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ABSTRACT
Affective Brain-computer Interface has achieved considerable ad-
vances that researchers can successfully interpret labeled and flaw-
less EEG data collected in laboratory settings. However, the anno-
tation of EEG data is time-consuming and requires a vast work-
force which limits the application in practical scenarios. Further-
more, daily collected EEG data may be partially damaged since EEG
signals are sensitive to noise. In this paper, we propose a Multi-
view Spectral-Spatial-Temporal Masked Autoencoder (MV-SSTMA)
with self-supervised learning to tackle these challenges towards
daily applications. The MV-SSTMA is based on a multi-view CNN-
Transformer hybrid structure, interpreting the emotion-related
knowledge of EEG signals from spectral, spatial, and temporal
perspectives. Our model consists of three stages: 1) In the gener-
alized pre-training stage, channels of unlabeled EEG data from all
subjects are randomly masked and later reconstructed to learn the
generic representations from EEG data; 2) In the personalized cali-
bration stage, only few labeled data from a specific subject are used
to calibrate the model; 3) In the personal test stage, our model can
decode personal emotions from the sound EEG data as well as dam-
aged ones with missing channels. Extensive experiments on two
open emotional EEG datasets demonstrate that our proposed model
achieves state-of-the-art performance on emotion recognition. In
addition, under the abnormal circumstance of missing channels,
the proposed model can still effectively recognize emotions.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation
methods; • Computing methodologies → Artificial intelli-
gence; Cognitive science.
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1 INTRODUCTION
Affective Brain-computer Interfaces (aBCIs) allow machines to rec-
ognize and regulate human emotions. The aBCI technology has
a vast potential not only for treating psychiatric disorders but
also for serving as assessment tools for the general population
in our daily lives [21]. Various modalities are utilized in aBCIs
including functional magnetic resonance imaging (fMRI), stereo-
electro-encephalography (SEEG), electroencephalography (EEG),
etc., where EEG signal is non-intrusive and relatively easy to col-
lect, especially with portable dry electrode EEG devices [24]. EEG
can be used in a relatively convenient way while revealing deli-
cate changes of emotion with high time resolution [8]. Among all
underlying technologies, emotion recognition is the groundwork
and milestone of aBCIs [4] making it a critical topic to investi-
gate, and accurately evaluating people’s emotion states can also
contribute to the mental health assessment [3]. Thus, EEG-based
emotion recognition has evolved rapidly in recent years with many
excellent studies exploiting intact EEG data in a supervised manner
[10, 14, 17, 31]. However, they usually demand annotated EEG data
which requires a lot of workforce.

Imagine in the future brain-big-data center where EEG data
from a massive group of people are sent back in real-time so that
an abundance of unlabeled signals will be collected. Meanwhile,
EEG data are usually sensitive to noise so they may be corrupted
in real-world applications. Thus, many current outstanding super-
vised structures aiming for labeled and flawless data may perform
inadequately. To get through those obstacles of practical applica-
tions, self-supervised learning is a data-efficient paradigm decoding
representations with generalization ability, which draws growing
attention in recent years [18].

There are several studies focused on contrastive learning to learn
the representations of EEG data which can tackle the problems of
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lacking labeled data [2, 11, 20]. However, if the data is also cor-
rupted, it will be more applicable to utilize generative learning with
auto-encoding structures to decode the representations of original
data from the corrupted inputs. He et al. [9] proposed a masked
autoencoder for self-supervised learning in the computer vision
area achieving excellent performance. However, it cannot be di-
rectly employed well in EEG-based emotion recognition since the
different properties between images and EEG signals.

To cope with these challenges, we propose a Multi-view Spectral-
Spatial-Temporal Masked Autoencoder (MV-SSTMA) with self-
supervised learning that can fully utilize themulti-view information
of increasing unlabeled EEG data and also be able to recognize emo-
tion states from damaged data. The MV-SSTMA model is based on
a multi-view CNN-Transformer hybrid structure, consisting of the
spectral embedding, multi-head spacial attention, and multi-scale
casual convolution components for interpreting the spectral, spa-
tial and temporal information of EEG signals. To be explicit, our
model pre-trains a generalized model with unlabeled EEG data of
all subjects by reconstructing masked data. The generalized model
is shared by all subjects and will be stronger with the growth of the
collected EEG data. Then only few labeled data of a specific subject
are required to calibrate the model for personalization. Finally, the
model has the ability to decode emotion states from both sound
and damaged EEG data for the target individual in the test stage.

The main contributions of this paper are as follows:
• Weproposed aMulti-view Spectral-Spatial-TemporalMasked
Autoencoder for solving the problems of decoding emotions
from few labeled and damaged EEG data towards daily ap-
plications.

• Our proposed model is based on a CNN-Transformer hybrid
structure which is delicately designed to utilize the spectral,
temporal and spacial properties of EEG signals, improving
the performance of EEG-based emotion recognition.

