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Abstract— Many psychiatric disorders are accompanied with
sleep abnormalities, having significant influence on emotions
which might worsen the disorder conditions. Previous studies
discovered that the emotion recognition task with objective
physiological signals, such as electroencephalography (EEG)
and eye movements, provides a reliable way to figure out the
complicated relationship between emotion and sleep. However,
both of the emotion and EEG signals are affected by sex.
This study aims to investigate how sex differences influence
emotion recognition under three different sleep conditions. We
firstly developed a four-class emotion recognition task based on
various sleep conditions to augment the existing dataset. Then
we improved the current state-of-the-art deep-learning model
with the attention mechanism. It outperforms the best model
with higher accuracy about 91.3% and more stabilization.
After that, we compared the results of the male and the
female group given by this model. The classification accuracy of
happy emotion obviously decreases under sleep deprivation for
both males and females, which indicates that sleep deprivation
impairs the stimulation of happy emotion. Sleep deprivation
also notably weakens the discrimination ability of sad emotion
for males while females maintain the same as under common
sleep. Our study is instructively beneficial to the real application
of emotion recognition in disorder diagnosis.

I. INTRODUCTION

Sleep abnormalities and psychiatric disorders are inher-
ently linked, each being a cause and consequence of the
other. Although researchers are still engaged in exploring
the mechanisms, it has been discovered that sleep deprivation
wreaks havoc in the brain, including emotional regulation im-
pairment. Zohar et al. [1] found that sleep loss amplifies the
negative emotive effects while reducing the positive effects
by analyzing self-reported questionnaires about emotional
ratings. However, the subjective approaches cannot model
the real estimation of emotional arousal and are unable
to deal with individual differences on evaluation scaling
across subjects. These drawbacks urge scientists to figure
out objective parameters to measure emotion recognition.
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The past decade has seen a renewed importance in explor-
ing the more general objective criteria in emotion processing.
Some studies go from the physiological level. Among all
kinds of signals, EEG signals and eye movements, regarded
as the representatives for the internal emotional states and
external subconscious behaviors, respectively, receive much
more attention than fMRI, etc. due to lower cost and
higher accessibility. Zheng et al. [2] first attempted to do
emotion recognition with EEG data using deep learning
models and got decent results. With the hope of modeling
this psycho-physiological process comprehensively, some
innovative studies [3] started to combine multimodal signals
like EEG and eye movements. And the better performances
indicate that using both types of information works. In Tao
and Lu’s experiment [4], the model accuracy can even reach
89.16% on the four-class emotion recognition task.

Nevertheless, sex-based factors should be taken into con-
sideration in emotion recognition [5]. This vulnerability
definitely hinders developments and applications of using
EEG as the key parameter for emotion recognition on a large
scale of people in the diagnosis of psychiatric disorders in the
future. Therefore, further investigation on the sex we discuss
in this paper, is indispensable and vital. The differences
between the male and the female on EEG-based emotion
recognition task has been demonstrated by several studies.
Yan et al. [6] revealed the sex-based lateralization existing
in the brain and found that there are differences between
males and females in the discrimination ability of the same
emotion, especially for happy and sad emotions.

The previous research of the current study adopted a mul-
timodal residual LSTM network combining both EEG and
eye movements, which had a state-of-the-art performance
on the four-class emotion recognition task. In this paper,
we first enlarged the dataset to be roughly three times as
large as before to cover 40 subjects. Then we meliorated
the model with the attention mechanism to better extract
the key temporal characters from the physiological signals.
After that, we used this updated system to dive into the sex
differences under three sleep conditions: sleep deprivation,
sleep recovery, and the baseline normal sleep. The results are
reported from multiple aspects including confusion matrices
and topographic maps to provide a well-rounded analysis on
the effect of sex.

II. EXPERIMENT SETUP

A. Experiment Design

Since we hoped to enlarge the previous dataset, all con-
ditions were kept as same as the original [4]. We took the
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criterion from the National Sleep Foundation to guide our
design that eight hours is the threshold for a normal sleep
baseline [7]. For each subject, the experiment comprises a
sequence of sessions under three different sleep conditions
which are sleep deprivation, sleep recovery, and baseline
conditions. In the first session, a sleep deprivation experiment
is conducted after 30-hour sleep deprivation. In the second
session, subjects are tested after an 8-hour sleep recovery
the day after the first session. The third session, also the
baseline experiment, is operated at least 14 days after the
second session. In this period, subjects are asked to maintain
a regular sleep schedule of 8-hours per day. The sleep
conditions are monitored by the smart bracelets during the
whole experiment period. The 62-channel ESI NeuroScan
System and SMI eye-tracking glasses are utilized to record
the EEG and the eye movement signals simultaneously
during the experiment.

B. Subjects

For augmentation, 24 healthy subjects (12 females with
mean age: 24.03, std: 2.67, and 12 males with mean: 23.87,
std: 2.96) participated in the experiments. All selected sub-
jects kept a regular daily routine with the habit of sleeping for
7-8 hours each day and were prohibited to take psychotropic
drugs during the whole experiment. The study was approved
by the local ethics committee and all subjects signed an
informed agreement before the experiments. Considering that
the previous dataset has data from 16 subjects in which 12
subjects’ data are available after preprocessing, our analysis
later is conducted based on all 36 subjects.

