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Abstract: Distribution discrepancies between different sessions greatly degenerate the performance
of video-evoked electroencephalogram (EEG) emotion recognition. There are discrepancies since the
EEG signal is weak and non-stationary and these discrepancies are manifested in different trails in
each session and even in some trails which belong to the same emotion. To this end, we propose a
Coupled Projection Transfer Metric Learning (CPTML) model to jointly complete domain alignment
and graph-based metric learning, which is a unified framework to simultaneously minimize cross-
session and cross-trial divergences. By experimenting on the SEED_IV emotional dataset, we show
that (1) CPTML exhibits a significantly better performance than several other approaches; (2) the
cross-session distribution discrepancies are minimized and emotion metric graph across different
trials are optimized in the CPTML-induced subspace, indicating the effectiveness of data alignment
and metric exploration; and (3) critical EEG frequency bands and channels for emotion recognition
are automatically identified from the learned projection matrices, providing more insights into the
occurrence of the effect.

Keywords: cross-session; EEG; emotion recognition; emotion metric; transfer learning

1. Introduction

Endowing machines with emotional intelligence is indispensable for natural human-
machine interactions, making machines more humanized in communication [1,2]. EEG
directly manifests electrical activities of the human cerebral cortex, providing an objective
and reliable approach for emotion recognition [3]. Nowadays, EEG-based emotion recogni-
tion has received increasing attention from researchers due to its inherent characteristics,
such as being noninvasive, inexpensive and easy to use. In view of these advantages, EEG-
based emotion recognition has potential applications in diverse fields such as healthcare,
education, entertainment and neuromarketing [4-6].

A typical EEG-based emotion recognition system is shown in Figure 1, which is usually
composed of three stages. First, emotional video clips are played to healthy subjects to
evoke their corresponding emotional states, while raw EEG data are recorded from them
using EEG acquisition devices. Second, the raw EEG data will be preprocessed, including
removing artifacts and down-sampling. Third, features will be extracted and then fed into
a model to conduct emotion recognition. In this paper, we mainly focus on the third stage.
In the past decade, lots of emotion recognition models ranging from machine learning to
deep learning have been proposed [3,7]. For example, Shen et al. designed a multi-scale
frequency bands ensemble learning model for EEG-based emotion classification, which
effectively combined the information from different scales of frequency bands and further
enhanced the performance [8]. Gao et al. proposed a coincidence-filtering-based approach
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to combine the advantages of both artificial-features-based methods and convolutional
neural networks for EEG emotion recognition [9].

Stage 1: Data Collection
Happy Stimuli EEG recording
::‘ =1
Neutml raw EEG data
Stage 3: Feature extraction and classification Stage 2: Preprocessing
Delta
Ha
PPy Theta
Alpha
Neutral
eutral « Beta «
emotion Gamma
® Sad recognition ) removing artifacts,
model extracting feature down-sampling

Figure 1. The flow chart of EEG-based emotion recognition system.

Nevertheless, the EEG signal is weak and non-stationary such that even for the same
subject, distributions of EEG samples collected in different sessions cannot well match,
which is generally known as cross-session discrepancies [10,11]. Figure 2a demonstrates
a simple setting; that is, EEG samples of session 1 are collected on one day, and those of
session 2 are collected on another day. Due to distribution discrepancies between these
two sessions, even if a classifier is well trained by EEG samples from session 1, it may not
achieve promising performance on session 2. To solve this problem, unsupervised domain
adaptation (UDA) [12] has been introduced, which treats EEG samples of session 1 as the
source domain and that of session 2 as the target domain, and then seeks a shared subspace
of them to minimize distribution discrepancies, and thus improves the generalization
ability of the source classifier, as shown in Figure 2b. According to UDA, Zheng et al. built
several personalized EEG emotion recognition models by exploiting shared features and
transferable model parameters between both domains [13]. Li et al. enforced the latent
representations of the two domains to be similar and minimized the classification error
of source domain [14]. These methods improved the cross-session emotion recognition
performance in comparison with non-transfer methods.

(a) Distuributions in the original feature space (b) Distuributions in the
session 1 session 2 learned subspace
Unsupervised
domain
adaptatioi
. . . classifier of classifier of
o o emotion1 @ O emotion 2 emotion 3 —— gession 1 —— cession 2

Figure 2. The distribution discrepancies between EEG from different sessions.

However, there are still some limitations in existing approaches. On the one hand,
they only focus on the cross-session discrepancies of EEG, while ignoring the cross-trial
differences. Generally, each session consists of multiple trials, each of which corresponds
to a certain emotional state. Strictly, every trial is a slightly new task [10]. That is, there
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are differences among EEG samples from different trials but with the same emotional
state, which is called as cross-trial differences. For example, supposing that there are six
trials in each session with three emotional states, we build a similarity graph to depict the
connectionship of these EEG samples [15], as shown in Figure 3a. Obviously, we obtain
12 rather than three diagonal blocks in the similarity graph, which is inconsistent with
the ideal structure of a graph that the number of diagonal blocks should be equal to the
number of emotional classes [16]. That is, the cross-trial differences of EEG are large and
the similarity graph cannot well depict the underlying emotional states. Therefore, we
should learn a more reliable emotion metric which can make EEG samples belonging to the
same emotional state as interconnected as possible, whose corresponding similarity graph
is shown in Figure 3b, such that the recognition performance can be greatly improved.
On the other hand, most transfer methods mainly pursued higher emotion recognition
accuracy and only a few of them may further explore what have been learned by the
models. For example, Cui et al. developed a convolutional neural network combined
with an interpretation technique for cross-subject driver drowsiness recognition [17]. They
designed an interpretation technique to reveal relevant regions of the input signals that were
important for prediction. However, their model required extra parameters to discovery
common patterns of mental states across different subjects, which was time-consuming.
Different from them, we directly explore the properties of the coupled projection matrices
without extra parameters. The basis of it is that, from the perspective of transfer learning,
the learned projection matrices mainly extract domain-invariant features by strengthening
the common components between domains while weakening the non-common components.
Therefore, they may reveal common information of the two different sessions which do not
change over time. That is, we could conduct further investigations into them to explore the
stable EEG patterns related to cross-session emotion expression.

