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Investigating EEG-based functional connectivity patterns
for multimodal emotion recognition
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Abstract
Objective.Previous studies on emotion recognition from electroencephalography (EEG) mainly
rely on single-channel-based feature extraction methods, which ignore the functional connectivity
between brain regions. Hence, in this paper, we propose a novel emotion-relevant critical
subnetwork selection algorithm and investigate three EEG functional connectivity network
features: strength, clustering coefficient, and eigenvector centrality.Approach.After constructing
the brain networks by the correlations between pairs of EEG signals, we calculated critical
subnetworks through the average of brain network matrices with the same emotion label to
eliminate the weak associations. Then, three network features were conveyed to a multimodal
emotion recognition model using deep canonical correlation analysis along with eye movement
features. The discrimination ability of the EEG connectivity features in emotion recognition is
evaluated on three public datasets: SEED, SEED-V, and DEAP.Main results. The experimental
results reveal that the strength feature outperforms the state-of-the-art features based on
single-channel analysis. The classification accuracies of multimodal emotion recognition are
95.08± 6.42% on the SEED dataset,84.51± 5.11% on the SEED-V dataset, and85.34± 2.90%
and 86.61± 3.76% for arousal and valence on the DEAP dataset, respectively, which all achieved
the best performance. In addition, the brain networks constructed with 18 channels achieve
comparable performance with that of the 62-channel network and enable easier setups in real
scenarios.Significance.The EEG functional connectivity networks combined with
emotion-relevant critical subnetworks selection algorithm we proposed is a successful exploration
to excavate the information between channels.

1. Introduction

Emotion plays a crucial role in many aspects of
our daily lives, such as social communication and
decision-making. According to the Gartner hype
cycle in 2019 [1], emotion artificial intelligence (AI)
is one of the 21 emerging technologies that will

significantly impact our society over the next 5 to
10 years. Emotion AI, also known as artificial emo-
tional intelligence or affective computing [2], aims at
enabling machines to offer the capabilities to recog-
nize, understand, and process emotions. Compared
with the rich studies on the motor brain-computer
interface (BCI), the recently emerging affective BCI
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In general, the dimensions of the strength, clus-
tering coefficient, and eigenvector centrality features
in each frequency band are2N + 2,2N + 2, and N ,
respectively.

4.4.2. Eye movement features
First, eye movement parameters were calculated using
the BeGaze9 analysis software of the SMI eye track-
ing glasses, including pupil diameter, fixation dur-
ation, blink duration, saccade, and event statistics.
Subsequently, the statistics of these eye movement
parameters were derived, thus obtaining the 33-
dimensional eye movement feature. The detailed
description of the extracted eye movement feature
could be found in the previous work [17,55].

4.5. Classification
As aforementioned, the variation of emotion is fluent
and smooth, which should be reflected in the attrib-
utes of the extracted features. In addition, the extrac-
ted EEG features are typically of high dimensionality
and may contain unrelated and redundant inform-
ation, which increases the unnecessary computation
and time costs. Hence, a feature smoothing method,
linear dynamical system (LDS) [77] was applied to
tackle this issue before feeding features into the fea-
ture fusion model DCCA.

4.5.1. Deep canonical correlation analysis model
The DCCA model can fuse features from multimodal
data by learning the most relevant features and form-
ing the shared representations [78]. Figure5 presents
the architecture of the DCCA model, which com-
prises three parts: the stacked nonlinear layers (L2 and
L3), CCA calculation, and feature fusion layer.

Assume that the transformed features for two
modalitiesX 1 and X 2 are separately denoted byH 1 =
f1(X 1;θ1) and H 2 = f2(X 2;θ2), wheref1 and f2 are the
respective nonlinear transformations, andθ1 and θ2
are the corresponding parameters. Thus, the optim-
ization function is written as:

(θ�
1 ,θ

�
2 ) = argmax

( � 1;� 2)
corr

(
f1(X 1;θ1),f2(X 2;θ2)

)
. (14)

Suppose that the centered data matrices areH̄ 1 and
H̄ 2, and r1 and r2 are the respective regularization
parameters: hence, the correlation of the transformed
features could be calculated as:

corr(H 1,H 2) = ||T ||tr= tr(T 0T )1=2, (15)

where

T = Σ̂
� 1=2
11 Σ̂12Σ̂

� 1=2
22 ,

Σ̂11 =
1

m − 1
H̄ 1H̄ 0

1 + r1I,

9 https://gazeintelligence.com/smi-software-download.

