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ABSTRACT

Among all solutions of emotion recognition tasks, electroencephalo-
gram (EEG) is a very effective tool and has received broad attention
from researchers. In addition, information across multimedia in
EEG often provides a more complete picture of emotions. How-
ever, few of the existing studies concurrently incorporate EEG
information from temporal domain, frequency domain and func-
tional brain connectivity. In this paper, we propose a Multi-Domain
Adaptive Graph Convolutional Network (MD-AGCN), fusing the
knowledge of both the frequency domain and the temporal domain
to fully utilize the complementary information of EEG signals. MD-
AGCN also considers the topology of EEG channels by combining
the inter-channel correlations with the intra-channel information,
from which the functional brain connectivity can be learned in an
adaptive manner. Extensive experimental results demonstrate that
our model exceeds state-of-the-art methods in most experimental
settings. At the same time, the results show that MD-AGCN could
extract complementary domain information and exploit channel
relationships for EEG-based emotion recognition effectively.
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1 INTRODUCTION

Emotion recognition plays an important role in affective brain
computer interface (aBCI) [23] and mental health assessment [2].
Although it is straightforward for humans to understand others’
emotions, this task is still a challenge in affective computing. More-
over, many mental disorders are related to emotions, and thus
accurately evaluating patients’ emotion states will enhance the
treatment of neurological diseases [2]. In consequence, this field
has drawn growing attention from researchers in recent years.
Many modalities and their combinations have been adopted to ana-
lyze human emotions, including facial expressions, eye movements
[16, 17, 33-35], skin conductance responses, electrocardiograms
(ECGs) and electroencephalographs (EEGs) [25, 36, 37], etc.. Among
them, EEG signals are collected by placing electrodes on the scalp
to measure voltage fluctuations from the cortex in the brain [22]. It
has been proven that EEG signals have the ability to reveal delicate
changes in emotions with high time resolution [5], which is more
objective and precise when analyzing emotion states [37].

Traditional EEG features can be divided into three categories:
the time domain, frequency domain and time-frequency domain. In
the time domain, the most widely used EEG features are Hjorth Fea-
tures, Fractal Dimension (FD) and Higher Order Crossings (HOC)
[8]. EEG signals are discrete time series indicating that the time
domain could contain essential information for emotion recogni-
tion [15]. Due to the non-stationary characteristics of EEG signals
as well as the interference of noise and artifacts of raw EEG data,
frequency domain features such as Power Spectral Density (PSD)
[4] and Differential Entropy (DE) [3] , and time-frequency domain
features such as Hilbert-Huang Spectrum (HHS) [8] have shown
good performance in EEG-based emotion recognition. In addition,
growing evidences [7, 20, 27, 30] have shown that functional brain
connectivity is associated with multiple psychophysiological disor-
ders of cognitive deficit disease. Mauss [19] proposed that emotional
procedures should be recognized as involving distributed circuits
instead of specific brain regions in isolation. Therefore, the func-
tional brain connectivity network should not be neglected while
recognizing emotions.

Existing studie have achieved many compelling outcomes based
on deep neural networks. Zhang et al. [31] introduced a sparse
dynamic graph convolutional neural network model with frequency
domain features. Li et al. [15] utilized intrinsic spatial relationships
of EEG channels by a hierarchical neural network model. Zhong et
al. [38] proposed a regularized graph neural network to exploit the
inter-channel relationship of EEG channels with DE features for
EEG-based emotion recognition. Although their work accomplishes
outstanding ability for recognizing emotions, few of the existing
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Figure 1: The overall process of our proposed MD-AGCN for EEG-based emotion recognition. The MD-AGCN utilizes compli-
mentary information from two domains of EEG signals. The functional brain connectivity calculated in the temporal domain
and the frequency functional brain connectivity learned by the model are fused to recognize the emotion classes.

studies combine the temporal domain, frequency domain of EEG
signals and emotion-related functional brain connectivity together.