session 1 (a) Emotion metric graph in (b) Emotion metric graph in
Triall Trial2 Trial3 Triald Trials Trial6 the original feature space the learned subspace
_:l:_ 127834 9105 61112 127834 9105 61112
. N
session 2 i
Trial7 Trial§ Trial9 Triall0 Triall1 Triall2 ] Graph-based

metric learning

e

[ | Happy
[ E] Neutral
[ Sad

TIIT9 S 016 v € 8 L T
TIIr9 S o016 v ¢ 8 L

—

To address both issues, we propose a model termed Coupled Projection Transfer
Metric Learning (CPTML) for cross-session EEG emotion recognition, in order to not only
improve the emotion recognition accuracy by minimizing both cross-session and cross-
trial discrepancies of EEG data but also automatically reveal the stable EEG patterns of
emotion from the learned subspace. Generally, CP’TML projects data from two domains into
respective subspaces by coupled projection matrices. Then, it unifies the domain alignment
and the graph-based metric learning together into a single objective to jointly optimize the
two subspaces. The main contributions of this paper are summarized below.

Figure 3. The emotion metric graph of EEG samples from different trials.

*  We propose a transfer metric learning method to address two critical issues in cross-
session EEG emotion recognition. Specifically, for the cross-session discrepancies,
domain alignment is proposed to extract domain-invariant features, which makes
distributions of the two sessions to be aligned; for the cross-trial differences, graph-
based metric learning is designed to learn discriminative features, which makes EEG
samples from different trials but belonging to the same emotional state to connect with
each other. The extensive experimental results explicitly demonstrate the effectiveness
of these two modules.
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¢  We combine the domain alignment and the graph-based metric learning into a unified
framework. On one hand, better aligned data can provide more accurate sample
similarity measure for further graph-based metric learning; on the other hand, emo-
tional discriminative features learned by metric learning can offer more accurate target
pseudo labels, which further contributes to the conditional distribution alignment of
both domains. Experimental results verify that these two modules are complementary
to each other.

¢ Apart from improving emotion recognition accuracy, our CP’TML model can explore
the specific EEG patterns which are stable in cross-session emotion expression. It can
automatically identify the critical EEG frequency bands and channels (brain regions)
through investigating the feature weighting ability of the coupled projection matrices,
which not only provides insights into the occurrence of affective effect, but also pro-
vides theory instruction for engineers to design wearable devices for emotion-related
EEG acquisition.

The remaining contents are arranged as follows. In Section 2, we introduce the
detailed formulation and optimization of our proposed CPTML model. The experiments
were conducted to evaluate the efficacy of CPMTL in EEG emotion recognition in Section 3.
Section 4 concludes the paper.

2. Methodology
2.1. Problem Definition

Suppose we have labeled EEG samples from one session {Xs, ¥s} = {(%si, ¥si) } 121,
denoted as the source domain D5, and unlabeled EEG samples from the other session
{X;} = {xt]-};-il, denoted as the target domain D;, where X; € Rixns X, e RAxm,

Y, € RO, Xsi, Xtj € R4, Ysi € R€ is a one-hot vector, d is the feature dimensionality,
C is the number of emotional states, 11; and n; are the number of samples in source and
target domains, respectively. The feature space and label space of both domains are the
same, i.e., Xy = A} and Vs = V;; however, their marginal distributions and conditional dis-
tributions are different due to the domain shift: Ps(Xs) # Pr(X;) and Ps(Ys|Xs) # Pr(Y:| X¢).

As shown in Figure 4, we project the source and target domain data into respective
subspaces by two matrices, and then minimize the discrepancies between projected data
of the two domains. Suppose A € R s the projection matrix for source domain,
B € R is that for target domain, where df (df < d) is the dimension of corresponding
subspaces. Then, the projected data of the two domains can be represented as AT X; and
BTX;, respectively.

Source subspace  Target subspace
Source °® Target
domain +T+ o, .. o + - domain
+ + [ ] ® L 9P
+ ®e %
L+ %
o
OOO 0o
projection o o0 projection
metric A metric B
. . provide better Graph-based
Domain Alignment pseudo labels p

Metric Learning

<\
\ U 4

provide better
aligned data

Figure 4. The overall framework of CPTML.
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2.2. Domain Alignment

Due to the distribution discrepancies of EEG from different sessions, we simultane-
ously minimize marginal and conditional distributions between their projected represen-
tations according to the Maximum Mean Discrepancy (MMD) criterion [18]. In detail,
marginal distribution alignment can be achieved by minimizing the distance between the
sample means of the two domains; that is

1 & 1 ¢
Fpigm = min || — Y ATx; — — Y B w2 1
DistM AB ” s 1221 si n ]; t]H ( )

Similarly, conditional distribution alignment aims to minimize the distance between
the sample means belong to the same class of the two domains; that is

C 1 ng 1 1
Fpistc = min Z HT ZAszi - Z BTxthZ/ 2)
AB S Ms 5 i3

where 1§ and n§ denote the number of samples belonging to the c\gzl—th emotional state in
source and target domains, respectively. Since the label information of target domain data
is not available, we utilize pseudo labels to estimate the conditional distribution in target
domain, which is similar with [19,20]. Target pseudo labels are predicted by the classifier
trained on source domain data and updated with iterations.

