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Abstract— Emotion recognition from electroencephalo-
gram (EEG) data has been a research spotlight in both
academic and industrial communities, which lays a solid
foundation to achieve harmonic human–machine interaction.
However, most of the existing studies either directly performed
classification on primary EEG features or employed a two-stage
paradigm of “feature transformation plus classification” for
emotion recognition. The former usually cannot obtain promising
performance, while the latter inevitably breaks the connection
between feature transformation and recognition. In this article,
we propose a simple yet effective model named semisupervised
sparse low-rank regression (S3LRR) to unify the discriminative
subspace identification and semisupervised emotion recognition
together. Specifically, S3LRR is formulated by decomposing the
projection matrix in least square regression (LSR) into two
factor matrices, which complete the discriminative subspace
identification and connect the subspace EEG data representation
with emotional states. Experimental studies on the benchmark
SEED_V dataset show that the emotion recognition performance
is greatly improved by the joint learning mechanism of S3LRR.
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Furthermore, S3LRR exhibits additional abilities in affective
activation patterns exploration and EEG feature selection.

Index Terms— Discriminative subspace identification, elec-
troencephalogram (EEG), emotion recognition, low-rank regres-
sion, semisupervised classification.

I. INTRODUCTION

EMOTIONAL intelligence along with the logical intelli-
gence are considered as the two complementary aspects

to achieve artificial intelligence, which primarily aims to
enable machine the ability of recognizing the emotional
states of human beings. Compared with the widely used data
modalities such as image, video, speech, and text [1]–[3],
electroencephalogram (EEG) has its unique advantages of
high time resolution and difficult to camouflage in emotion
recognition since it is directly generated from the neural
activities of central nervous system [4]. Therefore, EEG pro-
vides a new path for objective emotion recognition and some
other brain–computer interface applications [5], which have
been drawing a lot of attention from academic and industrial
communities in past decades.

Currently, the general pipeline for the stimulus-evoked EEG
emotion recognition consists of three stages of preprocessing,
feature extraction and transformation, and classification. Since
EEG is weak and easily contaminated by various electrophys-
iological artifacts during the data collection process, in the
preprocessing stage, we mainly aim to remove these artifacts
such as electromyogram, electrocardiogram, and electrooculo-
gram to obtain purified EEG data for subsequent analysis [6].
Usually, different types of EEG features can be extracted
from time domain, frequency domain, time–frequency domain,
and spatial domain [7], [8], among which the power spectral
density (PSD) and differential entropy (DE) [9] are especially
widely used in EEG-based emotion recognition. Most of the
time, machine learning-based methods are used to transform
the primary EEG features in order to further enhance their
discriminative ability [10]. Finally, classifiers, such as support
vector machine (SVM) and spare representation, are employed
for recognizing the emotional states [11], [12].

However, only a few deep learning models have the ability
to perform emotion recognition in an end-to-end manner,
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which directly takes raw EEG data as the input and outputs the
recognition results [13]. Most of the existing studies performed
classification on either primary EEG features or transformed
EEG features to determine the emotional states [14]–[16].
Obviously, the former paradigm usually cannot obtain promis-
ing recognition performance, while the latter two-stage para-
digm breaks the connection between feature transformation
and classification. In this article, we propose a simple yet
effective model termed semisupervised sparse low-rank regres-
sion (S3LRR) for joint discriminative subspace identification
and semisupervised emotion recognition from EEG. Mathe-
matically, it is formulated by replacing the projection matrix
in least square regression (LSR) with the multiplication of two
factor matrices. Functionally, one factor matrix acts as explor-
ing a discriminative subspace to make the data more separable
and the other bridges the EEG data of subspace representation
with emotional states. Besides, S3LRR is implemented in
the semisupervised paradigm in which the soft label matrix
of unlabeled samples is jointly estimated to facilitate the
discriminative subspace identification. We conduct extensive
experiments on a benchmark emotional EEG dataset, and the
results of recognition accuracy, feature selection performance,
and affective activation patterns exploration show the effec-
tiveness of our proposed S3LRR model.

Compared with the existing studies, we summarize the main
contributions of this article as follows.