In this paper, we propose a Multi-Domain Adaptive Graph Con-
volutional Network (MD-AGCN) to thoroughly exploit the com-
plementary knowledge between different domains of EEG signals
and the topological structure of EEG channels. We construct an
emotional graph of the brain where the vertexes of the graph rep-
resented by EEG channels are linked by inter-channel edges to
perform functional brain connectivity as the topology of the graph.
Furthermore, emotion-associated functional brain connectivity can
be learned by our model in an adaptive manner.

The main contributions of this paper are as follows:

e We propose a Multi-Domain Adaptive Graph Convolutional
Network that fuses the complementary information of EEG
signals in the temporal domain and the frequency domain
with the topological structure of EEG channels.

The inter-channel correlation and the intra-channel informa-
tion of EEG channels are integrated for emotion recognition
in our model. Moreover, topological structure can be adap-
tively learned to reveal emotion-related functional brain
connectivity.

We conduct extensive experiments on three datasets: SEED
[36], SEED-IV [35], and SEED-V [12, 33]. Experimental re-
sults show significant improvement of our model on classifi-
cation problems with more than three classes.

2 RELATED WORK

In this section, we review the related work in terms of EEG-based
emotion recognition, graph convolutional neural networks and
emotion-related functional connectivity.

2.1 EEG-based Emotion Recognition

Classifiers for EEG-based emotion recognition have been devel-
oped substantially from traditional machine learning algorithms
to deep learning methods. Wang et al. [26] implemented a support
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vector machine (SVM) in the frequency domain to identify different
classes of emotions. Bahari et al. [1] practiced a non-linear k nearest
neighbor classifier (kNN) based on a recurrence plot. Deep learn-
ing methods provide computational models comprised of various
processing layers that perform automatic feature extraction [10].
A deep belief network was proposed to identify critical frequency
bands and channels that achieved higher accuracy than traditional
machine learning methods [36]. Furthermore, researchers began
to exploit spatial information to utilize the topological structure
of EEG channels. Zhang et al. [32] proposed a recurrent neural
network (RNN) to learn spatial-temporal information from EEG
signals. Jia et al. [9] proposed an attention 3D dense network with
fusing EEG features in the time domain and the frequency domain.
Although their work accounts for one or more types of features,
they do not consider the topological structure of EEG electrodes
with time and frequency domains simultaneously.

2.2 Graph Convolutional Neural Network

Graph convolutional neural networks (GCNNs) extend spectral
theory in traditional CNN algorithms, and have been applied in var-
ious fields. For example, Shi et al. [24] proposed an adaptive graph
convolutional network for skeleton-based action recognition that
achieves significant improvement in the field by adding adaptive
graph convolutional layers and second-order information. Due to
the outstanding performance of graph convolutional neural net-
works, an increasing number of researchers extend this algorithm
to emotion recognition because it is an efficient way to utilize the
inner relationship of EEG channels [25]. Song et al. [25] proposed
a dynamic graph convolutional neural network (DGCNN) to dy-
namically learn the intrinsic relationships between different EEG
channels. In his method, the adjacency matrix is used to learn more
discriminative features while training. Zhang et al. [31] added a
sparseness constraint to the DGCNN model to improve the perfor-
mance. The study of Zhong et al. [38] explored important brain
regions and inter-channel relations for EEG-based emotion recog-
nition by a regularized graph neural network. Yin et al. [29] fused
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Figure 2: Construction of the functional brain connectivity on the temporal domain. Temporal connectivity matrices are
calculated from the EEG signals in the training dataset, from which emotion-relevant connections are picked by averaging
and applying thresholds over each emotion class. The final temporal functional brain connectivity is constructed by uniting

and normalizing the emotion-relevant connections.

LSTM and graph convolutional neural networks with frequency
features.