For simplicity, we combine Fp;s:p1 and Fpjgic with the same weight. Thus, the joint
distribution alignment is formulated as

Fpist = Fpistm + Fpistc- 3)

For clarity, we rewrite Equation (3) in matrix form as

ATX U XA
. +ATX U, X!'B

Fpjs = min Tr . T f 4)
AB +B  X;U;s X A
+BTX; U, X!B

where

Uss = Py + st/ Uyt = Py + Qst/

5)
Uis = Pis + Qts, Uyt = Py + Qpt,
1 —1
Pss - *215151 Pst - 151;/
ng nsng
i ) ®)
Py = 11], Py = —1,1{,
NN n;
c ks xg,Xsi € XC,
QSS = Z QES/ (Qgs)lj = { () e . ? (7)
=1 0 otherwise,
C —1 x,eXC,x€XE
C,,C 7 trs
Qst = ) Q5 (Q5y)ij = g i ®)
=1 0 otherwise,
C 1 x.eX6 xeXE
T,,C t Z 7
Qis = Y Qb (Qf)ij =4 i T 9)
=1 0 otherwise,
C L X, € XE
2 tir At t
Qi =Y Qi (Q)ij =4t 77 (10)
= 0 otherwise,
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where 1; € R and 1; € R™ are all-one column vectors. Additionally, to avoid too much
divergence between the two subspaces, we minimize the distance of them as

Fe,, = minTr(||A — B||%). 11
sup = min (|| IE) (11)

2.3. Graph-Based Metric Learning

Though discrepancies between source and target domains have been minimized, it still
cannot guarantee that the projected data of the two domains can be discriminative enough
for emotion recognition. As described in Section 1, discrepancies between different trials
are large and EEG samples with the same emotional state cannot well connect with each
other in the graph, leading to degenerated recognition performance. Therefore, we design a
graph-based metric learning method to encourage the intra-class EEG sample pairs to stay
close while the inter-class ones stay away. Specifically, for each domain, we leverage two
kinds of graphs, i.e., intrinsic graph and penalty graph, to preserve the distance relationship
between sample pairs [21,22]. In the intrinsic graph, each EEG sample is connected with
kintrq nearest samples within the same class in the same domain; while in the penalty graph,
each EEG sample is connected with k., nearest samples from different classes in the same
domain. Then, we calculate the Laplacian matrix for each graph. Inspired by the Fisher
criterion [23], it is intuitive to compact samples in the same class and separate samples in
different classes, which can be achieved by

Fsrel _ . Tr(ATX,LsXTA) 12)
Fsep AB Tr(ATX,L3XTA)
Frg _ o T(B'X/LiX/B) -
Frgp  AB Tr(BTX;LLX[B)’

where L} € R™*" and L}, € R™*" represent the Laplacian matrix of the intrinsic and
penalty graphs in the source domain, respectively; L} € R"*™ and LL, € R™*" are those
in the target domain. The Laplacian matrix is calculated as L = D — (ST + §)/2, where S is
the weight matrix, and D;; = }; S;;. In this paper, the weight matrix S is computed by the
“HeatKernel” function, i.e., S;j would be exp(—(||x; — xj||?)/2) if x; and x; are connected,
otherwise it would be 0.

2.4. Overall Objective Function

As stated previously, domain alignment and graph-based metric learning are comple-
mentary to each other. On one hand, domain alignment offers better aligned data based
on which more accurate sample-pair distance and class information can be obtained for
subsequent graph-based metric learning; on the other hand, emotional discriminative
features learned by graph-based metric learning can help to predict more accurate target
labels, which is beneficial for better aligning the conditional distributions. Therefore, we
joint them into a unified framework.

Further, we impose two constraints on the target subspace as [24,25] did. First, to avoid
features of the target domain data being projected into irrelevant dimensions, we maxi-
mize the variance of the target projected data by Fc,,s1 = maxp Tr(BTXtOtXtT B), where
O;=1;— n%ltltT is the centering matrix, I; € R™*™ is the identity matrix. Second, we
control the scale of target subspace by Fcy,sp = ming Tr(B TB). Thus, the final objective
function of CPTML can be formulated as

Fpist + AFsup + ¥ (Fsrer + Frgtr) + #Fcons2

F = min
'Y(FSrCP + FTgtP) + .uFConsl

, (14)
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where A, v and y are trade-off parameters. It can be rewritten it into the following form

AT(XS(USS +'YL?)X5T +AI)A
+AT(X;UyX] — AI)B
+BT (XU X! — AI)A
+BT (X (U +y L) XE +(A+p) DB
min T s\ T ’
AB i A Xs(vLp)Xs A
r
+BTX;(yLh + u0) X! B

(15)

where I € R?*9 is the identity matrix. To enhance the readability, we transform Equation (15)
into the matrix form as

T([AT B] [va,t %ﬂ W)

F=min Ry 0 ][A].° 16)
/ T pT7|RNss
Tr([AT B }[0 Rtt] [B])
where 0 € R?*4 and
Wis = Xs(Uss + vL5)XT + AT
Wy = XU X[ — AT
st sUst tT ) (17)
Wis = Xl X! — A1
Wit = X;(Uy + L)X + (A +p)I
{Rss = XS (7L%)XS,T (18)
Ryt = Xi(vLh+pu0y) X!

2.5. Optimization

The two projection matrices A and B are the target variables to be optimized in
Equation (16), which is obviously a generalized Rayleigh quotient and can be optimized by
generalized eigenvalue decomposition. By denoting H £ [A; B], we introduce an Lagrange
multiplier ® and the Lagrangian function of Equation (16) can be transformed as

[Rss 0 :| _ [Wss Wst

_ Ho, 19
0 Ry Wis th} (19)

where ® = diag(¢y,- - - ,gbdf) and ¢, - - /P, are the d; largest eigenvalues of the above
eigendecomposition problem, and H = [Hy, - - - , Hy f] contains the corresponding d eigen-
vectors. Once the matrix H is solved, the optimal projection matrices A and B can be
obtained. The procedures of the proposed method CPTML is shown in Algorithm 1.

2.6. Computational Complexity

The computational complexity of CPTML consists of the following two parts. First,
computing Wss, Wst, Wis, Wy, Rss and Ry in step 3 of Algorithm 1 costs O(TCnZ), where
n = ns + n. Second, solving the generalized eigenvalue decomposition problem in step 4 of
Algorithm 1 costs O(Tddj%). Finally, the computational complexity of CPTML is O(TCn? +

Tddjzc). Specifically, in this paper, T is less than 30, which is enough to ensure convergence
of the algorithm, and dy < d < n.
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Algorithm 1 The procedure for CPTML framework.