1) We propose a new machine learning model termed
S3LRR to unify the two tasks of discriminative subspace
identification and emotional state recognition together.
In particular, S3LRR uses the multiplication of two
factor matrices to replace the single projection matrix
in LSR, which works for the discriminative subspace
identification and emotion recognition.

2) We implement S3LRR in the semisupervised paradigm
that is more appropriate for cross-session emotion recog-
nition. The immediate benefit is that the discriminative
subspace identification can be effectively guided by the
estimation of soft labels of unlabeled samples. These two
objectives can be jointly optimized toward the optimum.

3) We enforce the multiplication of two factor matrices in
S3LRR to be row sparse, which not only assigns it the
ability of efficient EEG feature selection but also pro-
vides us an efficient tool for affective activation patterns
mining based on the quantitative feature importance
measure.

The remainder of this article is structured as follows.
In Section II, we provide some background knowledge on
EEG-based emotion recognition. Section III introduces the
S3LRR model formulation and its optimization in detail.
Experimental studies are conducted in Section IV. Section V
concludes the whole article and points out the future
work.

Notations: In this article, we use Delta, Theta, Alpha, Beta,
and Gamma to denote the EEG frequency bands. Greek letters,
such as θ and ι, represent the model variables or parameters.
Matrices and vectors are, respectively, denoted by boldface
uppercase and lowercase letters. The �2,1-norm of matrix M ∈
R

m×n is defined as �M�2,1 = �m
i=1(

�n
j=1 m2

i j)
1/2 = �m

i=1

�mi�2, where mi is the i th row of M. In particular, 1n denotes
an all-one column vector and the subscript n indicates its
length.

II. BACKGROUND

In this section, we provide a brief introduction to recent
advances in EEG-based emotion.

At present, emotion recognition from EEG is mainly based
on machine learning methods; therefore, we make a review
along the path of EEG feature extraction and emotional
state classification. In [17], the popular EEG features for
emotion recognition were extensively reviewed. For example,
the time-domain EEG features, such as the statistics, event-
related potential, energy, and high-order zero crossings, are
the most intuitive since EEG data are directly collected in
time domain. After transforming it from time domain to
frequency domain by Fourier transform (FT), we can extract
the features such as PSD, DE, and higher order spectrum,
which are usually more stable than time-domain features.
Since EEG data are nonstationary, wavelet transform and
short-time FT are usually used to extract the time–frequency
domain features to capture the local frequency information.
To make better use of the multichannel property of EEG
data, features, such as differential asymmetry, rational asym-
metry, and connectivity, can be built to explore the spatial
information [18]–[20].

The machine learning models in emotional EEG data
processing can be roughly categorized into linear and non-
linear ones. To select the most beneficial samples to label,
Wu and Huang [21] proposed two multitask active learning
models for affect estimation in the 3-D space of valence,
arousal, and dominance. In [22], considering the complemen-
tary effect of activation features (i.e., PSD and DE) and net-
work patterns (i.e., C-Coefficient, SP-Length, G-Efficient, and
L-Efficient), a feature fusion approach was adopted to com-
bine them for emotion recognition. Based on the hypergraph
theory, Liang et al. [23] proposed to divide the EEG-based
hypergraph into a specific number of clusters, with each cluster
corresponding to one emotional state. Though some linear
models were extended to nonlinear ones, such as the SVM with
radial basis function (RBF) kernel [24], kernel Fisher’s dis-
criminant analysis [25], and transfer component analysis [26],
by kernel trick to enhance their nonlinear modeling ability,
existing nonlinear models mainly utilized neural networks
for feature learning. In [27], two different types of random
networks, random functional vector link and extreme learning
machine, were used for cross-session emotion recognition
from EEG. Compared with the shallow ones, deep neural
networks show more powerful nonlinear learning abilities.
Deep belief network (DBN) was used for cross-session EEG
emotion recognition and the mean absolute weight distrib-
ution of the trained DBNs provides clue for critical EEG
frequency bands identification [28]. Song et al. [29] proposed
a dynamic graph convolutional neural network (DGCNN) to
learn the intrinsic relationship among EEG channels. Based
on the observation that different brain regions sampled by
EEG electrodes may be related to different brain functions,
a sparse DGCNN model was proposed by taking the localized
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and sparse functional relations among electrodes into consid-
eration [30]. In [31], a deep learning model was proposed
to suppress the cross-subject differences by simultaneously
minimizing the classification error on the source subject and
aligning the EEG data discrepancies between source and target
subjects. Though deep learning models achieved promising
results in diverse EEG-based applications, there also have
some limitations such as the black-box training mode, com-
plicated to implement, time-consuming to train and requiring
a lot of training samples [13].