C. Stimuli Materials

To elicit emotions efficiently, we borrowed the video ma-
terials from the popular public emotion EEG dataset SEED-
IV1 as our stimuli. The precisely selected video clips in
SEED-IV have been proved on their effectiveness of arousing
four emotions: happy, fear, sad and neutral [8]. The duration
of the stimuli clips ranges from 2-4 min. Regarding each
clip as a trial, there are 24 trials without repetition in one
session, and they are divided equally into the four emotion
categories.

III. METHODS

A. Preprocessing and Feature Extraction

Curry 7 System was used to preprocess the EEG signals
with a constant baseline correction. A band-pass filter with
the frequency range between 1 to 50 Hz and a notch filter
with 50 Hz were applied to each channel. Finally, eye
movement artifacts were detected and removed in virtue of
signals from EOG and FPZ channels.

The Short-Time Fourier Transform with a time window
of 1 s and no overlapping Hanning window was applied to
extract the EEG features of EEG signals from 62 channels
into five frequency bands: delta (1-3 Hz), theta (4-7 Hz),
alpha (8-13 Hz), beta (14-30 Hz), and gamma (31-50 Hz)

1http://bcmi.sjtu.edu.cn/seed/seed-iv.html
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Fig. 1. The architecture of multimodal residual LSTM with attention
mechanism model.

[9]. Additionally, the linear dynamic system algorithm was
employed for feature smoothing, which subsequently added
up to a feature vector of length 310. Eye movements were
characterized by 50-dimensional features obtained with SMI
BeGaze, aiming to represent information about pupil diame-
ter (X and Y), dispersion (X and Y), fixation duration, blink
duration, and saccade [8].

B. Multimodal Residual LSTM with Attention Mechanism

To take full advantage of intra-modality and inter-modality
correlations, we adopted a novel multimodal residual LSTM
with the attention mechanism. The input signals obtained
from each subject (24 periods with 63 s duration each)
were divided into 1 s non-overlapping intervals, shuffled, and
then fed into the LSTM networks. As illustrated in Fig. 1,
we firstly reduced the dimensions of EEG features and eye
movement features separately by four connected multimodal
residual LSTM blocks. Then we extracted the concatenated
high-level features with the attention mechanism. Emotion
labels are eventually predicted by linear layers with softmax
activation. Mathematical details are explained below.

LSTM, replacing the summation units of standard Re-
current Neural Networks in the hidden layer with memory
cells, has shown its effectiveness for extracting temporal
information from long biosignals [10]. Recently, multimodal
residual LSTM networks have received much attention due
to their efficiency in learning the correlation between the
information from EEG and other physiological signals [11].
As shown in Fig. 1, the parallel LSTM blocks in the model
share the weights Wh∗. The formulas of multimodal residual
LSTM networks, excluding the bias terms, are as follows:

c̃s
t = tanh(Whg ∗hs

t−1 +W s
xg ∗ xs

t ) (1)

f s
t = σ(Wh f ∗hs

t−1 +W s
x f ∗ xs

t ) (2)
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ist = σ(Whi ∗hs
t−1 +W s

xi ∗ xs
t ) (3)

os
t = σ(Who ∗hs

t−1 +W s
xo ∗ xs

t ) (4)

cs
t = f s

t � cs
t−1 + ist � c̃s

t (5)

hs
t = os

t � tanh(cs
t ) (6)

where the superscripts s and t indicate the type of modality
and the time step in the input sequence, respectively. f s

t , ist ,
os

t , cs
t , and hs

t denote the forget gate, input gate, output gate,
cell states, and hidden states, respectively.

The shared weights Wh∗ across the three parallel LSTM
structures including Whg,Wh f ,Whi, and Who are the weight
matrices of the hidden states at previous time step, while
W s

xg, W s
x f ,W

s
xi, and W s

xo are the weight matrices of the input
at current time step t. σ represents the sigmoid function.
The operators ∗ and � indicate the matrix multiplication and
the Hadamard product, respectively. The LSTM networks
are capable of learning separate temporal features from
different modalities because of its corresponding weights
W s

x∗, hidden states hs
t and cell states cs

t . Meanwhile, the
correlation between the EEG signals and the eye movement
is captured by the shared weights Wh∗.

Residual architecture was adopted to solve the problem
of vanishing gradients [12]. Moreover, residual blocks can
eliminate the complexity and expressiveness of the networks
when increasing the number of layers. The formula of
residual architecture is the linear combination of the input
and a learnable residual. It therefore provides a shortcut
across the layers to train more effectively.

Layer normalization [13], effective at stabilizing the hid-
den state dynamics in recurrent networks, was conducted
following the residual architecture. Dropout is applied in
each layer to avoid overfitting. High-level representations
of two modalities’ features are concatenated before enter-
ing the attention block. The attention mechanism [14] has
shown its potentials in a wide range of tasks concerning
time sequence processing. The temporal information of EEG
features and eye movement features can be extracted by the
attention function. The high-level features of two modalities
are firstly mapped to queries, keys, and values with the same
dimension

√
dk by learnable linear projections respectively.