Input: Data and labels of the source domain {X;, ¥}, data of the target domain X;; Param-
eters df/ Kintras Kinter, A, v and p;
Output: Projection matrices A and B, classifier f, and labels of the target domain data Y;.
1: Initialize A = B with Principal Component Analysis (PCA), and train a classifier f by
f-norm Regularized Least Square Regression (¢2-LSR) on the source projected data
{ATXS, Y; }; then predict the pseudo labels of the target domain data with the trained
classifier Y; = f(BTX;);
2: while not converge do
Wss Wst Rss 0
Wi th} and [ 0 Ry
4:  Solve the generalized eigenvalue decomposition problem in Equation (19), and obtain
matrix H by choosing d eigenvectors corresponding to d largest eigenvalues, then
A and B can update according to H = [A; BJ;
5. Train a new classifier f by /,-LSR on the updated source projection data {ATX;, Y;};
then update the pseudo labels of the target domain data Y; = f(BTX;);
6: end while

3:  Compute [ ] by Equations (17) and (18), respectively;

3. Experiments
3.1. Dataset

SEED_1V [11] is a widely used dataset for EEG-based emotion recognition. It is a
video-evoked EEG dataset, and 72 carefully chosen video clips are used to elicit four desired
emotion states (sad, fear, happy, and neutral). A total of 15 healthy subjects participated in
the EEG data collection experiment 3 times on different days, corresponding to 3 sessions.
In each session, each subject was asked to watch 24 video clips (6 video clips corresponding
to one emotional state) to evoke the four emotional states. That is, each session has 24 trials.
During watching video clips, EEG data of subjects were recorded by the ESI NeuroScan
system with a 62-channel cap whose electrodes are placed according to the standard
10-20 system.

Differential entropy (DE) feature of EEG data is used to evaluate performance of
models in our experiment, which is the preprocessed version of the SEED_IV dataset and
can be downloaded from https://bcmi.sjtu.edu.cn/home/seed/seed-iv.html (accessed on
25 March 2022). The DE feature also has been proved that it is the most stable and accurate
feature for emotion recognition than traditional features [26,27]. Since the DE features were
extracted from 5 different EEG frequency bands, including Delta (1-4 Hz), Theta (4-8 Hz),
Alpha (8-14 Hz), Beta (14-31 Hz), Gamma (31-50 Hz), and there are 62 channels in total,
the data format is 62 x n X 5. n is the number of samples for each subject in each session,
which is approximate 830. We reshape DE features into 310 x n by concatenating the
62 values of 5 frequency bands into a vector and then normalize them into [—1, 1] by row
and conduct decentralizing.

3.2. Experimental Settings

To investigate the performance of CPTML in the cross-session EEG emotion recognition
task, we set experiments as follows. For every subject, samples as well as their labels from
one session form the labeled source domain and samples from the other session form
the target domain. Therefore, each subject has three cross-session tasks in chronological
order, i.e., “session 1 — session 2”, “session 1 — session 3” and “session 2 — session 3”,
respectively.

We compare CPTML with several other models including the joint distribution
adaptation (JDA) [19], subspace distribution alignment (SDA) [28], jointly optimized
semi-supervised RVFL (JOSRVFL) [29] and joint domain adaptation and semi-supervised
RVFL network (JDASRN) [30]. For JDA, SDA and CPTML, the dimensionality of feature
subspace dy is determined by grid search from {5,10,---,40}. For JDA and CPTML,
the maximal number of iterations T is set as 30. In CPTML, k;,;t;, and kj;s., are searched


https://bcmi.sjtu.edu.cn/home/seed/seed-iv.html

Systems 2022, 10, 47

90f19

from {5,10,---,60}. A, v and u are searched from 5 x {1072,1071,--.,10?}. The clas-
sifier used in this paper is ¢,-LSR and the regularization parameter is searched from
{10_5, 1074,...,10° }. Additionally, since the experimental settings of JOSRVFL and
JDASRN are identical to ours, we directly use their published results.

3.3. Recognition Results and Analysis

The results of the five models on the three cross-session EEG emotion recognition tasks
are, respectively, shown in Tables 1-3, where we highlight the best accuracies in boldface.
From the obtained results, we made the following observations: (1) Generally, CPTML
performs the best among these five models. It obtains the highest recognition accuracies in
most of the total 45 cases and the best average accuracies of 82.16%, 83.69% and 84.68% in
all the three cross-session EEG emotion recognition tasks, indicating the superiority of joint
data alignment and emotion metric learning. (2) The strategy of simultaneously minimizing
cross-session and cross-trial discrepancies performs better than considering only one of
them. Specifically, as shown in Table 1, CPTML achieves 11.98% and 10.90% improvements
in comparison with JDA and SDA which only take into account the discrepancies between
different sessions. Similar phenomena can also be found in Tables 2 and 3. Additionally,
compared with JOSRVFL which mainly focuses on learning discriminative features from
EEG samples, CPTML exceeds it by 6.75%, 9.44% and 5.62% in the three cross-session tasks,
respectively. (3) CPTML outperforms JDASRN by 4.75%, 4.59% and 5.28% in the three tasks.
The main difference between them is that CP’TML employs a joint framework to complete
the domain alignment and graph-based metric learning while JDASRN uses a two-stage
manner. Since there inevitably exist interactions between these two modules, our CPTML
model is more powerful in approximating the global optimum.

Table 1. Recognition accuracies (%) on the session 1 — session 2 task.