Figure 5.Architecture of the DCCA model.

Σ̂22 =
1

m − 1
H̄ 2H̄ 0

2 + r2I,

Σ̂12 =
1

m − 1
H̄ 1H̄ 0

2. (16)

In particular, the gradient of corr(H 1,H 2) could be
computed using singular value decomposition. The
parameter updating is accomplished by using the neg-
ative value of correlation as the loss function. Thus,
minimizing loss is equivalent to maximizing cor-
relation. The feature fusion layer is defined as the
weighted average of the two transformed features
[64]. Finally, the fused multimodal feature is fed into
the SVM to train the affective model.

In this paper, the cross validation and grid search
methods were adopted to tune the hyperparamet-
ers in different experiments. The search scope was
defined as follows: Supposing that the numbers of
nodes in L1, L2, and L3 layers of DCCA aren1,
n2, andn3, respectively, these three hyperparameters
are searched in the space wheren1 ⩾ n2 ⩾ n3 and
n1,n2,n3 ∈ {32,64,128,256}. So n1,n2,n3 have 20
combinations in total. The learning rate is tuned from
set{10� 8,10� 7,10� 6,10� 5,10� 4}. These hyperpara-
meters were optimized according to experiments.

4.5.2. Experiment setups
In this paper, we evaluated the proposed approaches
on three public datasets: SEED [17], SEED-V [23],
and DEAP [ 24]. For model evaluation, we used dif-
ferent cross validation methods on different databases
with consideration of consistency with previous stud-
ies and the amount of emotion data available. For
the SEED dataset, the three-class (sad, happy, and
neutral) emotion classification task was conducted.
The training and test sets were the first 9 trials and
the last 6 trials, respectively, which was the same as
in [17,61,62,69]. For the SEED-V dataset, the five-
class (disgust, fear, sad, happy, and neutral) emotion
classification task was performed with a three-fold
cross validation strategy, which followed the same
setups as in [55, 69]. SEED and SEED-V followed
the same experiment protocol for data collection and
several sessions with the same participant were done
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on different days in both datasets, which was one of
the advantages over DEAP to study the stable neural
patterns over time. The preprocessing of EEG and
eye movement signals was the same in SEED and
SEED-V.

The DEAP dataset contains 32-channel EEG sig-
nals and 8-channel peripheral physiological signals
from 32 subjects (16 males, 16 females) aged between
19 and 37 (mean age 26.9) with labels in the valence-
arousal dimension. Each subject watched 40 one-
minute music videos. The EEG signals were prepro-
cessed with a bandpass filter between 4 and 45 Hz.
For the DEAP dataset, we built the brain networks
using solely 32 channels in the four frequency bands
(without theδ band) with a 2-second nonoverlap-
ping time window. The peripheral physiological fea-
ture was 48-dimensional. In addition, two binary
(arousal-level, valence-level) classification tasks were
conducted with a ten-fold cross validation strategy.
We divided the continuous arousal and valence
dimensions into two categorical levels (low/high)
with the threshold of 5. The DEAP database includes
continuous levels of arousal, valence, like/dislike,
dominance, and familiarity. However, we focused on
the arousal and valence dimensions in this study,
which are the most common components in emo-
tion models. The setups for the DEAP dataset are in
accordance with [61,62,69].

5. Experimental results and discussion

5.1. Threshold tuning for subnetwork construction
As mentioned in section4.3, the proportional
threshold is applied to preserve the strongest asso-
ciations in the averaged brain networks. It is a crucial
value for subnetwork construction. We utilized SVM
to select the best threshold values. The hyperpara-
meter penalty coefficientC of SVM is tuned from
2� 10 to 210 with the step size of the index setting to 1.
Taking SEED-V as example, the best thresholds dif-
fer according to the categories of edge measurements
and vertices, so the threshold tuning process should
be applied in the following four cases: 18-channel
network with correlation edges, 64-channel network
with correlation edges, 18-channel network with
coherence edges and 64-channel network with coher-
ence edges. To reduce time overhead, the threshold
tuning includes two steps:

(a) Rough tuning: The threshold range is set as
[0.0, 1.0] with step size of 0.1. The best threshold
a found in the rough tuning process will be util-
ized to construct the threshold search space in
fine tuning.

(b) Fine tuning: The threshold range is set as
[a− 0.1,a+ 0.1] with step size of 0.01. Threshold
that achieves the highest accuracy rate is selected
as the final thresholdafinal.

Figure 6.Threshold rough tuning results of SEED-V.