• Extensive experiments demonstrate our proposed method
can learn the generalized representations of EEG signals
from abundant unlabeled EEG data and achieves excellent
performance for recognizing emotion states from both flaw-
less and impaired EEG data with only few labeled samples
to calibrate.

2 RELATEDWORK
In this section, we review the related work in two perspectives:
EEG-based emotion recognition and self-supervised learning.

2.1 EEG-based Emotion Recognition
EEG-based emotion recognition draws growing attention currently
while progressive studies are conducted to improve its performance.
One important stage of EEG-based emotion recognition is feature
extraction since EEG signals are complicated neural data. Before the
deep learning methods are extensively adopted, spectral EEG fea-
tures were commonly investigated such as power spectral density
(PSD)[7], differential entropy (DE) [6] and differential asymmetry
(DASM)[19], etc., from which DE feature is proved to be the most
precise and stable one [30] in EEG-based emotion recognition tasks.

Along with the popularization of deep learning methods, com-
plex computational models comprised of various processing units

are authorized to perform further and deeper feature extraction
[13], and progressive studies explore to further interpreting EEG
features from different domains: the spectral domain, spacial do-
main, and temporal domain. Alhagry et al. [1] exploited temporal
features with a two-layer long short-term memory network. Zhang
et al. [27] practiced a recurrent neural network (RNN) to learn
spacial-temporal representation from EEG signals. Zhong et al. [31]
proposed regularized graph neural networks taking account of
the topological structure of EEG channels for EEG-based emotion
recognition. Li et al. [14] practiced a multi-domain adaptive graph
convolutional network to exploit complementary knowledge be-
tween the temporal and spatial domains of EEG signals. Although
those studies in a supervised manner successfully promoted the
performance of EEG-based emotion recognition, they all need la-
beled and sound EEG data which are relatively difficult to deploy
in daily applications.

2.2 Self-supervised Learning
Self-supervised learning can interpret feature representations from
unlabeled data, driving advances of technologies in the big data
era. Considerable models based on self-supervised learning emerge
during the past decades, including the models with contrastive
learning and generative learning, and so on [18].

Contrast learning is a technique of learning common attributes
between data classes and distinguishing one data class from another
by contrasting samples, which enhances the performance in many
visual tasks. For example, Chen et al.[5] came up with SimCLR as
simplified contrastive self-supervised learning of visual represen-
tations without requiring specialized architectures or a memory
bank, achieving excellent performance in computer vision. For EEG
data, Kostas et al. [12] adapted contrastive self-supervised learning
to learn the compressed representation of EEG data. Banville et al.
[2] investigated self-supervised learning to learn representations
of EEG signals based on temporal context prediction as well as
contrastive predictive coding on the problems of EEG-based sleep
staging and pathology detection. Jiang et al.[11] proposed a self-
supervised contrastive learning method of EEG signals for sleep
stage classification. Furthermore, Mohsenvand et al. [20] extended
SimCLR to time-series EEG signals for emotion recognition. Most
of the existing methods are based on contrast learning, and various
transformations in the proxy task are designed for time-series raw
EEG signals.

Generative learning with auto-encoding models can reconstruct
inputs from the original or corrupted inputs and construct the repre-
sentation distribution at a point-wise level such as pixels in images
and nodes in graphs, which is suitable and applicable in EEG-based
emotion recognition for recognizing emotions from few labeled and
damaged EEG data. The proxy task of reconstructing the masked
EEG channels is not only suitable for all kinds of EEG data such as
the pre-extracted spectral features but also can solve the problem
that EEG channels are easily corrupted or contaminated during
actual use. Masked autoencoder is a general denoising autoencoder
and is robust to the introduction of noise [26]. He et al. [9] presented
masked autoencoders (MAE) as scalable self-supervised learners
for computer vision to reconstruct the missing patches in images.
Nevertheless, MAE cannot be directly applied well with EEG data
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Figure 1: The overall process of our proposed Multi-view Spectral-Spatial-Temporal Masked Autoencoder based on a multi-view
CNN-Transformer hybrid structure.

considering the complication of EEG signals, and it doesn’t take
temporal properties into account.

3 METHODOLOGY
3.1 Formulation
The pre-training dataset is concatenated by the unlabeled training
data of all subjects, which is represented as X = {X1, . . . ,X𝑆 },
where 𝑆 denotes the number of the subjects. The concatenated
EEG features are the extracted spectral features and can also be
represented by a sequence X = (x1, x2, . . . , x𝑁 ) ∈ R𝑁×𝐶×𝐹 , where
𝑁 is the number of samples in time series,𝐶 denotes the number of
EEG channels, and 𝐹 represents the set of frequency bands (𝛿 : 1-4
Hz, 𝜃 : 4-8 Hz, 𝛼 : 8-14 Hz, 𝛽 : 14-31 Hz, and 𝛾 : 31-50Hz) converted
by a short-time Fourier transform (STFT) in the spectral domain.
The pre-trained general feature extractor is denoted as 𝐸, and the
calibrated emotion predictor for a specific subject 𝑠 is represented
as 𝐸𝑠 , where 𝑠 denotes the 𝑠-th subject. X𝐶𝑠 and Y𝐶𝑠 represent the
calibration data and label, respectively. The test data and label are
denoted as X𝑇𝑠 and Y𝑇𝑠 for the subject 𝑠 .