Subjects JDA SDA JOSRVFL JDASRN CPTML
ID1 63.22 70.79 71.51 76.44 88.70
1D2 92.55 91.23 87.38 96.63 97.36
1D3 68.99 69.59 70.55 69.59 91.23
1D4 64.30 81.37 80.17 68.87 85.94
1D5 71.15 59.98 80.17 68.15 88.58
1D6 64.98 63.22 67.43 79.09 66.95
ID7 73.08 85.10 91.23 87.86 94.35
1D8 74.04 76.20 83.89 81.61 83.97
1D9 72.64 59.01 78.25 84.01 73.80
1ID10 64.18 53.25 59.13 71.75 75.24
ID11 62.98 63.58 56.49 68.15 64.54
1ID12 55.41 60.94 61.90 56.13 66.11
ID13 64.42 61.21 67.55 71.75 72.84
1D14 67.79 77.76 82.33 82.33 84.01
1ID15 93.03 95.67 93.15 98.80 98.80

Average 70.18 71.26 75.41 77.41 82.16

In addition to comparing the average accuracy rates of the five models, the Friedman
test [31] is used to illustrate the statistical significance among them. It ranks all methods
by combining the results on each group, and the higher ranking indicates the better per-
formance of the corresponding model. The detail of the statistical test is stated as follows.
The underlying hypothesis is that “all the models have the same performance”. Whether to
accept the hypothesis or not is determined by the variable 7r, which is defined as

(N — 1)TX2

NK—1) 10’ (20)

T =
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where K is the number of models, N is the number of result groups, and Ty2 is calculated as

12N & 5, K(K+1)?
T,2 = P

x K(K+1)(i;r' 4

), (21)

where r; is the average ranking of the i-th model. In this paper, K = 5, N = 45, the average
rankings of the five models are [4.21,3.84,3.17,2.47,1.31]. We can obtain 7z = 50.51
according to Equation (20). When the significance level « = 0.05 by default, the critical
value of Friedman test is 2.423 [32]. It is obvious that Tr = 50.51 is greater than 2.423; thus,
the hypothesis is rejected. Further, the Nemenyi test is used to distinguish whether there
are significant differences among these models, and the result is shown in Figure 5. In the
figure, the solid circles denote the average rankings of these models, and the length of
vertical line denotes the critical distance (CD) of Nemenyi test, which is calculated as

K(K+1)

CD =g, N

(22)
where g, is the critical value and it is 2.728 when « = 0.05 [33]. If two vertical lines do
not have overlap, it indicates that the corresponding models have statistically different
performance. As shown in Figure 5, our proposed CPTML does not have overlap with
JDASRN, JOSRVFL, SDA and JDA, which means that it is significantly better than the other
four models in the cross-session emotion recognition tasks.

5

45t
I IDA: 421
4 SDA: 3.84
35t
N JOSRVFL: 3.17
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15F
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Figure 5. Friedman test result of the five models.

Table 2. Recognition accuracies (%) on the session 1 — session 3 task.

Subjects JDA SDA JOSRVFL JDASRN CPTML
ID1 62.53 77.01 80.90 73.11 84.67
1D2 65.33 58.52 83.33 87.23 88.69
1D3 53.28 42.09 56.45 70.80 74.21
ID4 77.74 86.25 85.04 89.90 93.07
1D5 70.19 72.51 84.55 74.94 85.40
1D6 80.90 75.79 76.64 86.37 84.79
ID7 56.57 85.16 85.64 81.27 90.15
1D8 81.75 89.42 81.14 92.09 94.89
1D9 58.27 52.43 62.29 70.92 80.54

1ID10 64.84 70.21 61.07 73.48 73.51
ID11 66.06 67.82 74.33 81.75 85.89
1ID12 54.26 51.70 67.15 52.07 74.45
ID13 56.84 40.88 47.81 70.44 63.02
1D14 83.82 81.39 84.79 89.54 89.54
1ID15 80.54 78.22 82.60 92.58 92.58

Average 67.53 68.63 74.25 79.10 83.69
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Table 3. Recognition accuracies (%) on the session 2 — session 3 task.

Subjects JDA SDA JOSRVFL JDASRN CPTML
D1 58.88 66.30 62.04 60.58 76.16
1D2 59.61 64.72 89.54 72.75 74.21
ID3 84.55 66.67 79.81 89.42 86.98
1D4 67.40 85.04 92.46 96.11 97.93
1D5 72.63 71.29 80.54 82.36 83.82
ID6 55.96 86.42 88.81 79.44 89.42
1D7 90.15 91.73 87.59 90.15 94.89
1D8 65.69 83.82 83.70 81.27 88.93
D9 66.79 51.46 68.73 75.18 72.51

ID10 85.40 82.48 73.24 73.97 89.42
ID11 59.37 62.04 54.74 64.84 66.91
1D12 51.82 78.47 82.12 64.48 82.41
ID13 66.91 67.72 63.38 74.82 75.91
1D14 79.68 87.71 91.36 90.51 95.26
ID15 90.39 90.39 87.71 95.01 95.38
Average 70.35 75.75 79.05 79.39 84.68

To give an insight into the recognition performance of CPTML on each emotional state,
we use the average confusion graph to present the recognition results of the three cross-
session tasks again in Figure 6. First, we obtain the average recognition accuracies of the
four emotional states. For example, the average accuracies of the neutral, sad, fear and happy
emotional states classified by CPTML are 90%, 79%, 81% and 83%, respectively. Second,
the misclassification rates of all emotional states are explicitly provided. For example,
90% of the neutral EEG samples are correctly classified while 3%, 4% and 3% of them are
wrongly recognized as sad, fear and happy states, respectively. Third, the neutral emotional
state achieves the highest average accuracy in comparison with the others, which is the
easiest one to recognize based on our experimental results.

0.79

Figure 6. The average confusion graph of CPTML for cross-session EEG emotion recognition.