III. METHOD

In this section, we first formulate the objective function of
S3LRR and then introduce its optimization method. Moreover,
some discussions on S3LRR and one extended model are
provided.

A. Model Formulation

In semisupervised learning, we are usually given an EEG
data collection matrix X = [Xl,Xu] ∈ R

d×n consisting of
l labeled and u unlabeled samples. Yl ∈ R

l×c is the label
indicator matrix of labeled samples, which uses the one-hot
encoding to represent the emotional state membership of
samples. In particular, if EEG sample xi |li=1 is from the j th
emotional state and yi ∈ R

1×c is the i th row of Yl , then the
j th element of yi is one and all the others of yi are zeros. Yu

is an unknown label matrix corresponding to the unlabeled
samples, and Y = [Yl; Yu] ∈ R

n×c is the combined label
matrix corresponding to X. Here, d is the dimensionality of
samples, c is the number of emotional states, and n = l + u
is the total number of EEG samples. Our task is to estimate
Yu ∈ R

u×c as accurate as possible given X and Yl .
Usually, connections between EEG data matrix and the

emotional label matrix are directly built. For example, if the
�2-norm regularized LSR is used in the supervised manner,
we have the following objective:

min
W

�XT
l W − Yl�2

2 + ι�W�2
2 (1)

based on which we can fit the projection matrix W ∈ R
d×c by

(Xl , Yl ). Then, the prediction Yu can be obtained by XT
u W.

By extending (1) into semisupervised learning, we have

min
W,Yu

�XT W − Y�2
2 + ι�W�2

2, s.t. Yu ≥ 0, Yu1c = 1u.

(2)

The second constraint means that the summation of elements
in each of Yu should be one. Together with the nonnegativity
constraint, the elements in each row of Yu can be considered as
the probabilities of a sample belonging to different emotional
states. Therefore, we can directly determine the emotional
state of each sample by checking the location of the largest
value in each row of Yu . For example, if the third row of
Yu is [0.04, 0.81, 0.01, 0.11, 0.03], then the third unlabeled
sample should be categorized into the second state. Obviously,
the improvements from supervised version to semisupervised
version are two folds. One is the incorporation of unlabeled
samples into the learning process, and the other is that Yu

is treated as a variable and jointly optimized with the other
model variable W.

However, establishing direct connection between EEG data
matrix and the label matrix is too rigorous for the projection
matrix to well capture the properties of EEG data since the
complexity of EEG data makes it usually not so easy to
handle. An ideal way might be first projecting EEG data
into a discriminative subspace to enhance its separability
and then mapping such subspace data representation to an
emotional label matrix. To this end, as shown in Fig. 1,
we propose a new model termed S3LRR to seamlessly unify
the discriminative subspace identification and semisupervised
emotion recognition together, which can effectively avoid the
suboptimality limitation caused by the two-stage manner of
“feature extraction/transformation plus classification.”

Supposing that A ∈ R
d×s is the projection matrix to induce a

discriminative subspace and B ∈ R
s×c is the matrix to bridge

the subspace data representation with the label information,
where s is the subspace dimensionality. The objective function
of our S3LRR model can be obtained by mathematically
replacing W in (2) with AB, namely,

min
A,B,Yu

�XT AB − Y�2
2 + ι

2
�AB�2,1

s.t. Yu ≥ 0, Yu1c = 1u . (3)

Here, we use the �2,1-norm instead of the �2-norm in order to
enforce the row sparsity of AB, which potentially achieves
the adaptive feature weighting. Based on the definition of
�2,1-norm, (3) is equivalent to

min
A,B,Yu

�XT AB − Y�2
2 + ιTr

�
BT AT DAB

�
s.t. Yu ≥ 0, Yu1c = 1u (4)

where D ∈ R
d×d is a diagonal matrix and its i th diagonal

element is defined as

dii = 1

2�gi�2
, i = 1, 2, . . . , d. (5)

Here, gi is the i th row of matrix G = AB. �gi�2 is the �2-norm
of the i th row of G, which is defined by (g2

i1+g2
i2+· · ·+g2

ic)
1/2.