3.2 Overview
We design a Multi-view Spectral-Spatial-Temporal Masked Autoen-
coder (MV-SSTMA) based on a multi-view CNN-Transformer hy-
brid structure, which is depicted in Figure 1. The whole model
can be divided into three stages: a generalized pre-training stage,
a personalized calibration stage, and a personal test stage. In the
pre-training stage, channels of unlabeled EEG data X from all sub-
jects are randomly masked and later reconstructed to learn the
general information extracted by the feature extractor 𝐸 which is
shared by all subjects. In the personalized calibration stage, only
few labeled data X𝐶𝑠 and Y𝐶𝑠 from a specific subject 𝑠 are used to

calibrate the personal emotion predictor 𝐸𝑠 from the pre-trained
generalized feature extractor 𝐸. In the test stage, the sound EEG
data as well as the damaged data X𝑇𝑠 could be decoded to recognize
the emotion states by 𝐸𝑠 . The algorithm of the overall process is
shown as Algorithm 1.

3.3 Generalized Pre-training
In this stage, we pre-train the generalized feature extractor 𝐸, which
learns the knowledge of unlabeled EEG data from all subjects aim-
ing to better recognize emotion states for a specific subject later. To
deal with the problems of decoding emotions from few and dam-
aged EEG data, we choose the generative learning of reconstructing
the masked EEG channels as the proxy task to learn the general
representations of EEG data. Considering characteristics of EEG
signals, we design the pre-training model based on a multi-view
CNN-Transformer hybrid structure, which consists of a spectral em-
bedding layer, a spatial positional encoding layer, 𝐿 hybrid encoders,
and 𝐿 symmetric hybrid decoders. Each hybrid block includes a tem-
poral multi-scale casual convolution layer and a spatial multi-head
self-attention layer.

3.3.1 Spectral Embedding and Position Encoding. As the differential
entropy (DE) feature has been proved to have excellent performance
in EEG-based emotion recognition tasks [6], we use the DE feature
extracted from the EEG signals in the spectral domain as the inputs
of the model. The extracted DE feature X = (x1, x2, . . . , x𝑁 ) ∈
R𝑁×𝐶×𝐹 are transformed into samples X̃ = (x̃1, x̃2, . . . , x̃𝑁 ) ∈
R𝑁×𝐶×𝑇×𝐹 with an overlapping window of 𝑇 seconds. For each
sample 𝑖 , x̃𝑖 ∈ R𝐶×𝑇×𝐹 . In the spectral embedding layer, we first
project x̃𝑖 into a 𝐷- dimensional space via a linear layer to embed
the spectral information of EEG signals. Thus x̃𝑖 is embedded into
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the shape of 𝐶 ×𝑇 × 𝐷 , which is formulated as follows:

x̃(𝑠)
𝑖

= x̃𝑖w(𝑠) + b(𝑠) , (1)

where the weight vector w(𝑠) ∈ R𝐹×𝐷 and bias b(𝑠) ∈ R𝐷 .
For the spatial positional encoding layer, we divide EEG data into

patches according to the EEG channels in the dimension 𝐶 . One
patch represents one EEG channel. To remember the position of
each EEG channel and reconstruct it later, the sine-cosine positional
encoding is added on 𝐶 in the spatial dimension.

For the masking step, we randomly sample a visible subset x̃𝑣
𝑖
∈

R𝐶𝑣×𝑇×𝐷 and mask subset x̃𝑚
𝑖

∈ R𝐶𝑚×𝑇×𝐷 , where 𝐶𝑣 ∪ 𝐶𝑚 = 𝐶 .
Only the x̃𝑣

𝑖
is employed as the input of the hybrid encoder.

3.3.2 Temporal Multi-scale Casual Convolution. To capture the
temporal information of the EEG signals, the multi-scale Casual
Convolution layer is introduced to enable the model to learn dy-
namic temporal representations. We implement three branches of
casual convolution layers with long, medium, and short kernel sizes,
corresponding to the blocks of CasualConvT-L, CasualConvT-M,
and CasualConvT-S in Figure 1.We aim to calculate a temporal brain
summary for each EEG channel from the input spectral feature.