The attention function is defined as follows:

Attention(Q,K,V ) = so f tmax(
QKT
√

dk
)V (8)

where Q, K, V indicate the matrices packing together the set
of queries, keys and values, respectively.

Inspired by the attention mechanism, we adopted the
multi-head attention mechanism to make the model auto-
matically explore the critical channels and bands for EEG
features and critical local information for eye movement
features. It not only reduces the model complexity while
maintaining a good structure of the networks but also allows
the model to learn relevant information in different represen-
tation subspaces and extract richer feature information. We
performed the attention function in parallel with two heads
so that the model is able to pay attention to EEG features
and eye movement features in separate subspaces.

TABLE I
RESULTS (%) OF EMOTION CLASSIFICATION TASKS

Session Model Mean ± Std. (M) Mean ± Std. (F)

Deprivation
SVM 55.64 ± 15.49 56.47 ± 13.72
LSTM 85.60 ± 4.19 87.36 ± 5.05
LSTM* 86.96±3.63 88.81±4.03

Recovery
SVM 57.57 ± 6.26 59.10 ± 13.96
LSTM 86.46 ± 5.07 88.75 ± 4.76
LSTM* 88.54±4.32 90.15±4.45

Baseline
SVM 68.92 ± 10.63 68.22 ± 14.32
LSTM 89.64 ± 6.31 90.32 ± 5.13
LSTM* 90.83±6.16 91.13±4.70

Notes: In the Model column, LSTM represents the multimodal residual
LSTM Networks, while LSTM* stands for multimodal residual LSTM
Networks with attention mechanism proposed in this paper.

IV. RESULTS AND DISCUSSION

A. Model Validation

To validate the efficiency of our improvement with the
attention mechanism, we compared the performance with
the original state-of-the-art model and the popular used
Support Vector Machine (SVM) method on the four-class
subject-dependant emotion recognition task with the data we
collected. The results represented by mean accuracies and
standard deviations are reported in Table I.

Our model outperforms the other two methods with higher
accuracy and more stable performance as shown above.
Remarkably, these differences exist in all three conditions,
especially under sleep deprivation. Moreover, sleep depri-
vation impairs the stimulation of emotions more for males.
Our model provides additional support for digging out the
influence of sex in several sleep conditions.

B. Classification Performance

To better understand the discrepancies between the male
and the female on different emotions, we made the confusion
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Fig. 2. The confusion matrices under baseline (upper) and sleep deprivation
(lower) condition for males (left) and females (right).
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matrices of baseline and those of sleep deprivation as shown
in Fig. 2. For males, the recognition accuracies of sad and
happy drop significantly by 12% and 10% under 30-hour
sleep deprivation while results of the neutral and the fear
emotions remain almost the same as the baseline. In contrast,
the deficiency in sleep only drastically impacts the happy
emotion of the female, pushing the accuracy down to 72%
from 91%. These numbers reveal that sleep conditions play
an important role in people’s happy emotion for both males
and females, and make males become sensitive to the sad
emotion. Comparatively, the neutral and the fear emotions
are much more stable and insensitive to the sleep conditions.

C. Neural Patterns from Topographs

The brain topographic maps give a direct insight into the
distinctions about underlying neural patterns. As depicted in
Fig. 3, we selected the maps of the average energy distribu-
tions of EEG features in the gamma band as a representation
since they are the most distinguishable compared to the
others, which is consistent with the previous studies [4].

For the only positive emotion, happy, it is clear that
males need more energy to arouse happy feelings when
sleep is deprived, whereas females’ demands do not change
much with the sleep status. Besides, the active regions of
males’ brain become centralized under sleep deprivation,
but females’ go from the inverse way in that more areas
get involved. The two groups are similar in the pattern of
the neutral emotion. More energy concentrates on the lateral
temporal lobe compared with the baseline situation. As for
the negative emotions, sleep deprivation makes females more
vulnerable to fear and sadness while the overall activation
level of males varies little. Interestingly, less prefrontal lobe
area is activated for both groups under sleep deprivation.
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Fig. 3. Topographic maps of the four emotions in Gamma band for males
and females.

V. CONCLUSIONS

In this paper, we have investigated the sex differences after
enlarging the previous dataset utilizing the multimodal resid-
ual LSTM networks with the attention mechanism which
captures well the temporal intra-modality and inter-modality

correlations based on EEG and eye movement signals. With
this advanced model, experimental results indicated that
males become more susceptible to the sad emotion under
sleep deprivation and the elicitation of the happy emotion
is heavily impacted for both by sleep conditions. Relatively
speaking, there is not much difference on the neutral and the
fear emotions between these two groups. In our view, these
results constitute an excellent initial step toward the fine-
grained emotion recognition system which has great potential
to benefit the diagnosis of psychiatric disorders. We hope that
our research will serve as a base for future studies on other
EEG or emotion-sensitive factors.
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