2.3 Emotion Related Functional Connectivity

Brain connections have always been used in the fields of neuro-
science and neuroimaging to study and explore the nature of the
brain. Murias et al. [20] found that there exists an obviously robust
EEG connection among patients with autism spectrum disorder
under a resting state. Yin et al. [30] concluded that functional brain
connections based on EEG signals are usually slower and ineffi-
cient in patients with schizophrenia. Ho et al. [7] pointed out that
depression in adolescence is related to the erratic increase in net-
work connections based on the default mode shown by functional
magnetic resonance imaging. Whitton et al. [27] considered that
the increase in the high frequency band based on the functional
connection of EEG signals could be a neural model of the recurrent
course of major depression.

Therefore, it is important to explore the functional brain network
that is related to EEG-based emotion recognition. In addition, the
functional connectivity of EEG channels is informative for emotion
recognition, and some studies have proposed various methods to
address this proposition. Wu et al. [28] developed a critical sub-
network method that uses topological features to identify emotion
states based on EEG signals. Their results reveal that topological
features of the temporal domain outperform those of the frequency
domain in the critical subnetwork method. Wu et al. [28] exploited
the topological properties of the brain network, however, temporal
and frequency domains were separated. Zhong et al. [38] proposed
a regularized graph neural network to investigate inter-channel
relations for emotion recognition with pre-computed frequency
features from EEG signals, which utilized the frequency domain
information from EEG data. Although the aforementioned existing
studies achieved excellent results, none of them combined EEG
information from the temporal domain and the frequency domain
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with topological structure of EEG channels, which might not fully
take advantage of complicated EEG signals.

3 PRELIMINARIES
We define the EEG connectivity matrices, which containing N

Te Te
X. ,XN) €

L X6
, where V denotes the number of EEG channels, and F
represents the set of frequency bands (6, 6, a, f, y), which is trans-
formed by the filters from the original signal in the temporal domain.
V X V is the dimension of the connectivity matrix for one sample
in one frequency band. The EEG features in the frequency domain

are defined as XF' = (XIF, xg, .. .,xg) € RNXFXV where N is the
number of samples after the feature extraction. F also denotes the
five frequency bands, but it is converted by a short-term Fourier
transform (STFT) in the frequency domain.

We construct an emotional brain graph that is represented as
G = (V*,E*). V* denotes the set of EEG channels, the vertexes in
this graph, where V = |[V*|. E* denotes the set of edges between
vertexes in V*. The EEG data X”¢ and XF represent the information
on V*. We define a weighted adjacency matrix A € RV*V that
represents the set of edges E*, which also means the functional
brain connectivity. A consists of AT¢ and AF, where AT€ is the
adjacency matrix calculated from X7¢ in the temporal domain, and
AF denotes the adjacency matrix learned from XF in the frequency
domain.

samples in the temporal domain as XT¢ = (XITE
RNXFXVXV

4 METHODOLOGY

4.1

We propose a Multi-domain Adaptive Graph Convolutional Net-
work that fuses the information of EEG signals from two domains

Model Overview
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(the temporal domain and the frequency domain) to improve the effi-
ciency of emotion recognition and analyze the patterns of emotion-
associated functional brain connectivity. The overall process of
our method is shown in Figure 1. In the temporal and frequency
domains, we employ the original EEG signals in the time series
and the differential entropy (DE) features for EEG-based emotion
recognition as inputs, respectively.

4.2 Temporal Domain

4.2.1 Data Preprocessing. The raw EEG data were downsampled
to 200 Hz to reduce the amount of calculation, and noise reduction
operations were also been down. After that, the EEG data were
divided into five frequency bands through five band filters (6: 1-4
Hz, 0: 4-8 Hz, a: 8-14 Hz, : 14-31 Hz, and y: 31-50 Hz). The data

after preprocessing is represented as PT¢ = (plTe, pzTe, cn pge) €

RSXF XV where S is the number of samples in the time series, F

represents the five frequency bands, and V is the number of EEG
channels.