Multi-scale. The multi-scale Casual Convolution layers employ
casual convolution with multiple lengths of convolutional kernels
to capture different ranges of timesteps. The short temporal kernel
aims to learn the short-term representations while the long tempo-
ral kernel is employed to extract long-term representations. From
the multi-scale temporal kernels, the diverse representations of EEG
data can be enriched and the emotion-related information can be
learned fully. The dynamic long short-term temporal patterns are
generated by applying the multi-scale temporal kernels in parallel
on the input EEG samples. The temporal convolutional kernel size
𝑘𝑡 × 1 of CasualConvT-L, CasualConvT-M, CasualConvT-S are set
as 𝑘𝑙 × 1, 𝑘𝑚 × 1, and 𝑘𝑠 × 1, respectively.

Channel-wise Casual Convolution. Unlike temporal images
of videos, time series of EEG signals are represented as contigu-
ous sequences of every single channel. Therefore, for each scale
branch, we calculate a temporal brain summary B̃𝑡 for each chan-
nel 𝑐 ∈ {1, . . . ,𝐶} where the embedding of 𝑐 is updated by the
adjacent frames of the same channel. More explicitly, the convolu-
tion operation with the kernel size of 𝐾𝑡 × 1 is performed on the
temporal dimension 𝑇 of the input B𝑖𝑛 ∈ R𝐶𝑣×𝑇×𝐶 in each EEG
channel. Here, 𝐾𝑡 ensures the temporal information is encoded in
the neighborhood.

Further, causal convolutions are used to force no information
flow from the future to the past. As shown in Figure 2, the output at
time 𝑡 depends only on inputs from time 𝑡 and earlier. The channel-
wise temporal convolution implemented in our model does not
change the shape of the vector, so the zero-padding with the length
of 𝐾𝑡 − 1 is added to keep the shape unchanged. The temporal
convolution for three scale branches in our model can be formulated
as :

B̃𝑠𝑡 = BN(CasualConvT(B𝑖𝑛, (𝑘𝑠 , 1))), (2)
B̃𝑚𝑡 = BN(CasualConvT(B𝑖𝑛, (𝑘𝑚, 1))), (3)

B̃𝑙𝑡 = BN(CasualConvT(B𝑖𝑛, (𝑘𝑙 , 1))), (4)
whereB𝑖𝑛 ∈ R𝐶𝑣×𝑇×𝐶 is the input spectral features and is set to x̃𝑣

𝑖
∈

R𝐶𝑣×𝑇×𝐷 in the first layer. B̃𝑠𝑡 , B̃
𝑚
𝑡 and B̃𝑙𝑡 are the temporal summary

of different scales retaining the same shape of 𝐶𝑣 ×𝑇 × 𝐷 , and BN
is the batch normalization operation to maintain the stability of the
model.
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Figure 2: The process of the spatial attention between EEG
channels and the channel-wise casual convolution when the
temporal kernel size is set to 3 × 1.

3.3.3 Spatial Multi-head Self-Attention. Following the temporal
convolutional layer, the spatial multi-head self-attention is em-
ployed to learn dynamics and inter-channel dependencies from all
visible EEG channels, as shown in Figure 2. For the long scale branch,
reshaping the B̃𝑙𝑡 into the shape of𝐶𝑣 ×𝑇𝐷 , then the temporal brain
embedding can be represent as B̃𝑙𝑡 =

[
𝑏𝑙1, . . . , 𝑏

𝑙
𝐶𝑣

]
∈ R𝐶𝑣×𝑇𝐷 . We

utilize the scaled dot-product [25] to explicitly capture the topo-
logical relationships between EEG channels, which is formulated
as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑄𝐾𝑇
√
𝑇𝐷

)
, (5)

where 𝑄 , 𝐾 , and 𝑉 denote the query vector, key vector and value
vector, respectively and 𝑇𝐷 is the dimension of the key vector
which is employed to scale the dot products.

The dot-product similarity is evaluated between the query repre-
sentation𝑄 of the channel of interest with 𝐾 . If𝑄 and 𝐾 are similar,
meaning high attention weight, then the corresponding value is
assumed relevant. The 𝑄 , 𝐾 and 𝑉 vectors here are the projections
of the input brain embeddings B̃𝑙𝑡 . Specifically, the spatial brain
summary for the long scale branch, denoted as 𝐵𝑙𝑠 , is calculated
as the attention weight between EEG channels by the multi-head
attention [25]:

𝑄𝑙(𝑖) =
[
𝑏𝑙1, . . . , 𝑏

𝑙
𝐶𝑣

]
𝑊 𝑙

(𝑄,𝑖) , 𝑄
𝑙
(𝑖) ∈ R

𝐶𝑣×𝑀 , (6)

𝐾𝑙(𝑖) =
[
𝑏𝑙1, . . . , 𝑏

𝑙
𝐶𝑣

]
𝑊 𝑙

(𝐾,𝑖) , 𝐾
𝑙
(𝑖) ∈ R

𝐶𝑣×𝑀 , (7)