B. Model Optimization

There are three variables, i.e., A, B, and Yu , in the S3LRR
model objective function (4). In the following, we propose to
update them in an alternate manner.

1) Update Yu with A and B fixed. By denoting M �
XT

u AB, we have the subobjective function of Yu as

min
Yu

�M − Yu�2
2, s.t. Yu ≥ 0, Yu1c = 1u . (6)

By row-wisely decoupling the above objective function
and denoting yi |ui=1 as the i th row of Yu , we have

min
yi

�mi − yi�2
2, s.t. yi ≥ 0, yi 1c = 1 (7)

which specifies an Euclidean distance defined on a sim-
plex constraint [32]. The detailed optimization method
to (7) is provided in Appendix A.
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Fig. 1. General framework of our proposed S3LRR model.

2) Update B with Yu and A fixed. Taking the derivative
of (4) with respect to B and setting it to zero, we have

B = �
AT

�
XXT + ιD

�
A

�−1
AT XY. (8)

3) Update A with Yu and B fixed. Substituting (8) back
into (4), we achieve the subobjective function in terms
of variable A as

max
A

Tr
��

AT
�
XXT + ιD

�
A

�−1
AT XYYT XT A

�
. (9)

Note that

St = XXT , Sb = XYYT XT (10)

where St and Sb are the total-class scatter matrix and
the between-class scatter matrix defined in a linear
discriminant analysis (LDA), respectively. Therefore, the
solution of problem (9) is

A∗ = arg max
A

�
Tr

��
AT (St + ιD)A

�−1
AT SbA

��
.

(11)

Its global optimal solution is the top s eigenvectors of
(St +ιD)−1Sb corresponding to the nonzero eigenvalues.

According to (5), the diagonal matrix D should be updated
when A and B are updated. Since the between-class scatter
matrix Sb relies on the estimation of Y, we should also
update it when Yu is obtained. As a whole, we summarize
the complete optimization procedure to objective function (4)
in Algorithm 1.

C. Discussions on S3LRR

In the following, we first summarize the main characteristics
of S3LRR and then explain the differences between it and one
related model, sparse low-rank regression (SLRR) [33].

On the characteristics of S3LRR, they are listed as follows.

1) Functionally, matrix A aims at exploring a discriminative
subspace where the EEG samples are easier to separate
and matrix B performs the mapping from subspace EEG
data representation to the corresponding label matrix.

2) Mathematically, the model objective of S3LRR is for-
mulated by replacing W with the multiplication of two
factor matrices, i.e., A and B. This makes that our

Algorithm 1 Optimization to S3LRR Objective Function

Input: data matrix X ∈ R
d×n , label matrix Yl ∈ R

l×c, low-
rank parameter s and regularization parameter ι;

Output: projection matrices A ∈ R
d×s and B ∈ R

s×c, and
label matrix Yu ∈ R

u×c.
1: Initialize t = 0, Y(t)

u = 1u 1T
c

u ∈ R
u×c and D(t) ∈ R

d×d as an
identity matrix;

2: while not converged do
3: Calculate A(t+1) by equation (11);
4: Calculate B(t+1) by equation (8);
5: Update the diagonal matrix D(t+1) where its i th diagonal

element is 1
2�(A(t+1)B(t+1))i �2

;

6: Calculate Y(t+1)
u by solving (7) with Algorithm 3;

7: Update Sb based on Y(t+1) = [Yl; Y(t+1)
u ];

8: t = t + 1;
9: end while

S3LRR model has a succinct objective function, which
is also easy to optimize.

3) Inspired by the model optimization, we realize that
the projection matrix A has an explicit meaning of
essentially performing the LDA operation.

4) Under the semisupervised learning paradigm, the soft
label matrix Yu of unlabeled samples is jointly opti-
mized with the other variables. In particular, based
on Yu , the between-class scatter matrix Sb could be
estimated for better updating matrix A. This desirable
property of S3LRR is explicitly highlighted in Fig. 1.