4.2.2  Temporal Functional Brain Connectivity. Inspired by the effec-
tive method of extracting temporal EEG features [28], we construct
the functional connectivity presented by the weighed adjacency
matrix AT¢ in the temporal domain, as shown in Figure 2. Pear-
son’s correlation coefficient [11] is used as the connectivity index.
The connectivity matrices of EEG channels are calculated from
PT¢ in each frequency band using non-overlapped windows, which

Te Te Te e RNXFXVXV

(x1 L X6 Xy , where

are denoted as X'¢ =

V x V denotes the dimension of the connectivity matrix and N
is the size of the samples after processing. We set a proportional
threshold to pick out emotion-relevant connections according to
the recognition accuracy. Finally, those connections are united and
normalized to construct the functional brain connectivity. Assume
thatY = {yi}l{il (v € L) is the label set, where L is a set of emotion
classes. The details of constructing the functional brain connectivity
AT€ are presented as Algorithm 1.

4.3 Frequency Domain

4.3.1 Data Preprocessing. We apply extensively used DE features
in the frequency domain, which are extracted in five frequency
bands (8: 1-4 Hz, 0: 4-8 Hz, a: 8-14 Hz, f: 14-31 Hz, and y: 31-
50 Hz). Specifically, the raw EEG data are firstly down-sampled
to 200 Hz to speed up the calculation. Then a short-time Fourier
transform (STFT) with a non-overlapped Hanning window is em-
ployed to calculate the DE features in the frequency domain. The
extracted DE features are represented as xF = (x{7 , xg e, xz) S
RNXFXV Furthermore, we transformed X! into samples X "=
(XF’ F' F’) € RNXFXTXV

X with an overlapping window size

X N

15Xy -
)
of T. For each sample, xf e REXTXV

4.3.2  Adaptive Graph Convolutional Layer. Extending the method
in adaptive graph convolutional networks for skeleton-based action
recognition [24], we establish the adaptive graph convolutional
model on EEG-based emotion recognition, which considers the
properties of the brain. The operation of spatial graph convolution
on vertex v; in the spatial dimension can be formulated as follows
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Algorithm 1: The calculation of the temporal adjacency
matrix AT¢
Input: The preprocessed data PT¢, the label set Y, the
threshold ¢
Output: The temporal weighted adjacency matrix ATe
1 Calculate the connectivity matrices X’ from PT¢ using
Pearson’s correlation coefficient.
2 for each f € F do
3 for eachl € L do
4 Average connectivity matrices over the same

emotion label I: ml. = meanyi::l(xl.Te

5 Filter out the strongest t percentage (;]fc connections:
A{ = thresholding(méc, t)

6 end

7 Take union set of the preserved connections in all

classes: Af = unionleL(A{)

s end

9 Unite five frequency bands to obtain critical connections:
Acritical = unionfEF (Af)

=

o Normalize critical connections to obtain the temporal
weighted adjacency matrix: AT¢ = normalizing(Acyrizical)
1 return AT¢

o

[24] :

fout @) = " o fin (01) - (1 (07)). <1>

v;€B; Y

where v represents the vertex of the graph, and f;, is the input
feature map. Here, w denotes the weighting function of the con-
volution operation, while $B; represents the convolution sampling
area for v;, and [; is the mapping function to map each vertex with
a weight vector, as the sampling area $B; may be varied. Z;; is the
cardinality of the sampling area $B;, which intends to balance the
contribution of each sampling area.

Considering that the human skeleton and topological structure
of the brain are different, where the EEG electrodes on the scalp do
not have fixed physical connections similar to bones in the human
body, the graph convolution operation that we implemented in this
manuscript is as follows:

fout = WfinAF, (2)

where W is the Cpyr X Cin X 1 X 1 weight vector of 1 X 1 convolution
operation and AT is the weighted adjacency matrix that represents
the connections between the vertexes in the frequency domain. As
mentioned above, the vertex in the brain graph does not have physi-
cal connections, and we assume that each vertex has the potential to
be associated with all other vertexes. Therefore, the sampling area
of vertex v; in the graph that we constructed contains all vertexes
regardless of their physical distance. The input feature map fjj, is
a tensor with dimensions of Cj, X T X V, where Cj, denotes the
number of the input channels. In the first layer, f;, = xf " e REXTXV.
where Cjp, is equal to F. Moreover, the weighted adjacency matrix