𝑉 𝑙(𝑖) =
[
𝑏𝑙1, . . . , 𝑏

𝑙
𝐶𝑣

]
𝑊 𝑙

(𝑉 ,𝑖) ,𝑉
𝑙
(𝑖) ∈ R

𝐶𝑣×𝑀 , (8)

ℎ𝑒𝑎𝑑𝑙𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

(
𝑄𝑙(𝑖) , 𝐾

𝑙
(𝑖) ,𝑉

𝑙
(𝑖)

)
= 𝐴𝑙𝑉 𝑙(𝑖) , (9)

𝐵𝑙𝑠 = 𝐶𝑜𝑛𝑐𝑎𝑡

(
ℎ𝑒𝑎𝑑𝑙1, . . . , ℎ𝑒𝑎𝑑

𝑙
𝐻

)
𝑊 𝑙

(𝑂) , (10)

where ℎ𝑒𝑎𝑑𝑙
𝑖
∈ R𝐶𝑣×𝑀 , 𝑖 ∈ {1, . . . , 𝐻 } and 𝑀 = 𝑇𝐷/𝐻 .𝑊 𝑙

(𝑂) ∈
R𝐻𝑀×𝑇𝐷 is the the weight matrix for concatenating and projecting
the results from multi-head back into representation space. The
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spatial attention matrix 𝐴𝑙 ∈ R𝐶𝑣×𝐶𝑣 denotes how much attention
a channel pays to the other channel.

The other two branches are processed the same as the long scale
branch. The spatial brain embedding in three scale branches are
fused by the sum operation:

𝐵 (𝐶𝑣 ) = 𝐵𝑠𝑠 + 𝐵𝑚𝑠 + 𝐵𝑙𝑠 , (11)

where 𝐵𝑠𝑠 , 𝐵𝑚𝑠 , and 𝐵𝑙𝑠 denote the outputs of the spatial attention
layers in the short scale branch, the median scale branch, and the
long scale branch, respectively and 𝐵 (𝐶𝑣 ) represents the overall
spatial brain summary of three scale branches from all visible EEG
channels. After the spatial attention, the layer normalization and the
feed-forward network are following. There are 𝐿 CNN-Transformer
hybrid encoders stacked to update the embeddings and further
extract the EEG features. The final embedding is denoted as x̃𝑣𝑒

𝑖
∈

R𝐶𝑣×𝑇×𝐷 .

3.3.4 Decoder and Reconstruction. After the feature extractor, we
apply the symmetric decoder to reconstruct the masked EEG chan-
nels, which consists of 𝐿 similar CNN-Transformer hybrid blocks
and a linear layer. The symmetric structure of the encoder-decoder
is designed for a stronger decoder to reconstruct complicated EEG
data. The input to the decoder is the full set consisting of the en-
coded visible channels x̃𝑣𝑒

𝑖
∈ R𝐶𝑣×𝑇×𝐷 and the masked channels

x̃𝑚𝑒
𝑖

∈ R𝐶𝑚×𝑇×𝐷 . x̃𝑚𝑒
𝑖

is set as parameters that are randomly ini-
tialized and concatenated with the encoded visible channels. The
decoder outputs the reconstructed EEG feature x̃𝑟𝑒𝑐

𝑖
∈ R𝐶×𝑇×𝐹 .

The reconstruction process predicts values for each masked EEG
channel. The loss is only computed between reconstructed patches
x̃𝑟𝑒𝑐
𝑖𝑚

∈ R𝐶𝑚×𝑇×𝐹 for the masked channels and the corresponding
original EEG features by the mean squared error (MSE). Finally, we
obtained a pre-trained general feature extractor 𝐸 by minimizing
the reconstruction loss.

3.4 Personalized Calibration & Test
For a specific subject 𝑠 , the calibration data are composed of few
labeled samples from each kind of emotion state in the original
training dataset of the subject 𝑠 , which are denoted as X𝐶𝑠 and Y𝐶𝑠 .
Since the EEG data are chronologically recorded, it is reasonable
to take the data from the very beginning of the training dataset as
the calibration data. We obtain a personalized calibrated emotion
predictor 𝐸𝑠 by fine-tuning the generalized feature extractor 𝐸,
followed by a linear layer to predict the emotion class. We measure
the classification loss by cross-entropy.

In the test stage, our model accepts both sound and damaged
EEG data. We use the test set of the subject 𝑠 from the original test
dataset, denoted as X𝑇𝑠 and Y𝑇𝑠 to verify the effectiveness of the
personalized model 𝐸𝑠 . To simulate the impaired data, we masked
channels the same way as the pre-training stage does.

4 EXPERIMENTS
4.1 Datasets
Our proposed model is evaluated on two popular affective EEG
datasets (SEED [29] and SEED-IV [28]). The stimuli materials of
these datasets are all video clips.