3.4. Effect of Domain Alignment and Emotion Metric Learning

In this section, we first investigate the data alignment ability of CPTML in minimizing
the domain discrepancies. As shown in Figure 7, by taking subject 5 as an example and
using the t-SNE [34] visualization method, we intuitively plot the distributions of original
data representation and CPTML-based subspace representation. From this figure, we find
that the data distributions of the two domains are significantly different in original feature
space; however, the discrepancies are dramatically reduced in the new subspaces learned
by CPTML. This is exactly what the transfer learning does. In the learned subspaces,
the source and target data share similar representations, benefiting from the joint marginal
and conditional distributions alignment. This indicates that the domain alignment module
of CPTML is effective for mitigating cross-session differences.
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(c) session 2 — session 3: original (left) and CPTML (right).

Figure 7. We take subject 5 as an example to visualize the effect of data alignment by CPTML.
Source and target domain samples are, respectively, marked as blue and red. Different shapes denote
different emotional states.

Second, we illustrate the effectiveness of CPTML in graph-based metric learning.
By means of the similarity matrix which characterizes the connection among all source and
target EEG samples, we can display the emotion metric graphs corresponding to original
feature space and the learned CPTML subspaces. Figure 8 which also takes subject 5 as an
example shows the learned results of its three cross-session recognition tasks. We observe
that there are 48 block diagonals in the graphs of original feature space, which is exactly
the total number of trials in source and target domains. According to the graph theory,
since the value within each block denotes the affinity of two corresponding samples in one
class, the number of block diagonals should be theoretically equal to the number of classes
(i.e., 4 in present research since there are four emotional states in SEED_IV). The fact that
the number of block diagonals in the left column of Figure 8 is 48 instead of 4 means that
the cross-trial divergences are greater than those of different emotional states. Specifically,
even two trials have the same emotional state, the similarities of samples in these two trials
cannot be well built due to the large cross-trial differences. Fortunately, in the learned
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CPTML subspaces shown in the right column of Figure 8, the contours of the 4 block
diagonals are significantly enhanced. It means that CPTML finds a way in appropriately
building connections for EEG samples belonging to the same emotional state. We informally
state this process as emotion metric learning, which corresponds to minimizing distances
between intra-class samples and maximizing distances between inter-class samples.
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(c) session 2 — session 3: original (left) and CPTML (right).

Figure 8. The emotion metric graph learned by CPTML on subject 5.

3.5. Knowledge Discovery on Frequency Bands and Channels

For cross-session EEG emotion recognition, we are interested not only in the classifica-
tion accuracy but also in the stable EEG patterns in cross-session emotion expression. Since
the latter can offer us more insights to the neural mechanism of emotion processing, we
expect the CPTML model to be competent for exploring where the cross-session stable EEG
features are mainly from, i.e., identifying the critical EEG frequency bands and channels.
From the perspective of transfer learning, it tries to seek shared subspaces for both source
and target samples; therefore, the two coupled projection matrices A and B should learn
domain-invariant features by strengthening the common components between domains
while weakening the non-common components. Equivalently, we propose a quantitative
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approach to measure the feature weighting ability of the two projection matrices. Below are
the detailed procedures.

Due to the multi-thythm and multi-channel properties of EEG, the sample vector
is usually formed by concatenating spectra features extracted from different frequency
bands. To be specific, the dimensionality d = 310 of the SEED_IV dataset is obtained by
each 62 points (corresponding to the 62 channels) of the 5 frequency bands (Delta, Theta,
Alpha, Beta, and Gamma). Inspired by [35], the weight of each feature dimension can be
quantitatively measured by the normalized ¢,-norm of each row of the projection matrices.

Taking A € R for example, if we use a; to denote the weight of the i-th EEG feature, it
4.2

can be calculated as a; = m

. Here A; . is the i-th row of A and its {-norm is defined

d
by 4.l = /L, 42,

Once the feature weight vector a = [a1, ap, - - - , a31p] is obtained, we can establish the
correspondence between EEG features and frequency bands (channels) in Figure 9. Then,
the importance of each frequency band can be measured by summing over the weight of
EEG features belonging to such frequency bands; that is,

62
whond 21 ai 1yxervio j =1,2,3,4,5, (23)
1=

where j = 1,2, 3,4, 5, respectively, denote the five frequency bands, Delta, Theta, Alpha, Beta,
and Gamma. Similarly, the importance of the k-th EEG channel is

5
channel
wy =Y a4 1ok k=1,2,--,62. (24)
i=1
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Figure 9. The correspondence between the projection matrix and the weight of frequency bands (chan-
nels).

The channel order can be found from the SEED_IV website.

After obtaining the learned projection matrices A and B, the importance of EEG
frequency bands and channels in both source and target domains is achieved. According
to Equation (23), the weight of frequency bands of both source and target domains are
shown in Figure 10. From this figure, we observe that in all cases, the frequency band
importance ranking of the source domain is consistent with that of the target domain.
Further, the Gamma band has the greatest importance which is considered as the most
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important frequency band in EEG emotion recognition. This result also coincides with
some previous studies [36,37]. Additionally, we calculate the importance of all channels
by Equation (24), and the top 10 important channels of both source and target domains
are shown in Figure 11. We observe that FP1, FPZ, CPZ, CZ, FP2, T7 and T8 channels are
selected in all cases, meaning that these channels are important for cross-session emotion
recognition. To be more intuitive, we transform the weight of all channels into the form of
brain topographical map, where yellow color denotes significant brain regions, as shown
in Figure 12. From it, we find that the channels in the prefrontal, left/right temporal
and central parietal lobes have larger weights. This finding is consistent with previous
research [38,39]. Based on the above observations, we conclude that our proposed CPTML
model can effectively perform emotion knowledge discovery on critical EEG frequency
bands and channels which are more powerful in cross-session emotion expression.

0.25 025} 0.24
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(a) session 1 — session 2: source (left) and target (right).

0.25

0.20

Weight

0.05

0.00 0.00
Delta Theta Alpha Beta Gamma Delta Theta Alpha Beta Gamma

(b) session 1 — session 3: source (left) and target (right).
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(c) session 2 — session 3: source (left) and target (right).