F . T . F F
A" in the frequency domain is divided into Apu blic N4 A private’
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Figure 3: Structure of the adaptive graph convolutional layer.
The fusion of the frequency domain (the left side) and the
temporal domain (the right side) is conducted in this layer.

thus Equation 2 can be transformed into

F
+ Aprivate)’

four = Wiin (AI; (3)

ublic

F F
where Apublic and Aprivate

represent the importance of the connections between vertexes.
In particular, Ag isa V x V public adjacency matrix that is

are weighted adjacency matrices that

ublic
shared by all of the samples and is set to be trainable parameters.
Ag ublic is a data-driven parameter, from which the important con-
nections between the EEG channels in each graph convolution layer
of the model can be clearly illustrated. It is desired to find the gen-
eral functional brain connectivity patterns for emotion recognition
from the element of A}f ublic:

A;”. vate 18 @ V X'V private adjacency matrix that is obtained by
measuring the similarity between two vertexes, and is unique to
each sample, which means that one attention map representing the
strengths of the connections between EEG channels corresponds to
one sample. Concretely, the dot product is employed to measure the
similarity between two vertexes. We first embed the input feature
fin into an embedding space using the 1x1 convolutional embedding
function, i.e., o and 7, and the dimension of f;; changes from Cjj X
TXV to Ce XT X V. Two embedding features are then reshaped into
VXC,T and C,T XV and multiplied into V X V to obtain the private
adjacency matrix. Finally, the matrix is normalized into 0 — 1 by the
so ftmax operation. The calculation of Ajljriv are €an be formulated
as follows:

©

where W, and W are the weight vectors of the embedding func-
tions. The left side of Figure 3 illustrates the detailed calculation

= softmax (fiTnWEWTfm) R

F
Aprivate
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process of the adaptive graph convolutional layer in the frequency
domain. ¢(1 X 1) in Figure 3 corresponds to the weight vector W
in Equation 3, and the residual branch [6] achieved by the 1 X 1
convolution operation is introduced to ensure the stability of the
network.

MD-AGCN Block

MD-AGCN Block
MD-AGCN Block
MD-AGCN Block

MD-AGCN Block

Cour X T"

MD-AGCN Block

MD-AGCN Block

Softmax

Figure 4: Components of the MD-AGCN. The MD-AGCN con-
sists of six basic MD-AGCN blocks on the top, followed by a
global average pooling layer and a softmax layer to predict
emotion categories as shown on the left side. The details of
one MD-AGCN block are illustrated on the right.

4.4 Fusion and Classification

4.4.1  Fusion of Two Domains. To take advantage of the complimen-
tary information of EEG associated with emotions and to identify
emotions more effectively, we combine functional brain connec-
tions between EEG channels AT¢ in the temporal domain with
AF in the frequency domain. Therefore, the graph convolution
operation in Equation 3 can be transformed into:

+Af +ATe),

four = Wiin (Ag private )

ublic
where AT€ is the temporal adjacency matrix calculated in the tempo-
ral domain. The details of the fusion of two domains are illustrated
in Figure 3.

4.4.2  Multi-Domain Adaptive Graph Convolutional Network. Fig-
ure 4 demonstrates the overall architecture of the proposed Multi-
Domain Adaptive Graph Convolutional Network. As illustrated on
the left side of Figure 4, the MD-AGCN implemented in this paper
consists of six basic MD-AGCN blocks, a global average pooling
layer and a softmax layer. The right part of Figure 4 shows the
components of one MD-AGCN block, which contains the adaptive
graph convolutional layer (Convg) as in Figure 3 and the temporal
convolutional layer (Convt). For the temporal convolutional layer,
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the convolution operation with the kernel size of K; X1 is performed
on the temporal dimension T of the input feature.

To retain the information of the input feature and enhance the
model stability, the residual connection is introduced in the block.
The batch normalization (BN) layer and the ReLU layer are also
employed in the block. The algorithm of the overall process of the
MD-AGCN is shown in Algorithm 2.