Algorithm 1: The process of the Multi-view Spectral-
Spatial-Temporal Masked Autoencoder.
Input:

The pre-training data X = {X1, . . . ,X𝑆 }.
The calibration data X𝐶𝑠 and label Y𝐶𝑠 .
The test data X𝑇𝑠 for the target subject 𝑠 .

Output:
The generalized feature extractor 𝐸.
The personalized emotion predictor 𝐸𝑠 .
The predicted emotion class Ŷ𝑇𝑠 .

Generalized Pre-training Stage :
1 Randomly initialize 𝐸.
2 Mask the Pre-training data: X𝑚𝑎𝑠𝑘 =𝑚𝑎𝑠𝑘 (X).
3 Reconstruct the input data: X𝑟𝑒𝑐 = 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (X𝑚𝑎𝑠𝑘 ).
4 Optimize 𝐸 by minimizing the reconstruction MSE loss:
𝑙𝑜𝑠𝑠𝑟𝑒𝑐 = 𝑀𝑆𝐸 (X,X𝑟𝑒𝑐 ).
5 return 𝐸.

Personalized Calibration Stage :
6 Initialize 𝐸𝑠 with 𝐸.
7 Predict the Emotion class: Ŷ𝐶𝑠 = 𝐸𝑠 (X𝐶𝑠 ).
8 Fine-tune 𝐸𝑠 by minimizing the classification loss:
𝑙𝑜𝑠𝑠𝑐𝑙𝑠 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (Y𝐶𝑠 , Ŷ𝐶𝑠 ).
9 return 𝐸𝑠 .

Test Stage :
10 Predict the emotion class: Ŷ𝑇𝑠 = 𝐸𝑠 (X𝑇𝑠 ).
11 return Ŷ𝑇𝑠 .

SEED Dataset contains EEG signals of 15 participants divided
into three emotion states including positive, neutral, and negative.
Every subject conducted three sessions of 15 trials each at different
times. In each session, the first 9 trials are usually used as training
data and the remaining 6 trials are used as test data [29].

SEED-IV Dataset is collected for four emotion states: happy,
sad, fear, and neutral emotions. 15 subjects participated in three
sessions on different days with 24 trials each. In general, the first
16 trials are training data and the remaining 8 ones are the test data
for each session [28].

4.2 Implementation Details
To make our results comparable, we follow the same common
experimental settings as the prior studies [14, 15, 17, 23, 27, 29,
31] on two datasets, whose performance is evaluated by averaged
accuracy and standard deviation over the sessions, as the classes
in the datasets are balanced. For each experiment, our pre-training
data X are concatenated from unlabeled original training data of
all subjects, composed of the 9 trials for the SEED dataset and 16
trials for the SEED-IV dataset. Few labeled data with the number of
10,20,30 for each emotion state from the beginning of the training
dataset of the target subject are used for calibration.

The pre-training data X ∈ R𝑁×𝐹×𝐶 are transformed into X̃ ∈
R𝑁×𝐹×𝑇×𝐶 by an overlapping window with the size of 𝑇 to keep
the same sample size 𝑁 as the compared experiments, where 𝑇 is
set to 10 samples and 𝐶 is the number of the EEG channels, which
is equal to 62. The experiments utilized PyTorch [22] deep learning
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Table 1: Average accuracies and standard deviations (acc/std
%) of our model and baselines in SEED and SEED-IV datasets
when using all labeled training data.

Model
Dataset

SEED SEED-IV
Acc. Std. Acc. Std.

STRNN 89.50 7.63 - -
DGCNN 90.40 8.49 69.88 16.29
BiDANN 92.38 7.04 70.29 12.63
BiHDM 93.12 6.06 74.35 14.09
R2G-STNN 93.34 5.96 - -
RGNN 94.24 5.95 79.37 10.54
MD-AGCN 94.81 4.52 87.63 5.77
MAE 92.27 5.19 87.81 5.36
MV-SSTMA 95.32 3.05 92.82 5.03

framework. The learning rate of our model range from 0.001 to
0.00001 for each experiment. Moreover, the spectral embedding
size 𝐷 is set to 16, and the number of the hybrid block 𝐿 equals to
6. The multi-head dimension 𝐻 is set to 6. The compared MAE[9]
method implemented in this paper follows a similar design as our
MV-SSTMA to fit the EEG data, calculating the spatial attention
between EEG channels but removing the multi-view and temporal
aspects of MV-SSTMA.

4.3 Baseline Models
• STRNN[27]: The spatial-temporal recurrent neural network
is based on a unified spatial-temporal dependency model
that learns the information from both spatial and temporal
domains of EEG signals.

• DGCNN[23]: Dynamical graph convolutional neural net-
work learns the representations of EEG signals by graph
convolution in a dynamic way for EEG-based emotion recog-
nition.