Figure 10. The importance of frequency bands corresponding to source (left) and target (right) domains.
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Figure 11. The top 10 EEG channels corresponding to source (left) and target (right) domains.
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Figure 12. The importance of EEG channels corresponding to source (left) and target (right) domains
in the form of a brain topographical map.

4. Conclusions

In this paper, we proposed a CPTML model to simultaneously minimize the cross-
session and the cross-trial data discrepancies for EEG emotion recognition. Extensive
experiments on the SEED_IV dataset demonstrated that (1) CPTML achieved better recog-
nition performance then the other models by jointly taking into consideration the domain
alignment and the graph-based metric learning. (2) In the coupled projection matrices-
induced subspaces by CPTML, data distributions between the source and target domains
were well aligned. Additionally, in the learned emotion metric graph, the connections of
EEG samples from different trials but with the same emotional state have been significantly
enhanced. (3) The Gamma frequency band and the brain regions of pre-frontal, left/right
temporal and central parietal lobes were identified by CPTML as the more important ones
in cross-session emotion expression.



Systems 2022, 10, 47 18 of 19

Author Contributions: Conceptualization, G.D. and B.L.; Data curation, ES.; Investigation, WK_;
Methodology, ES. and Y.P.; Software, ES. and Y.P.; Validation, W.K., G.D. and B.L.; Writing—original
draft preparation, ES. and Y.P.; Writing—review and editing, WK. and G.D. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program
of China (2017YFE0118200), National Natural Science Foundation of China (61971173), Zhejiang
Provincial Natural Science Foundation of China (LY21F030005), Fundamental Research Funds for
the Provincial Universities of Zhejiang (GK209907299001-008), CAAC Key Laboratory of Flight Tech-
niques and Flight Safety (FZ2021KF16), and Guangxi Key Laboratory of Optoelectronic Information
Processing, Guilin University of Electronic Technology (GD21202).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of Shanghai Jiao
Tong University (protocol code 2017060).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
Data Availability Statement: Not applicable.

Acknowledgments: The authors also would like to thank the anonymous reviewers for their com-
ments on this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, L.; Wu, M,; Pedrycz, W.; Hirota, K. Emotion Recognition and Understanding for Emotional Human-Robot Interaction Systems;
Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 1-247.

2. Papero, D.; Frost, R.; Havstad, L.; Noone, R. Natural systems thinking and the human family. Systems 2018, 6, 19. [CrossRef]

3. Alarcao, S.M.; Fonseca, M.]. Emotions recognition using EEG signals: A survey. IEEE Trans. Affect. Comput. 2017, 10, 374-393.
[CrossRef]

4. Hondrou, C.; Caridakis, G. Affective, natural interaction using EEG: Sensors, application and future directions. In Proceedings of
the Hellenic Conference on Artificial Intelligence, Ioannina, Greece, 15-17 May 2012; pp. 331-338.

5. Marei, A.; Yoon, S.A.; Yoo, ].U.; Richman, T.; Noushad, N.; Miller, K.; Shim, J. Designing feedback systems: Examining a feedback
approach to facilitation in an online asynchronous professional development course for high school science teachers. Systems
2021, 9, 10. [CrossRef]

6.  Mammone, N.; De Salvo, S.; Bonanno, L.; Ieracitano, C.; Marino, S. Brain Network Analysis of Compressive Sensed High-Density
EEG Signals in AD and MCI Subjects. IEEE Trans. Ind. Inform. 2018, 15, 527-536. [CrossRef]

7. Bhatti, M.H.; Khan, ]J.; Khan, M.U.G.; Igbal, R.; Aloqaily, M.; Jararweh, Y.; Gupta, B. Soft computing-based EEG classification by
optimal feature selection and neural networks. IEEE Trans. Ind. Inform. 2019, 15, 5747-5754. [CrossRef]

8.  Shen, F; Peng, Y.; Kong, W.; Dai, G. Multi-scale frequency bands ensemble learning for EEG-based emotion recognition. Sensors
2021, 21, 1262. [CrossRef]

9. Gao, Z; Li, Y,; Yang, Y,; Dong, N.; Yang, X.; Grebogi, C. A coincidence-filtering-based approach for CNNs in EEG-based
recognition. IEEE Trans. Ind. Inform. 2019, 16, 7159-7167. [CrossRef]

10. Jayaram, V.; Alamgir, M.; Altun, Y.; Scholkopf, B.; Grosse-Wentrup, M. Transfer learning in brain-computer interfaces. IEEE
Comput. Intell. Mag. 2016, 11, 20-31. [CrossRef]

11. Zheng, W.L.; Liu, W.; Lu, Y;; Lu, B.-L.; Cichocki, A. EmotionMeter: A multimodal framework for recognizing human emotions.
IEEE Trans. Cybern. 2018, 49, 1110-1122. [CrossRef]

12. Pan,SJ,; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345-1359. [CrossRef]

13.  Zheng, W.L,; Lu, B.-L. Personalizing EEG-based affective models with transfer learning. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, New York, NY, USA, 9-15 July 2016; pp. 2732-2738.

14. Li,J;Qiu, S.; Du, C.; Wang, Y.; He, H. Domain adaptation for EEG emotion recognition based on latent representation similarity.
IEEE Trans. Cognit. Develop. Syst. 2019, 12, 344-353. [CrossRef]

15. Nie, F; Wang, X.; Huang, H. Clustering and projected clustering with adaptive neighbors. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24-27 August 2014;
pp- 977-986.

16. Wang, X.; Nie, F; Huang, H. Structured Doubly Stochastic Matrix for Graph Based Clustering: Structured Doubly Stochastic
Matrix. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, 13-17 August 2016; pp. 1245-1254.

