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Abstract—Emotion recognition plays an important role in di-
agnosing and treating many mental disorders as well as affective
computing. Among six basic emotions, anger and surprise are
relatively hard to be elicited in lab settings, and the complemen-
tary representation properties of encephalography (EEG) and eye
movement signals on recognizing anger and surprise emotions
remain unknown. Although the transformer architecture has the
ability of parallelism which avoids many sequential operations
as recurrent and convolutional layers, the knowledge of its per-
formance and effectiveness on multimodal emotion recognition
from EEG and eye movement signals is limited. To tackle these
issues, we elaborately design the experiment and stimuli materials
to effectively elicit surprise, anger, and neutral emotions, and
propose an Emotion Transformer Fusion (ETF) model based on
pure attention mechanism. Results of extensive experiments with
multiple models on our dataset indicate that the complementary
information of EEG and eye movements significantly improves
the performance of discriminating anger, surprise and neutral
emotions. Meanwhile, our proposed architecture outperforms
baseline models with higher parallelism, which proves the capa-
bility of Transformer based architecture on multimodal emotion
recognition with EEG and eye movement signals.

Index Terms—multimodal emotion recognition, anger, surprise,
transformer, attention

I. INTRODUCTION

Multimodal emotion recognition draws raising attention in
recent years, because it is the fundamental constitution of
Brain Computer Interfaces (BCIs) and affective computing.
Furthermore, not only do emotions become one of the use-
ful tools evaluating mental health, their changing process is
associated with some mental disorders like depression [1].
So, improving the ability of machine performing emotion
recognition has great significance. Ekman’s theory defines six
basic emotions as happiness, fear, disgust, anger, surprise,
and sadness [2]. There exists studies [3] investigating com-
plementary representation of encephalography (EEG) and eye
movement signals of six basic emotions except anger and
surprise. In such manner, the complementary representation
properties of EEG and eye movements for discriminating anger
and surprise remain unknown.

Emotions are complicated psycho-physiological processes
engaging with many internal and external activities which
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further complicated emotion recognition. Different modalities
contain complementary information and reflect various as-
pects of emotions. Fusing modalities to take advantages of
their attributes in terms of emotion recognition and construct
robust models is promising [4]. Among many combinations
of modalities, incorporate signals from external behaviors,
e.g., eye movements, and the central nervous system, e.g.,
EEG, has been proven promising and efficient [3]. Considering
the complexity nature of the neural mechanisms underlying
the emotion processing, deep learning methods are widely
applied in emotion recognition to automatically extract fea-
tures. Because emotion transitions with temporal evolution are
same among different modalities, models exploiting tempo-
ral features achieve encouraging performance on multimodal
emotion recognition [3]. However, along the improvement of
performance on the emotion recognition, networks became
deeper with complex convolution and recursive structures. The
hidden states in the network behave in a sequential manner
resulting in a low degree of parallelization.

To tackle the problems mentioned above, we establish
a new multimodal emotion dataset consisting of EEG and
eye movement signals for three emotions: anger, surprise
and neutral, and construct a multimodal network based on
Transformer. To our best knowledge, although Transformer
has become an influenced architecture in the natural language
processing (NLP) and computer vision (CV) tasks, its appli-
cations to multimodal emotion recognition with EEG and eye
movement signals remain limited. So, We propose the Emotion
Transformer Fusion as a pure attention based model which
combines Transformer encoders with attention based fusion,
to utilize the parallelism and simplicity natures in emotion
recognition with EEG and eye movement signals.

II. EXPERIMENT SETUP

A. Experiment Detail

Seventeen Chinese subjects (9 males and 8 females) with
ages of eighteen to thirty participated three sessions at different
time. Each session lasted for around one hour with distinct
content of stimuli. Eleven trials are designed in every session
as shown in Fig. 1. Although our goal is investigating anger
and surprise, we add neutral emotion in the experiment and
final classification, which mediates two extreme emotions for
subjects and promotes better induction. Each trial contains
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Fig. 1: The procedure of our experiment

two parts: emotion induction and self-assessment which allows
subjects to score their emotion arousal level from one to ten.

The first six trials are designed to alternately trigger surprise
and neutral emotions with video clips. Anger is hard to evoke
for different subjects in lab settings and may have better effect
with continuous stimulation. In this manner, five trials are
arranged successively with the first one acting as boosting
part, which is intended to transform subject’s emotion state
to angry quickly. The following two trials are video clips of
social injustice. After three regular video trials, a special recall
segment requires subjects to remember the recent event that
made them most angry for around three minutes. At last, a
delicately designed game is played by the subject for about
twenty minutes. During the experiment, both EEG and eye
movement signals are collected simultaneously except for the
boosting trial. After the experiment, subjects are interviewed
for pointing out the angriest period when they played the
game and three trials to keep the data of each class and trial
balanced.