• BiDANN[16]: Bi-hemispheres domain adversarial neural net-
work focuses on discriminative features of EEG signals from
both the right and left sides of the hemispheres of the brain
for EEG-based emotion recognition.

• BiHDM[15]: Bi-Hemispheres discrepancy model investigates
the asymmetric differences of the right and left hemispheres
of the brain.

• R2G-STNN[17]: A region to global spatial-temporal neural
network model learns the global and regional EEG represen-
tations in both spatial and temporal aspects of EEG signals.

• RGNN[31]: Regularized graph neural network explores the
topology of EEG channels with graph convolution.

• MD-AGCN[14]: A multi-domain adaptive graph convolu-
tional network taking full advantages of features on different
domains.

• MAE[9]: Masked autoencoders as scalable self-supervised
learners by reconstructing the missing patches in images for
computer vision.

Table 2: Average accuracies and standard deviations (acc/std
%) of our model and baselines in SEED and SEED-IV datasets
when using few labeled training data.

Model # Labeled
Data

Dataset
SEED SEED-IV

Acc. Std. Acc. Std.

MD-AGCN
10 63.02 4.59 62.25 3.15
20 65.07 4.49 64.84 3.07
30 65.51 5.23 65.28 3.40

MAE
10 76.50 9.16 73.73 8.77
20 77.18 8.29 75.24 9.40
30 77.54 8.53 76.11 7.74

MV-SSTMA
10 81.40 7.67 80.22 7.66
20 81.94 6.90 80.94 7.06
30 83.49 6.35 82.55 6.44

4.4 Results Analysis and Comparison
4.4.1 Results for Different Numbers of Calibration Data. Wepresent
the results of comparison between our model and advanced baseline
models using all labeled and few (with numbers of 10, 20, and 30
for each kind of emotion state) labeled training data on SEED and
SEED-IV datasets in Table 1 and Table 2, respectively. For each kind
of emotions, the 10, 20, and 30 labeled data are from the beginning
of the trial in the same period. To be noted, our results are only
compared with the advanced models that follow the same common
experimental settings.

Table 1 shows that our model achieves state-of-the-art results in
comparison with supervised methods on both SEED and SEED-IV
datasets, which indicates pre-training process can improve the gen-
eralization and efficiency of the model, especially on the problems
with more emotion classes. Specifically, the recognition accuracy
of our model reaches 95.32% with a standard deviation of 3.05% on
the SEED dataset. On the SEED-IV dataset, our model achieves sig-
nificant improvement with the highest accuracy of 92.82% and the
lowest standard deviation of 5.03%. Furthermore, the MAE method
also exceeds baselinemethods on SEED-IV, whereas performsworse
than some supervised models on SEED. The reason might be that
those supervised models take temporal information of EEG into
account.

In the case of only few labeled data for calibration, the proposed
MV-SSTMA is evaluated with the self-supervised method MAE and
the supervised methodMD-AGCN. The column of # Labeled Data in
Table 2 means the number of labeled training data for each kind of
emotion state we use to calibrate the model. The accuracy increases
while more labeled data are used for all models. The increment is
minor might because labeled data of different numbers are adjacent
and token from the same period implying the lack of diversity. In
addition, our model outperforms MAE and MD-ADCN in every
scenario.

The Paired t-test is also conducted on the performance of MV-
SSTMA and MAE for all subjects in all situations above, as well
as performance of MV-SSTMA and MD-AGCN. The significance
levels are much lower than 1% in all cases, indicating the significant
differences between them.
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Figure 3: The confusion matrices on SEED and SEED-IV datasets with 10 and all labeled training data to calibrate for MV-SSTMA.
Each column represents the predicted class that our model outputs and each row serves as the target class.

Table 3: Average accuracies and standard deviations (acc/std
%) of our model and baselines on SEED-IV for different rates
of impaired channels with 10 labeled training data.

Model Impaired rates
30% 50% 70%

MD-AGCN 57.32/4.05 56.91/4.11 56.26/4.25
MAE 66.86/7.99 64.73/8.01 59.93/7.38
MV-SSTMA 73.68/7.58 70.81/6.58 65.11/5.64

In general, two components may contribute to the improvement
in the performance: 1) The pre-training stage captures the general-
ization representation of EEG signals while the calibration process
specifies the model to individuals overcoming subject domain shift.
2) Our proposed model thoroughly utilizes EEG signals on the
spectral, temporal, and spatial domains.

4.4.2 Results for Impaired Channels. We demonstrate the results
of different rates of impaired channels in test data with 10 labeled
calibration data on the SEED-IV dataset in Table 3. Each column
stands for the percentage of impaired channels in test data. The
reason for employing the SEED-IV dataset is that the four emotion
categories in SEED-IV include all three emotion states in SEED.
From Table 3, it is apparent that when 30% of channels in test
data are corrupted, emotion states can be well recognized with
MV-SSTMA, achieving the accuracy of 73.68% and 7.58% standard
deviations with only 10 labeled calibration data. In addition, even
with more damaged EEG channels, our model can still distinguish
emotion states well.