Algorithm 2: The process of the Multi-Domain Adaptive
Graph Convolutional Network

Input: The extracted features X' in the frequency domain,
the connectivity matrices X'¢ in the temporal
domain, the label set Y, and the number of
MD-AGCN blocks B in the overall MD-AGCN
network

Output: The recognition accuracy acc, the weighted

adjacency matrix AT¢ in the temporal domain, the
set of the weighted adjacency matrices AF" in the
frequency domain

Calculate AT¢ from XTe.

Transform X¥ into X"

3 Set xf "in X" as the input of the first MD-AGCN block:

f1 = xF
n 1

Represent the b-th MD-AGCN block as Block?:

for each b € B do

-

)

'S

w

6 | fb,. Al = Blockb (£}, AT®)
b+1 _ b

7 fin+ - fout

s end

©

Conduct the global average pooling operation on the output
of the last MD-AGCN block: f; = GAP(fE )

Employ the softmax layer on f; to predict the emotion
categories: Ypre = softmax(fy)

10

1

oy

Construct AF* using the learned adjacency matrix in each
MD-AGCN block: AF" = (A, AF, . AF)

Calculate the accuracy: acc = accuracy(Y, Ypre)

return acc, AT¢, AT *

12

13

5 EXPERIMENTS
5.1 Datasets

Our proposed method is evaluated on three emotional EEG datasets
(SEED [36], SEED-IV[35], and SEED-V[12, 16]). The stimuli of these
datasets are film clips, which are reliable for eliciting emotions.
SEED Dataset is constituted by EEG signals of 15 subjects (8 fe-
males and 7 males) with three emotion classes: positive, neutral
and negative. Each subject participated in three sessions, and each
session consisted of 15 trials. Feedback was reported after each clip
to guarantee that the participant’s emotional reaction was the same
as the emotion state of the film.

SEED-IV Dataset also has 15 subjects participating three sessions
on different days, and each session contains 24 trials. Therefore,
there are 72 film clips in total, including four emotion states: happy,
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sad, fear and neutral emotions. Similar to the SEED dataset, a self-
assessment was performed after each film clip in such a way that
we could confirm that the participants shared the same emotion
states as those in the film clips.

SEED-V Dataset was proposed by Li et al. [12] and contains five
emotion classes: happy, disgust, neutral, fear and sad. Sixteen sub-
jects (10 females and 6 males) took part in the experiments for three
sessions. There was a one-week or longer interval for each session.
A total of 45 video clips were edited into three sessions. EEG signals
and eye movement data were collected during the experiments.

5.2 Implementation Details

To make our results comparable, we follow the same common
experimental settings as the prior studies on three datasets. For
the SEED dataset, we employ the same experimental settings as in
[13, 15, 25, 32, 36, 38], which used the first 9 trials as the training
set and the remaining 6 trials as the test set in each session. The
performance of the model is evaluated by the average accuracy
and standard deviation over the sessions. For the SEED-IV dataset,
we conducted the experiments as in [13, 35, 38]. The first 16 trials
were the training data, and the remaining 8 trials were the test
data of each session. Our model was also evaluated by the average
accuracy and standard deviation over the sessions. For the SEED-V
dataset, similar to [12, 33], three-fold cross validation is applied for
each subject.

In the temporal domain, the parameter of the threshold ¢ to
calculate AT€ is set to 20%. The DE features X' € RN*FXV gre
transformed into XF' € RNXFXTXV 1y an overlapping window
with the size of T to keep the same sample size N as the compared
experiments, where T is set to 5 in the experiments and V is the
number of EEG channels, which is equal to 62. The experiments
are conducted in MATLAB [18] and PyTorch [21] deep learning
framework. The learning rate of our model is set to 0.01, and the
batch size is 32. We select the cross-entropy as the loss function in
our experiments. The channel size of each MD-AGCN block ranges
from 32 to 128 for each experiment.

5.3 Baseline Models

SVM[12, 38]: A support vector machine with the linear ker-
nel. The SEED-V dataset is also tested on this model.
DBN[36]: The deep belief network is a probabilistic genera-
tive model with a deep architecture.