B. Data Preprocessing

EEG signals consist of brain and non-brain contributions
which brings difficulty of recognizing and analyzing brain-
related EEG activities. So, we employ data preproccessing
on the EEG signals to eliminate artifacts. Differential entropy
(DE) feature is adopted which is one of the most effective EEG
features in EEG based emotion recognition [5]. DE features
are extracted in five frequency bands: δ: 1-3 Hz, θ: 4-7 Hz, α:
8-13 Hz, β: 14-30 Hz, and γ: 31-50 Hz. Since 62 channels of
EEG signals are collected, each sample has 310 (5 frequency
bands multiple 62 channels) dimensional features.

As for the eye movement signals, we use PCA to remove
light reflect to improve the quality of emotion information
in the pupil diameter [4]. We extracted 23 features for eye
movement signals whose detail is shown in Fig 2, where the
number in the block stands for the dimension, and four features
colored in blue are also event statistics.
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                        DE in four bands
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Fig. 2: Specific eye feature in every dimension.
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Fig. 3: The overall structure of our proposed ETF for multi-
modal emotion recognition.

III. METHODOLOGY

A. Model Overview

We present the structure of our model in Fig. 3, where the
left and right side in gray and blue are Transformer encoder for
EEG and eye movements respectively. After position encoding,
sequences from two modalities are fed into corresponding
Transformer encoders and then fused to joint representation
space by attention based fusion layer. Since we do not need
a sequence as output, a fully connected feed-forward network
as a classifier is performed instead of a decoder. Given the
input EEG Xeeg = (x1

eeg, x
2
eeg, ..., x

T
eeg) ∈ RB×T×Deeg

and eye movement signals Xeye = (x1
eye, x

2
eye, ..., x

T
eye) ∈

RB×T×Deye , where B denotes batch size, T is the overlapping
window size and Deeg , Deye are feature dimension of EEG
and eye movements correspondingly, our model outputs a
vector O = (o1, o2, o3) where oi denotes the probability that
the emotion is recognized as class i.

B. Signal Segments and Encoding

Since feature size of EEG and eye movement signals
especially the latter is relatively small, we do not perform
dropout in our model. To normalize data, alleviate over-fitting
and increase learning speed, we apply a Batch Normalization
[6] on mini-batch at the beginning. Considering the temporal
sequences of EEG and eye movement are too long to be fed
into the network directly, we deploy an overlapping windows
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with the size of T seconds on the original signal, which will
keep the total sample size (roughly 1200s per experiment)
unchanged. We chose T as 5 seconds in our work.

An extra learnable classification token is concatenated at
the beginning of the sequence to perform classification. Then
position embeddings are added to the patches element-wise to
obtain the information of time series. We deploy learnable 1D
position embeddings for both EEG and eye movement signals
in this paper.

C. Encoder

L identical layers are stacked to assemble the encoder,
each of which consists of two sub-layers: a multi-head self-
attention, and a fully connected feed forward network. Every
sub-layer is started with layer normalization to relief internal
covariate shift. And a residual connection is around each sub-
layer to retain the information of the input feature and enhance
the model stability.

1) Multi-Head Self-Attention: The attention function maps
a query and a set of key-value pairs to an output, where the
output is calculated as a weighted sum of the values. The
weight assigned to each value is computed by query and cor-
responding keys. We employ the scaled dot product attention
since the scale factor

√
dk avoids extremely small gradients

after softmax. Specifically, dot product is performed on
the query with all keys, which is divided by

√
dk. Then a

softmax function is applied to obtain the weights for the
values. We denote query Q ∈ Rt×dk , key K ∈ Rt×dk , value
V ∈ Rt×dv and output O ∈ Rt×dmodel all as matrix, where t
is the length of sequence, dk is the dimension of query and
key, dv is the dimension of value and dmodel is the output
dimension of the encoder. The attention is computed as (1)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (1)

To obtain information from different representation sub-
spaces of each modality at different positions, we combine
several attention functions to achieve multi-head attention. The
queries, keys and values are linearly projected h times with
learned linear projects to dk, dk, dv dimensions respectively,
where h denotes number of heads. Then the attention functions
are performed in parallel on projected queries, keys and values
to calculate the dv − dimensional outputs. The outputs of
all heads are concatenated and linearly projected to deliver
dmodel − dimensional results to the next feed forward sub-
layer. The calculation of multi-head attention is shown below:

MultiHead(Q,K, V ) = Concat(Oh1
, ..., Ohh

)WO, (2)

where Ohi
= Attention(QWQ

i ,KWK
i , V WV

i ) and learnable
projection matrices WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk ,

WV
i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel .
2) Feed Forward Network: The second sub-layer is a

simple fully connected feed forward network containing two
linear projections with a Gaussian Error Linear Unit (GELU)
activation in between. We use GELU rather than rectified

linear unit (ReLu) because existing study [7] has shown
that it has better performance and avoids vanishing gradients
problem.

