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Abstract— With the quick development of dry electrode elec-
troencephalography (EEG) acquisition technology, EEG-based
sleep quality evaluation attracts more attention for its objective
and quantitative merits. However, there hasn’t been a standard
experimental paradigm. This situation hinders the development
of sleep quality evaluation method and technique. In this paper,
we experimentally examine the performance of four typical
experimental paradigms for EEG-based sleep quality evaluation
and develop a new EEG dataset recorded by dry-electrode
headset. To eliminate individual variation caused by subjects,
we evaluate the four experimental paradigms using domain
adaptation (DA) methods. Experimental results demonstrate
that a relaxing paradigm is more effective than other attention
concentration paradigms and achieves the average accuracy
of 76.01%. Domain Adversarial Neural Network outperforms
other DA methods and obtains 18.69% improvement on accu-
racy compared with transfer component analysis.

I. INTRODUCTION
Sleep, an indispensable physiological state of human daily

life, has been a hot topic in both healthcare and research
field for decades. As the study on sleep is advancing, sleep
quality has been proven as an intrinsic mental indicator.
Besides, in various fields such as aviation, surgery and
public transport, subjects need an instant and accurate last-
sleep quality evaluation to ensure a vigorous mental state.
Therefore, sleep quality evaluation shows not only academic
significance, but also practical value.

The existing approaches for sleep quality evaluation can
be classified into subjective methods and objective methods.
Subjective methods such as Pittsburgh Sleep Quality Index
(PSQI) [1] or Epworth Sleep Scale (ESS) [2] judge sleep
quality via self-report questionnaires, which cannot meet the
accuracy requirement for last-night sleep quality evaluation.
Objective methods such as Polysomnography (PSG) [3]
require complex and persistent monitoring. For various real-
world applications, an instant and wearable detecting system
is more desirable and more practical to objectively measure
last-night sleep quality. For instance, the last-night sleep
quality of high-speed train drivers needs to be measured
instantly before every daily routine.
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With considerable progress on dry EEG data acquisition
technique, EEG-based sleep quality evaluation has become
a promising approach because of its objectivity and rapidity.
In recent years, Wang et al. evaluated last-night sleep quality
from resting EEG signals under 4, 6, 8 hours sleep condi-
tions [4]. Zhang et al. modified the acquisition procedure
and improve the feasibility [5]. Tong et al. demonstrated
that domain adaptation, which can exploit shared structure
underlying different subjects and transmit the knowledge, is
an effective method for tackling domain shift problem caused
by individual differences in EEG data [6].

Almost all previous studies used wet-electrode devices
for acquiring EEG data. However, the preparation process
is laborious and limits portability. Dry-electrode devices are
more practical, but individual differences are magnified dur-
ing acquisition, which severely reduces accuracy and limits
generalization ability. In this work, we explore the possibility
to eliminate individual differences in dry-electrode devices.

In addition, although research on EEG-based sleep quality
evaluation is advancing, there hasn’t been an EEG-based
sleep-quality-evaluation experimental paradigm that is gen-
erally accepted. Previous experiments are non-standard —
usually adopted a classical paradigm proposed in psychology,
so different paradigm efficiencies still need to be assessed.

In this work, we develop a new EEG dataset with labels
of three degrees of sleep deprivation (0h, 4h, 8h) under four
paradigms: Closing-Staring (CS) paradigm, Stroop paradigm,
Numerical Attention (NA) paradigm and Resting paradigm.
Then we apply DA methods to eliminate personal charac-
teristics. Afterwards, we analyze the performance of four
experimental paradigms and discuss the relationship between
mental state and the performance of experimental paradigms.

II. EXPERIMENTS
In this work, EEG signals were recorded with DSI-24, a

dry electrode EEG headset with 21 channels, at a sampling
rate of 300 Hz. Fig. 1 shows details on DSI-24. There were a
total of 10 subjects (5 males and 5 females, age range: 19-23,
mean: 21.50, std: 1.31) that participated in the experiments.
All of the subjects kept a regular schedule without any sleep
disorder. Before experiments started, they took a tutorial to
clarify with the whole process.

According to National Sleep Foundation (NSF) [7], eight
hours is the threshold of a sufficient sleep. Therefore, we
arranged subjects to participate in three experiments with 8-
hour sleep time (normal routine in last 24 hours), 4-hour
sleep time (4 hours later than normal sleep time in last
24 hours) and 0-hour sleep time (sleep deprivation in last
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Fig. 1: EEG signal acquisition device

24 hours) respectively. To avoid the influence from prior
experiment, there was a one-week interval between sections.
For reliability of sleep time, a wearable smartband was
provided for each subject to detect his/her real sleep time.
For 4-hour sleep time, actual sleep time distributed with a
mean of 4.43 h and a standard deviation of 0.60 h, and for
8-hour sleep time, it distributed with a mean of 7.67 h and
a standard deviation of 0.50 h.