STRNN[32]: The spatial-temporal recurrent neural network
is a unified spatial-temporal dependency model with the fea-
tures learned from both the spatial and temporal information
in the signal sources.

DGCNN][25]: The dynamical graph convolutional neural net-
work applies a graph representation method to explore mul-
tichannel EEG emotion recognition in a dynamic way.
BiDANN[14]: The bi-hemispheres domain adversarial neural
network investigates both the right and left sides of the
hemisphere EEG features and maps them to discriminative
feature spaces separately.

BiHDM[13]: The bi-hemispheres discrepancy model focuses
on the asymmetric differences of the right and left hemi-
spheres for EEG emotion recognition.
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e R2G-STNN[15]: A region to global spatial-temporal neural
network model learns discriminative spatial-temporal EEG
features.

o RGNNT[38]: The regularized graph neural network explores
the topology of the EEG channels with two regularizers.

5.4 Results Analysis and Comparison

The comparison of our model and baseline models on the SEED,
SEED-IV and SEED-V datasets is presented in Table 1. It is worth-
while to note that we do not compare our results with those models
that do not follow the common experimental settings that are simi-
lar to others, such as the SST-EmotionNet [9] and the Sparse DGCNN
[31]. They divide the training set and test set in different ways. Con-
cretely, the samples were shuffled in SST-EmotionNet [9], which is
not appropriate in the EEG-based emotion recognition task. The
EEG features of adjacent time periods are more similar, and the
samples from one clip can be divided into both the test set and the
training set if the samples are shuffled, which should be avoided.
For SparseDGCNN [31], they perform leave-one-clip-out valida-
tion which take only one clip as test set. In this way, there is only
one emotion class in the test set, which is also not very appropri-
ate. Therefore, it is not reasonable to compare their classification
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Figure 5: Confusion matrices of MD-AGCN. (a) Confu-
sion matrix on the SEED dataset. (b) Confusion matrix on
the SEED-IV dataset. (c) Confusion matrix on the SEED-V
dataset. Each column represents the predicted class that our
model outputs and each row serves as the target class.

results with ours. Our model achieves state-of-the-art results on
all of the SEED, SEED-IV and SEED-V datasets compared with
the models that follow the similar common experimental settings.
Specifically, the recognition accuracy of our model reaches 94.81%
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Table 1: The classification accuracies (mean/std) compared
with the performance of state-of-the-art models on the
SEED, SEED-IV and SEED-V datasets

Model SEED[36]  SEED-IV[35] SEED-V[12]
SVM[12, 36,38]  83.99/09.72  56.61/20.05  69.5/10.28
DBN[36, 38] 86.08/08.34  66.77/07.38 -
STRNN[32] 89.50/07.63 - -
DGCNN[25,38]  90.40/08.49  69.88/16.29 -
BiDANN[14,38]  92.38/07.04  70.29/12.63 -
BiHDM[13] 93.12/06.06  74.35/14.09 -
R2G-STNN[15]  93.38/05.96 - -
RGNN[38] 94.24/05.95  79.37/10.54 -
MD-AGCN 94.81/04.52 87.63/05.77 80.77/06.61

with a standard deviation of 4.52% on the SEED dataset. On the
SEED-IV dataset, our model achieves the highest accuracy of 87.63%
with the lowest standard deviation of 5.77%, whose performance is
much better than other models. For the SEED-V dataset, our model
also performs better than the existing approaches using EEG sig-
nals only, with the accuracies and standard deviations of 80.77%
and 6.61%, respectively. In general, our MD-AGCN model achieves
the highest accuracies with the lowest standard deviations over all
baseline models.