Figure 7.Threshold fine tuning results of SEED-V
(64-channel network with correlation edges).

Table 1.The best thresholds in four cases with respect to SEED-V.

18-channel 64-channel

Corr. 0.83 0.70
Cohe. 0.65 0.24

Figure 6 depicts the rough tuning results of
SEED-V dataset. The best threshold ranges differ in
these four cases. Taking 64-channel network with cor-
relation edges as example, the best range is [0.6, 0.8].
Figure7 depicts the fine tuning results under this cir-
cumstance. Finally, the best threshold is 0.7 with the
accuracy rate of70.59 ± 8.03%. For other cases with
respect to SEED-V, the best thresholds are shown in
table1. According to section5.3.1, strength features
with correlation as the connectivity metric achieves
the best performance, so we only verify the discrimin-
ation ability of this feature on SEED and DEAP data-
sets, for which the best thresholds are 0.83 and 0.9,
respectively.
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Table 2.Performance (%) of conventional thresholding and
critical subnetwork thresholding methods with respect to the
SEED-V dataset using 18 channels.

Conventional Critical subnetwork

Mean. 55.64 84.45
Std. 5.27 6.10

5.2. Conventional thresholding vs critical
subnetwork thresholding
The conventional thresholding method directly sets
weak associations to 0 according to a propor-
tional threshold after sorting the association weights
[37,67]. However, this approach is task-unrelevant.
In this study, we proposed an emotion-relevant crit-
ical subnetwork selection approach. To demonstrate
the superiority of our method, we compare the per-
formance of both methods on SEED-V with 18 chan-
nels using DCCA.

The experiment setups in conventional threshold-
ing method were exactly the same as our method.
The strength feature with correlation as connectivity
metric was applied. The threshold value was tuned as
a hyperparameter ranging from [0.0, 1.0] with step
size of 0.01. The best threshold value for conventional
thresholding method is 0.9.

Table 2 shows the performance comparison.
The best classification performance values (%)
of conventional thresholding and critical subnet-
work thresholding methods are 55.64± 5.27 and
84.45± 6.10, respectively. Our method shows sig-
nificant superiority with accuracy rate improved by
around 30%. This result demonstrates that compared
with the conventional method, our proposed method
extracts the emotion-relevant subnetworks actively
to reduce the influence of noise in the functional
connectivity.

5.3. Discrimination ability
To demonstrate the discrimination ability of the EEG
functional connectivity network features in emo-
tion recognition, we conduct EEG-based emotion
recognition for the three datasets. The LIBLINEAR
tool kit is adopted to achieve SVM classifier with
L2-regularized and L1-loss, of which penalty coeffi-
cientC is the only hyperparameter. Applying the best
thresholdafinal, the tuning process includes two steps:

(a) Rough tuning: The search space of penalty coef-
ficient is set as2[� 10;10] with step size of 0.1. The
best penalty coefficient 2c found in the rough
tuning process will be utilized to construct the
search space in fine tuning.

(b) Fine tuning: The search space is set as2[c� 2;c+ 2]

with step size of 0.01. Penalty coefficient2cfinal

that achieves the highest accuracy rate is selected
as the final hyperparameter value.

5.3.1. Experimental results on the SEED-V dataset
For the SEED-V dataset, we constructed the
EEG-based brain functional connectivity networks
using two different categories of vertices and two dif-
ferent edge measurements, then extracted three EEG
functional connectivity network features from the
brain networks.

Table 3 presents the five-class emotion recogni-
tion performance of these features. We could observe
that the strength feature exhibits outstanding per-
formance regardless of the number of vertices and
connectivity metric. This may be because the strength
feature could intuitively reflect the emotion associ-
ated connectivity of the entire brain regions. In gen-
eral, the strength and eigenvector centrality features
exhibit higher accuracy with correlation as the con-
nectivity metric, whereas the clustering coefficient
feature exhibits better performance with coherence.

Correlation and coherence measure the similarity
of paired signals in two aspects. Correlation focuses
on the temporal domain whereas coherence focuses
on the frequency domain. According to the analyses
of Guevara et al[79], coherence is affected by the
power and phrase changes and represents the stabil-
ity of paired signals in power and phase relationship.
Correlation is independent on amplitudes and indic-
ates the time coupling and waveform similarity. These
two methods construct different network patterns,
which makes differences in the information extrac-
tion efficiency of network features. Our results show
that quantifying the clusters (i.e. clustering coefficient
feature) within brain network is more effectively to
refine information when the network edge is coher-
ence between paired signals. Strength and eigenvector
centrality features, on the other hand, are more effi-
cient when correlation is applied.