17.  Cui, J; Liu, Y;; Lan, Z,; Sourina, O.; Miiller-Wittig, W. EEG-based cross-subject driver drowsiness recognition with interpretable

convolutional neural network. IEEE Trans. Neural Netw. Learn. Syst. 2022. [CrossRef]


http://doi.org/10.3390/systems6020019
http://dx.doi.org/10.1109/TAFFC.2017.2714671
http://dx.doi.org/10.3390/systems9010010
http://dx.doi.org/10.1109/TII.2018.2868431
http://dx.doi.org/10.1109/TII.2019.2925624
http://dx.doi.org/10.3390/s21041262
http://dx.doi.org/10.1109/TII.2019.2955447
http://dx.doi.org/10.1109/MCI.2015.2501545
http://dx.doi.org/10.1109/TCYB.2018.2797176
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TCDS.2019.2949306
http://dx.doi.org/10.1109/TNNLS.2022.3147208

Systems 2022, 10, 47 19 of 19

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.
33.
34.
35.
36.
37.
38.

39.

Scholkopf, B.; Platt, J.; Hofmann, T. A kernel method for the Two-Sample-Problem. In Proceedings of the Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, 3-5 December 2007; pp. 513-520.

Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer feature learning with joint distribution adaptation. In Proceedings of the
2013 IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1-8 December 2013; pp. 2200-2207.

Zhang, L.; Fu, ].; Wang, S.; Zhang, D.; Dong, Z.; Chen, C.L.P. Guide subspace learning for unsupervised domain adaptation. IEEE
Trans. Neural Netw. Learn. Syst. 2019, 31, 3374-3388. [CrossRef]

Li, J.; Wu, Y; Zhao, J.; Lu, K. Low-rank discriminant embedding for multiview learning. IEEE Trans. Cybern. 2016, 47, 3516-3529.
[CrossRef]

Li, J.; Jing, M.; Lu, K; Zhu, L.; Shen, H. Locality preserving joint transfer for domain adaptation. IEEE Trans. Image Process. 2019,
28, 6103-6115. [CrossRef]

Yan, S.; Xu, D.; Zhang, B.; Zhang, H.J.; Yang, Q.; Lin, S. Graph Embedding and Extensions: A General Framework for
Dimensionality Reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 40-51. [CrossRef]

Zhang, J.; Li, W.; Ogunbona, P. Joint geometrical and statistical alignment for visual domain adaptation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 1859-1867.

Ghifary, M.; Balduzzi, D.; Kleijn, W.B.; Zhang, M. Scatter component analysis: A unified framework for domain adaptation and
domain generalization. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1414-1430. [CrossRef]

Shi, L.C; Jiao, Y.Y.; Lu, B.-L. Differential entropy feature for EEG-based vigilance estimation. In Proceedings of the IEEE
Engineering in Medicine and Biology Society, Osaka, Japan, 3-7 July 2013; pp. 6627-6630.

Duan, R.; Zhu, J.; Lu, B.-L. Differential entropy feature for EEG-based emotion classification. In Proceedings of the International
IEEE/EMBS Conference on Neural Engineering, San Diego, CA, USA, 6-8 November 2013; pp. 81-84.

Sun, B.; Saenko, K. Subspace distribution alignment for unsupervised domain adaptation. In Proceedings of the British Machine
Vision Conference, Swansea, UK, 7-10 September 2015; pp. 1-10.

Peng, Y.; Li, Q.; Kong, W.; Qin, E; Zhang, J.; Cichocki, A. A joint optimization framework to semi-supervised RVFL and ELM
networks for efficient data classification. Appl. Soft. Comput. 2020, 97, 106756. [CrossRef]

Wang, W.; Peng, Y.; Kong, W. EEG-Based Emotion Recognition via Joint Domain Adaptation and Semi-supervised RVFL Network.
In Proceedings of the International Conference on Intelligent Automation and Soft Computing, Chicago, IL, USA, 28-30 May
2021; pp. 413-422.

Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. . Am. Statist. Assoc.
1937, 32, 675-701. [CrossRef]

Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016.

Demasar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1-30.

Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579-2605.

Nie, F,; Huang, H.; Cai, X; Ding, C. Efficient and robust feature selection via joint £2,1-norms minimization. In Proceedings of the
Advances in Neural Information Processing Systems, Hyatt Regency, VC, Canada, 6-11 December 2010; pp. 1813-1821.

Zheng, W.L.; Lu, B.-L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural
networks. IEEE Trans. Auton. Ment. Develop. 2015, 7, 162-175. [CrossRef]

Peng, Y.; Lu, B.-L. Discriminative manifold extreme learning machine and applications to image and EEG signal classification.
Neurocomputing 2016, 174, 265-277. [CrossRef]

Peng, Y; Qin, F; Kong, W.; Ge, Y.; Nie, F; Cichocki, A. GFIL: A Unified Framework for the Importance Analysis of Features,
Frequency Bands and Channels in EEG-based Emotion Recognition. IEEE Trans. Cognit. Develop. Syst. 2021. [CrossRef]

Zhong, P; Wang, D.; Miao, C. EEG-based emotion recognition using regularized graph neural networks. IEEE Trans. Affect.
Comput. 2020. [CrossRef]


http://dx.doi.org/10.1109/TNNLS.2019.2944455
http://dx.doi.org/10.1109/TCYB.2016.2565898
http://dx.doi.org/10.1109/TIP.2019.2924174
http://dx.doi.org/10.1109/TPAMI.2007.250598
http://dx.doi.org/10.1109/TPAMI.2016.2599532
http://dx.doi.org/10.1016/j.asoc.2020.106756
http://dx.doi.org/10.1080/01621459.1937.10503522
http://dx.doi.org/10.1109/TAMD.2015.2431497
http://dx.doi.org/10.1016/j.neucom.2015.03.118
http://dx.doi.org/10.1109/TCDS.2021.3082803
http://dx.doi.org/10.1109/TAFFC.2020.2994159

	Introduction
	Methodology
	Problem Definition
	Domain Alignment
	Graph-Based Metric Learning
	Overall Objective Function
	Optimization
	Computational Complexity

	Experiments
	Dataset
	Experimental Settings
	Recognition Results and Analysis
	Effect of Domain Alignment and Emotion Metric Learning
	Knowledge Discovery on Frequency Bands and Channels

	Conclusions
	References