The whole experiment consisted of four paradigms:
Closing-Staring, Stroop, Numerical Attention and Resting.
Every paradigm was segregated by a short term rest. To
reduce body movements, we provided subjects a handle
to interact. The keystroke and performance in particu-
lar paradigms were recorded. But since the purpose of
paradigms was to activate cognition and attention, we didn’t
employ these data as features. Fig. 3 is two scenes, showing
the environment during the experiment.

A. Closing-Staring Paradigm

In this paradigm, subjects need to open eyes and stare at
a green dot in the middle of screen when they heard the
prompt of start. After 60 seconds, subjects will hear a same
prompt and need to close eyes. The whole paradigm consists
of three same loops, so this session lasts for 360 (3×2×60)
seconds in total. Fig. 2 (a) illustrates the screen sketch.

(a) Closing-Staring (b) Stroop Paradigm

(c) Numerical Attention

Fig. 2: Screen sketches of Closing-Staring, Stroop and Nu-
merical Attention paradigms

B. Stroop Paradigm

Stroop Paradigm needs subjects to name the ink color of
a word with a mismatch between the ink color and the word.
It is a classical psychological paradigm to reveal cognitive
interference caused by attentional bias [8]. Subjects need
to press literal color as soon as possible to proceed next
recognition. A new word will appear if subjects press the
correct button. Otherwise, the beep will ring to prompt
subjects. This session lasts for 180 seconds. Fig. 2 (b)
illustrates the screen sketch.

C. Numerical Attention Paradigm

For Numerical Attention paradigm [9], four-digit numbers
flash on the screen for 50 ms in every second. Subjects need
to press the button if the number showing on the screen is
same with the prior one. This session lasts for 180 seconds.
Fig. 2 (c) illustrates the screen sketch.

D. Resting Paradigm

Apparently, resting paradigm would cause fatigue and
influence the accuracy of other paradigms. Therefore, we
arrange it as the end of the whole experiment. We provide
a pillow for subjects to ensure a comfortable and relax
rest state. For avoiding pressuring to the electrode, we also
prescribe subjects sleep posture as Fig. 3 (b): leaning head
upon one side hand. This session lasts for 300 seconds.

(a) Closing-Staring (b) Resting

Fig. 3: The scenes of two experimental paradigms.

III. METHOD

A. Data Processing

To enhance the validity of data, we preprocessed the
raw EEG signals for eliminating fluctuations induced by
hardware. Firstly, EEG signals were processed with baseline
correction, and then filtered noise with 1-49 Hz band-pass
using Curry 7.

Differential entropy (DE) feature, which can reflect energy
change of EEG, is proven to be a superior effective feature
to detect fatigue and evaluate sleep quality compared with
the conventional power spectral density (PSD) features [10].
Since EEG signals can be approximated as a random variable
which obeys the Guassian distribution N

(
µ, σ2

)
, the DE

feature can be simplified as the following formulation.

h(X) = −
∫∞
−∞ f(x) log(f(x))dx = 1

2 log 2πeσ
2

where f(x) = 1√
2πσ2

exp (x−µ)2
2σ2
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Fig. 4: The network structure of DANN

According to the definition of the DE feature mentioned
above, we used Short Term Fourier Transform (STFT) with
one-second time window without overlapping to extract the
DE features in five frequency bands: delta (1-3 Hz), theta
(4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz), and gamma
(31-49 Hz) [11]. Then we jointed features in five bands as
the training input for training models. Thus, EEG signals
converted to a 105 dimensional vector (21 channels×5 bands
DE features) in every second.

B. Domain Adaptation Methods

In this paper, we explored three DA models to evaluate
four experimental paradigms: transfer component analysis
(TCA), Multisource Domain Adversarial Network (MDAN)
and Domain Adversarial Neural Network (DANN).

1) Transfer Component Analysis (TCA): Transfer compo-
nent analysis aims to find a low-dimensional feature subspace
which can reduce the distance between the marginal distri-
butions and preserve the important properties of source and
target domains [12]. Maximum mean discrepancy (MMD)
between source domain and target domain is the metric of
distribution discrepancies in TCA, so the aimed projection
to the subspace is computed by minimizing MMD in a
reproducing kernel Hilbert space (RKHS).

2) Multisource Domain Adversarial Network (MDAN):
MDAN is a domain adaptation method with adversarial neu-
ral networks, under the setting of multiple source domains
with labeled instances and one target domain with unlabeled
instances [13]. There are three components in MDAN Net-
work architecture: a feature extractor, a domain classifier,
and a paradigm learner. Its main idea is to reformulate the
generalization bound by a minimax saddle point problem and
optimize it via adversarial training.