4.5 Ablation Study
To demonstrate the effect of the channel-wise casual convolutional
layer in the hybrid encoder block, we implement the ablation study
by replacing the channel-wise casual convolutional layer with a
temporal embedding, namely NoHybrid. In the NoHybrid model,
the temporal information is still considered by adding temporal
embedding in the original spectral embedding layer, but it cannot
be viewed interchangeably with spatial information in 𝐿 encoder
blocks. We also implement the ablation study by reducting the

Table 4: Ablation Study for the classification performance
(acc/std %) with different numbers of labeled calibration data
on SEED and SEED-IV datasets.

Model # Labeled
Data

Dataset
SEED SEED-IV

Acc. Std. Acc. Std.

NoHybrid

10 76.60 6.24 75.95 8.01
20 78.09 7.51 76.50 5.62
30 78.21 7.44 77.05 7.54
All 94.44 4.67 88.44 8.13

SingleScale

10 80.21 6.19 78.97 5.99
20 80.24 6.60 79.44 7.34
30 81.03 5.75 79.55 7.90
All 95.01 3.32 91.44 5.88

MV-SSTMA

10 81.40 7.67 80.22 7.66
20 81.94 6.90 80.94 7.06
30 83.49 6.35 82.55 6.44
All 95.32 3.05 92.82 5.03

multi-scale temporal branches of MV-SSTMA, that only employ
one single scale branch in the model, named SingleScale. The casual
convolution in the SingleScale model is also replaced by normal
convolution operation to evaluate the contribution of the casual
convolution.

Table 4 exhibits the performance of our MV-SSTMA, the model
NoHybrid, and the model SingleScale with different numbers of
calibration labeled data for each kind of emotion state on SEED
and SEED-IV datasets. The fact that our model always surpasses
NoHybrid model and SingleScale model indicates the importance
of the channel-wise casual convolutional layer in the hybrid en-
coder block and the multi-scale branches with casual convolution.
Moreover, as the temporal information is also considered in the
NoHybrid model and SingleScale model, their performance are still
better than MAE.
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Figure 4: The topographic maps of the reconstructed test data with different mask rates for four emotion states in the 𝛾 band.
The row denotes different emotion states. The first column is the original data, while the rest columns stand for the position
layout of the masked EEG channels and reconstructed data with different mask rates. Color white and black in position layout
mean the masked and visible areas, respectively.

4.6 Visualization
Figure 3 presents the confusion matrices of MV-SSTMA with 10
and all labeled training data to calibrate on both SEED and SEED-IV
datasets, illustrating the ability to discriminate each emotion state.

For the SEED dataset, our model can recognize positive emotion
state best and hardest to recognize the neutral emotion state on
both 10 and all labeled training data to calibrate. For the SEED-IV
dataset, fear is most difficult emotion state to recognize with 10
labeled calibration data, while the neutral state is the easiest one
to recognize. Moreover, when all labeled training data are adopted
to calibrate, our model still decodes the neutral state better than
all other three emotion states and the fear state is also the most
difficult one to discriminate.

We further investigate the ability of our model for reconstructing
the impaired EEG channels from the test data. Figure 4 illustrates the
reconstructed test data, which was manually damaged by masking
the EEG channels randomly with different mask rates. Here we
take the four emotion states in the 𝛾 band as an example, as the 𝛾
band is proved to be the most effective frequency band for emotion
recognition [29]. From Figure 4, we can see that when the mask rate
is 30% and 50%, the EEG features can be well reconstructed. With
the 70%mask rates, the features can also be reconstructed in general,
but some details might be lost. Nevertheless, when the mask rate is
90%, the EEG features are much more difficult to recover.

5 CONCLUSIONS
In this paper, we propose a Multi-view Spectral-Spatial-Temporal
Masked Autoencoder with self-supervised learning to solve the
problems of decoding emotions from few labeled and damaged

EEG data. Our model takes full advantage of EEG signals by explor-
ing spectral, spatial, and temporal properties of EEG data through
the multi-view CNN-Transformer hybrid structure. Three stages
of pre-training, calibrating, and testing ensure the generalization,
personalization, and efficiency characteristics of the overall frame-
work.

Extensive experiments on the SEED and SEED-IV datasets demon-
strate the outstanding performance of our model compared with
various advanced baseline models. Results for few labeled and im-
paired EEG data demonstrate the proposed MV-SSTMA model can
learn the EEG representations from abundant unlabeled data and
effectively decode emotion states from few labeled and even dam-
aged EEG data. The visualization of reconstructing the damaged
EEG channels on the test data demonstrates the effectiveness and
the ability of our model to recover the missing channels of emo-
tional EEG data. In general, our model promotes the performance
of EEG-based emotion recognition in a self-supervised manner.
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