Figure 5 presents the confusion matrices of our model, which
indicates the ability to recognize each type of emotion on different
datasets. For the SEED dataset, our model can recognize positive and
neutral emotions (95.84% and 94.52%, respectively) better than neg-
ative states (93.99%). For the SEED-IV dataset, our model achieves
much better performance on the sad emotion with an accuracy of
94.86%, and is less likely to confuse the sad state with the fear state,
as it has only 0.61% of the samples misclassified. For the SEED-V
dataset, the disgust state is the most difficult state to recognize for
our model, with only 71.51% correctness, while the fear state is
significantly easier to classify than the other four emotions with
an accuracy of 90.77% .

Two factors cloud contribute to the main improvement in the
performance of our models: 1) We take fully advantage of EEG
signals by fusing the temporal domain, the frequency domain and
the topological structure together. 2) We adaptively update the
weighted adjacency matrix in such a way that the functional brain
connectivity is learned by the model itself from the EEG data for
the emotion recognition.

5.5 Ablation Study

The ablation study is implemented to verify the contribution of the
temporal domain on all three datasets. Table 2 shows the perfor-
mance of our model with and without the temporal domain. After
removing the temporal domain input, the adaptive graph convo-
lutional network with the frequency domain, namely FD-AGCN,
achieves accuracies of 93.4%, 85.76% and 78.25% with standard devi-
ations of 4.93%, 6.35% and 6.91% on the three datasets. It is obvious
that the accuracy of the model with two domains (MD-AGCN) is
higher than the accuracy of the model that uses only the frequency
domain. MD-AGCN improves the accuracies by 1.41%, 1.87% and
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Figure 6: The functional brain connectivities learned in the MD-AGCN are visualized by the top 10 connections between EEG
channels. The rows present MD-ACGN blocks, while the columns show the different datasets. A darker color of the line rep-
resents a larger edge weight of the adjacency matrix, which also indicates a stronger connection between EEG channels.

Table 2: Ablation study for the classification accuracies
(mean/std) on the SEED, SEED-IV and SEED-V datasets

Model SEED SEED-IV SEED-V
FD-AGCN 93.40/04.93  85.76/06.35  78.25/06.91
MD-AGCN 94.81/04.52 87.63/05.77 80.77/06.61

2.52% on the SEED, SEED-IV and SEED-V datasets, respectively,
compared with FD-AGCN. The results show that the information
in the temporal domain can improve the performance of the model.
Accounting for the temporal domain and the frequency domain of
the EEG signals is more effective and can improve the classification
accuracy.

5.6 Visualization of the Learned Graphs

Figure 6 separately visualizes the functional brain connectivities
learned in each MD-AGCN block from the three datasets, which
are merged from both the temporal weighted adjacency matrix and
the frequency weighted adjacency matrix learned by our model. It
is obvious that in the first block, the connections aggregate mainly
on the frontal regions for all three datasets. Because the low-level
and evident features are usually learned at the lower layer and this
phenomenon is consistent with the existing studies [38], our model
is proven to have the ability to learn the common information as
learned in other models. The experimental results also demonstrate
that the frontal connections might be important for EEG-based
emotion recognition. Furthermore, more complicated connections,
especially those across hemispheres, appear as the training becomes
deeper. The results indicate that global inter-channel connections
are also important for emotion recognition and that our model can
process global connectivities with the deep layers.
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6 CONCLUSIONS

In this paper, we proposed a Multi-Domain Adaptive Graph Convo-
lutional Network for EEG-based emotion recognition. The model
combines the temporal domain and the frequency domain of the
EEG signals with the topological structure of the EEG channels to
effectively utilize the complementary information in the EEG data.
Emotion-related functional brain connectivity can be learned in
an adaptive manner by our model, and the data-driven MD-AGCN
makes the model more flexible and more applicable. Extensive ex-
periments on the SEED, SEED-IV and SEED-V datasets demonstrate
the extraordinary performance of our model in comparison with
various competitive baseline models, especially on problems with
more than three emotion classes.

In addition, the analysis of the learned functional connectivi-
ties indicates that the connections between EEG channels in the
frontal area might play an important role in EEG-based emotion
recognition. The critical connections become more complicated
and could cross hemispheres as the model becomes deeper. The
proposed model can perform as a general framework in the future
for other tasks, such as assisting in the treatment of depression.
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