3) Domain Adversarial Neural Network (DANN): DANN
is another domain adaptation with deep architectures [14]. As
Fig. 4 depicts, DANN consists of three components: a feature
extractor Gf , a label predictor Gy , and a domain classifier
Gd. The feature extractor aims to map the input x into a
new feature space which can achieve goals in both the label
predictor and the domain classifier. The label predictor aims
to keep discriminativeness. The domain classifier, existing
an adversarial relationship with the feature extractor, aims

to keep domain invariance: the classifier cannot provide the
correct predictions of the domain, so that the internal rep-
resentation of the neural network contains no discriminative
information about the origin of the input.

IV. RESULTS AND DISCUSSION
A. Model Evaluation

For the consistency of evaluation, same validation process
is applied in three models. We aim to classify EEG signals
with three degrees of sleep deprivation and adopt a leave-
one-subject-out cross validation scheme. TCA is the baseline
model. Fig. 5 represents the complete classification accura-
cies. Table 1 gives details of the best performance model,
DANN.

From Fig. 5, we can obtain the following observations:
(1) Deep neural networks achieve remarkable improve-
ments in all paradigms. Compared with the baseline model,
the average accuracies of MDAN and DANN are 59.80%
(13.85% rise) and 64.64% (18.69% rise) respectively. (2)
The mean standard deviation also reduces by deep neural
networks, (TCA: 11.61%, MDAN: 7.99%, DANN: 8.10%),
which means the stability is improved. (3) On some specific
subjects(#3, #6), evaluations are inaccurate in all meth-
ods. We infer that neurophysiological signals have dramatic
individual differences in them, which broadens the gap
between other subjects’ EEG signals and degrades model
performances.

To summarize, classical DA method (TCA) fails to extract
common features for dry-electrode EEG signals, but the
expected projection can be elicited by multilayer neural
networks. The experimental results demonstrate that DANN
significantly outperforms other models for sleep quality
evaluation.

Average

CS

NAResting

Stroop

TCA DANNMDAN

Fig. 5: The classification accuracies for four experimental
paradigms and their average accuracies. Thin lines represent
accuracy of each subjects, and bold lines correspond to their
average accuracies.
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TABLE I: Accuracy(%) of four paradigms in DANN

Subject CS Stroop NA Resting

1 76.92 51.15 61.83 66.11
2 57.88 55.82 64.29 68.67
3 54.21 54.10 67.77 57.00
4 56.59 59.55 66.25 67.11
5 56.23 52.38 70.71 71.67
6 58.24 64.29 55.74 61.56
7 59.52 61.00 55.82 97.67
8 56.41 63.67 73.58 87.33
9 66.48 63.18 61.63 96.44

10 64.65 56.54 59.11 86.56
Mean±Std 60.71±6.87 58.17±4.83 63.67±6.00 76.01±14.71

B. Evaluation of Experimental Paradigms

The accuracy propensities of four experimental paradigms
in all models are identical: Resting is superior to other
paradigms, and Stroop shows the poorest performance. NA
gains a slender advantage with CS.

For three cognition paradigms, there is no obvious accu-
racy distinction among them. Nonetheless, there is a slight
accuracy increase from Stroop to CS to NA in all models.
In Stroop paradigm, subjects need to counter their intuitions
and receive negative feedback if wrong. On the contrary,
in NA paradigm, they can concentrate and make judgments
by subconsciousness. Meanwhile, there is no prompt so that
subjects can gain a sense of achievement without concerning
about mistakes. Besides, resting is the most relaxed paradigm
and has the obvious advantage of accuracy. This phenomena
implies that with relief of the obstacle during paradigm,
mental state can reflect fatigue degree more clearly. The
energy in neural patterns also supports that inference.

As beta band can reflect variables of attention and event-
related brain potentials [15], we depict the average energy
distribution in beta band of EEG DE features for four
experimental paradigms in Fig. 6. The differentiation of
the topographic neural patterns demonstrates that the neural
signatures corresponding to the sleep quality do exist. With
the decline of sleep quality, the activation levels of prefrontal
area and temporal area decrease in all four experimental
paradigms, which is probably caused by the lack of attention.

CS

0h

4h

8h

Stroop RestingNA

Fig. 6: Topographic neural patterns of four paradigms

Compared with attention concentrated, mental state under
the relaxed wakefulness can reflect last-night sleep quality
more clearly. However, in practical scenarios, the resting
paradigm may be restricted and increase the degree of
fatigue. Therefore, a motivational paradigm without obstacle
is recommended instead. By this way, subjects can keep
conscious and achieve a relatively precise evaluation.

V. CONCLUSIONS

In this paper, we have experimentally examined four
experimental paradigms for EEG-based sleep quality eval-
uation. We have also analyzed the accuracies and neural
patterns of four paradigms. The experimental results demon-
strate that relaxed state outperforms other mental state in
accuracy, and the activation levels of prefrontal area and
temporal area positively correlate with sleep quality. Domain
adaption with deep neural networks are efficient.
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