which
led to better margins for the classifier. Therefore, we

can improve the classification performance by train-
ing the classifier with the generated data. We can also
explain this phenomenon from another point of view.
The generated data have a similar data distribution to
the real data, but they are not the real data. Therefore,
the generated data not only carry realistic informa-
tion but also have diverse information. The classifier
trained by the augmented data was more robust. This
phenomenon is also consistent with the aforemen-
tioned classification results.

However, the possibility of generating bad quality
samples increased when we added the generating
number. This phenomenon occurs no matter what
generative methods we apply. For example, we
wanted to generate a sample of positive emotions in
the SEED dataset, but we might obtain a sample that
is more similar to a negative sample by the generative
model. We called this sample a bad quality sample.
In figure 7, we can find some bad quality samples.
For example, some generated neutral samples (red
points) were more close to the real positive samples
(blue lines). In this case, the bad quality sample
misled the classifier, and the classification accuracy
decreased. We can also find a similar phenomenon
in the above tables: the accuracies decayed when too
many generated data were appended.

5.5. Discussions on different affective models
The abovementioned results show that the perform-
ance of the emotion recognition models can be
improved by using our proposed data augmentation
methods. We achieved performance improvements
in different datasets, features, and classifiers, which
demonstrates the generalization ability and effective-
ness of our methods. Although all three proposed
methods improved the performance of EEG-based
emotion recognition tasks, they had some differences
in terms of stability, accuracy and time usage.

For stability, sVAE had better performance than
cWGAN and sWGAN. Although the WGAN had
good convergence performance and was more stable
than the original GAN, it may collapse because of
adversarial training. However, VAE is more stable.

For accuracy, sWGAN had better classification
performances than sVAE most of the time. This phe-
nomenon indicates that GAN can capture more lat-
ent information than VAE. Therefore, the data gener-
ated byGANaremore useful for building the recogni-
tion model than those generated by VAE. In addition,
sWGAN always performed better than cWGAN on
both datasets, which indicates that the selectivemeth-
ods are more efficient at improving emotion recogni-
tion models.

For time usage, cWGAN had a quicker conver-
gence speed than sWGAN and sVAE. cWGAN uses all
of the generated data without considering their qual-
ity, while sWGAN and sVAE need to select the gen-
erated data and use the high-quality data to augment
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Figure 7. Two-dimensional visualizations of the real and generated DE feature (cWGAN) of one subject in the SEED dataset. Data
points with red, green and blue colors represent three emotions of negative, neutral and positive, respectively. The lines represent
the real data, thin points represent the generated data, and the yellow circles denote bad quality samples generated. Note that we
use solid circle to represent real data, but it looks like lines more than circles because the real data are very dense.

the training set. Therefore, the two methods require
more computation time to determine the quality of
the generated data.

5.6. Future work
Although the experimental results of this work
demonstrate that our proposed data augmentation
methods are promising ways to enhancing the per-
formance of emotion recognitionmodels, there is still
room for improvement in the following aspects. a)
We did not consider the temporal dependency when
generating the EEG features. In future work, we will
study the data augmentation methods for generat-
ing temporal raw EEG data. b) Although we have
found the affective models could achieve the best
performance when the number of the added gener-
ated data is less than ten times of the original train-
ing dataset, how many generated samples should be
added to the original training dataset to achieve the
best affective models is still an open question. c)
Recently, various studies indicated that multimodal
methods could achieve appealing emotion recogni-
tion results (Zheng, Liu, Lu, Lu and Cichocki 2019,
Zhao et al 2019). In our previous work, we gener-
ated multimodal feature for enhancing EEG-based
emotion recognition and obtained 4.6% and 8.9%
improvements ofmean accuracies on classifying three
and five emotions, respectively (Luo et al 2019). Due
to the space limitation, we did not discuss the prob-
lem of generatingmultimodal feature in this paper. In

future work, we will further study the data augment-
ation methods for multimodal emotion recognition.

6. Conclusions

In this paper, we proposed three deep generative
methods for enhancing EEG-based emotion recog-
nition by generating training data. We generated
realistic-like PSD and DE features of EEG data with
our proposed methods: cWAGN, sVAE, and sWGAN.
We augmented the original training dataset using the
generated data to improve the accuracy of EEG-based
emotion recognition models. The experimental res-
ults on two emotion datasets demonstrate the effect-
iveness of our methods. The emotion recognition
models trained on the augmented training datasets
achieved 10.2% and 5.4% improvements on the SEED
dataset and the DEAP dataset, respectively. By visu-
alizing the generated data, we explained the reason
for the accuracy improvements. We also studied the
performance of the classifiers when adding different
numbers of generated data to the original training set.
We observed that the classification accuracy decayed
when too many generated data were appended. Our
experimental results indicate that the number of gen-
erated data should be less than ten times of the ori-
ginal training dataset, and then the affective models
achieved the best performance. In addition, we car-
ried out a systematic comparison between the pro-
posed methods. We find that sWGAN had the best
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performance in terms of accuracy, while it cost more
time than cWGAN.
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