We employ the attention based fusion strategy since our
model is designated to be based on the pure attention mech-
anism. The attention weight Winit is randomly initialized.
Then we compute the inner product of attention weight with
transformed features of two modalities, following a softmax
to normalize the results. After acquiring attention weights
weeg and weye, the fused output Ofuse is calculated as
weighted sum of single modality output. The whole process
is formulized as following:

w
′

eeg =< Oeeg,Winit >, (3)

w
′

eye =< Oeye,Winit >, (4)

weeg, weye = softmax(w
′

eeg, w
′

eye), (5)

Ofuse = weegOeeg + weyeOeye. (6)

IV. EXPERIMENTS

A. Implementation Details

1) Experimental Settings: We perform the three-fold-
validation for each subject on our dataset. Performance of all
models is evaluated by the averaged accuracy of three folds
across all experiments. There are four hyper-parameters in our
multimodal architecture: number of Transformer encoder layer
L, dimension of fusion output Ofuse, learning rate and weight
decay of Adam optimizer.

B. Results Analysis and Comparison

The baseline models of single modality are SVM, LSTM,
and ET denotes Emotion Transformer which is a single
Transformer of proposed model without attention based fusion.
We practice LSTM as baseline model because LSTM and
its variants are widely applied in the emotion recognition
and its characteristics of utilizing temporal features makes it
comparable with Transformer. As the result shown in the Table
I, EEG significantly outperforms eye movement signals on
recognizing three emotions of our dataset. Proposed Emotion
Transformer exceeds baseline models with the accuracy of
83.3% and 77.86%, and standard deviation of 10.97% and

TABLE I: Average accuracy and standard deviations (acc/std
%) of each single modality on different models

Model EEG Eye Movements
Acc. Std. Acc. Std.

SVM 68.83 13.73 58.52 16.55
LSTM 79.77 10.11 73.32 12.58

ET 83.30 10.97 77.86 13.46

TABLE II: Average accuracy and standard deviations (%) of
multimodal recognition using different models

Model LSTM+AF BDAE ETConcat ETF
Acc. 81.11 86.36 88.75 90.02
Std. 09.96 09.67 08.34 07.06
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(a) ET: EEG (b) ET: eye (c) ETF

Fig. 4: Confusion matrices of different modalities and models.

13.46% on EEG and eye movement signals respectively. Since
we keep the transformer encoder as similar as possible with
the original one proposed by Vaswani et al. [8], this shows
the effectiveness of Transformer recognizing emotions.

For multimodal, all models are based on joint representa-
tions in order to reduce the variables for performance evalua-
tion. Baseline models are bimodal deep auto-encoder (BDAE),
LSTM with the same fusing strategy as proposed model,
and ETConcat which replaces the attention based fusion
with direct concatenation. As the result shown in the Table
II, both multimodal LSTM and Transformer achieve better
performance than those of each single modality, which proves
that combining modalities brings considerable improvement
on emotion recognition performance. In the meantime, our
proposed model ETF achieves highest accuracy of 90.02% and
lowest standard deviation of 7.06% suggesting the efficacy
of our model. As the last two columns shown in Table II,
accuracy and standard deviation of ETConcat is worse than
those of ETF, which indicates that attention based fusion is
able to extract more emotion related features from EEG and
eye movement signals than the direct concatenation.

1) Confusion Matrices: Fig. 4 presents the confusion ma-
trices of each single modality and multimodal of our proposed
model, where each column represents the predicted emotion
classified by models and each row serves as the target emotion
class. The element (t, p) in the confusion matrix is the
accuracy of samples in class t that was classified as class
p. It is obvious that anger is harder to recognize compared
with neutral and surprise. In our proposed model, ETF greatly
improves the ability of recognizing anger. As for surprise, EEG
and eye movements have similar abilities to recognize surprise
emotion state, which is improved by ETF by around 8%. The
observation indicates that EEG and eye movements contain
complementary information on discriminating anger, surprise
and neutral emotions. Moreover, our proposed model has the
ability to extract more emotion related features with higher
parallelism which benefits the emotion recognition.

2) Visualization: We visualize the feature distribution of
one subject in Fig. 5, where green, blue, and red stands for
neutral, surprise and anger correspondingly. As we can see,
different emotions distribute arbitrarily in the original features
and may overlap with one another. After the Transformer,
same emotion state tends to gather together, while tangles
and uncertainties still exist. Finally, the fused features are

Sub1: original Sub1: transformed Sub1: fused

EEG Eye Movements Fused Red: anger                  Green: neutral                  Blue: surprise

Fig. 5: Visualization of original features, transformed features
and fused feature of ETF.

distinguishable and same emotion is nicely clustered. This
visualization further demonstrates the effectiveness of ETF on
emotion recognition.

V. CONCLUSIONS

This paper implemented multimodal experiments to suc-
cessfully elicit anger, surprise, and neutral emotions with
various types of stimuli, which also illustrates that EEG
and eye movement signals are complementary to recognizing
those three emotions. Furthermore, a pure attention mecha-
nism based Emotion Transformer Fusion is utilized for mul-
timodal emotion recognition. The best accuracy of 90.02%
and standard deviation of 7.06% of proposed multi-modalities
model have confirmed that Transformer based architecture
with attention based fusion works efficiently on multimodal
emotion recognition. The recognition results of single modality
also suggest the efficacy of Transformer used in EEG or eye
movements.
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