The features extracted from 18-channel-based
brain networks exhibit considerable performance
compared with those of 62-channel networks, which
indicates that the EEG functional connectivity net-
work features extracted from the brain networks
constructed with fewer channels are promising for
actual scenarios of emotion recognition applications
in aBCI systems.

In the previous work [50], the authors have
demonstrated that the EEG functional connectiv-
ity network features considerably outperform the
PSD feature and that they are superior to those
directly using the connectivity metrics as features.
In this paper, the best classification accuracy of
74.05 ± 7.09% achieved by the strength feature
defeats the value of69.50 ± 10.28% attained by the
single-channel-based state-of-the-art DE feature in
the work of [55] for the same dataset.

To further analyze the capability of the best fea-
ture, the strength, in recognizing each of the five
emotions, the confusion matrices are displayed in
figure8. It could be observed that the strength feature
is superior in detecting the emotion of happiness,
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Table 6.Classification performance (%) of different works in multimodal emotion recognition on the SEED dataset. All methods were
evaluated with the same dataset split for training and test sets, i.e. 9/6 trial split.

Works Method Mean Std.

Lu et al[17] FLF 83.70 —
Fuzzy 87.59 —

Song et al[81] DGCNN 90.40 8.49
Liuet al[61] BDAE 91.01 8.91
Tang et al[62] Bimodal-LSTM 93.97 7.03
Liuet al[69] DCCA 94.58 6.16
Our method DCCA 95.08 6.42

Table 7.Classification performance (%) of different works in multimodal emotion recognition on the DEAP dataset. All reported
performance were evaluated using 10-fold cross validation. All methods used the same threshold of 5 for valence and arousal except
Xing et al[82], where the ratings below 4.5 were labeled as low and those above 5.5 were labeled as high.

Arousal Valence

Works Method Mean Std. Mean Std.

Xing et al[82] SAE-LSTM 74.38 — 81.10 —
Liuet al[61] BDAE 80.50 3.39 85.20 4.47
Tang et al[62] Bimodal-LSTM 83.23 2.61 83.82 5.01
Yin et al[83] MESAE 84.18 — 83.04 —
Liuet al[69] DCCA 84.33 2.25 85.62 3.48
Our method DCCA 85.34 2.90 86.61 3.76

are displayed in table6. The existing works are
based on the DE feature and eye movements. We
could observe that the best performance of95.08±
6.42% is achieved by our work, which combines the
strength feature with eye movement data to detect
three emotions (happiness, neutrality, and sadness).
These results further verify that the combination of
EEG and eye movements could enhance the classific-
ation performance.

Table7 presents the classification performances of
our work and several existing works with respect to
the DEAP dataset. The existing works are based on
the combination of peripheral physiological features
with the PSD [82,83] or DE [61,62,69] features.
The highest classification accuracy of the two bin-
ary classification tasks,85.34± 2.90% for the arousal-
level and86.61± 3.76% for the valence-level, are
both obtained by our work. These results reveal that
the strength feature is also superior to the PSD and
DE features in fusion with peripheral physiological
signals.

5.5. Critical frequency bands
In this section, we evaluate the critical frequency band
of the EEG functional connectivity network feature
on the SEED-V dataset. Figure11 presents the clas-
sification performance of different frequency bands
using the strength feature with correlation as the con-
nectivity metric. The result demonstrates that 18-
channel and 62-channel networks with correlation
edges show similar characteristics, i.e. theβ and γ
frequency bands are superior in classifying the five
emotions in comparison with other bands, which is
in accordance with the results attained by the DE fea-
ture [34, 50]. The topology similarity of these two

Figure 11.Classification performance (%) of different
frequency bands using the strength feature with two
different categories of vertices.

networks may be indicated. Additionally, the fre-
quency bands with the 18-channel approach achieve
comparable performance with that of the 62-channel
approach, which implies the possibility of applying 18
electrodes to detect emotions in real scenario applic-
ations. It should be noted that the performance of the
18-channel approach is obtained by selecting 18 out
of 62 channels in the ESI NeuroScan System instead
of direct recordings from a wearable device. The elec-
trode sensitivity could influence the signal quality and
might degrade the task performance.

5.6. Brain functional connectivity patterns
In this section, we investigate the brain functional
connectivity patterns based on the SEED-V dataset.
The emotion-relevant critical subnetworks are selec-
ted through three phases: averaging, thresholding,
and merging. The numbers of subnetworks attained
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