The connections as well as differences between S3LRR and
SLRR are summarized in the following.

1) From the model formulation perspective, our proposed
S3LRR model is inspired by the existing SLRR model.
Both of them aim to perform joint discriminative sub-
space exploration and recognition.

2) S3LRR is a semisupervised extension of SLRR, which
involves the unlabeled EEG samples into the learning
process and therefore is more appropriate for the cross-
session EEG-based emotion recognition, that is, S3LRR
can jointly estimate the label information of unlabeled
samples and the other model variables.
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3) Based on the learned combined projection matrix AB,
S3LRR has the ability to perform out-of-sample predic-
tion on unseen EEG samples. Therefore, it is a pure
semisupervised model.

4) We assign the combined projection matrix AB a unique
sense of meaning in EEG-based emotion recognition,
based on which we can explore the affective activation
patterns on critical EEG frequency bands and brain
regions. To simplify the notations, we still use G ∈ R

d×c

to denote the multiplication of obtained optimal matrices
A and B. Suppose that θ ∈ R

d is a vector to characterize
the importance of different EEG feature dimensions in
recognizing different emotional states. Inspired by [34],
the importance of each feature dimension can be mea-
sured by its normalized �2-norm, i.e.,

θi = �gi�2�d
j=1 �g j�2

, i = 1, 2, . . . , d. (12)

Besides, since there exists the coupling relationship
between each feature dimension and each EEG fre-
quency band (channel) [35], we can automatically per-
form the critical EEG frequency bands and channels
identification according to the quantitative feature impor-
tance vector θ . Considering that we have an emotional
EEG dataset consisting of P frequency bands and Q
channels, then, for the p|P

p=1th EEG frequency band, its
importance can be calculated by

ω(p) = θ(p−1)∗Q+1 + θ(p−1)∗Q+2 + · · · + θp∗Q. (13)

Similarly, the importance of the q|Q
q=1th EEG channel is

ψ(q) = θq + θq+Q + · · · + θq+(P−1)∗Q . (14)

As stated by some existing studies, the affective EEG
activation patterns exploration provides more insights
into the understanding of neural mechanism in emo-
tion expression [35], [36]. Besides, this might provide
underlying theoretical support for customizing the
emotion-related EEG data acquisition devices.

D. Extension From S3LRR to S2LRR

If we do not explicitly impose the �2,1-norm-based feature
weighting on the combined projection matrix, the general
�2-norm can be used to shrink the elements in AB. Then,
we get an extended model, named semisupervised low-rank
regression (S2LRR), whose objective function is

min
A,B,Yu

�XT AB − Y�2
2 + ι�AB�2

2

s.t. Yu ≥ 0, Yu1c = 1u . (15)

The only difference between objective functions (15) and (3)
is whether the intermediate variable D is involved. In other
words, we can treat D as an identity matrix in S2LRR. Then,
the updating rules to A and B are

A∗ = arg max
A

�
Tr

��
AT (St + ιI)A

�−1
AT SbA

��
(16)

and

B = �
AT

�
XXT + ιI

�
A

�−1
AT XY. (17)

Algorithm 2 Optimization Procedure to S2LRR Objective

Input: data matrix X ∈ R
d×n , label matrix Yl ∈ R

l×c, low-
rank parameter s and regularization parameter ι;

Output: projection matrices A ∈ R
d×s and B ∈ R

s×c, and
label matrix Yu ∈ R

u×c.
1: Initialize t = 0, Y(t)

u = 1u 1T
c

u ∈ R
u×c;

2: while not converged do
3: Calculate A(t+1) by equation (16);
4: Calculate B(t+1) by equation (17);
5: Calculate Y(t+1)

u by solving (7) with Algorithm 3;
6: Update Sb based on Y(t+1) = [Yl; Y(t+1)

u ];
7: t = t + 1;
8: end while

Here, we directly provide its optimization procedure in
Algorithm 2 instead of repeating the detailed derivations step
by step.

IV. EXPERIMENTS

In this section, we try to answer the following questions
by experiments: 1) whether the joint learning mechanism
employed by S3LRR is better than directly bridging EEG data
with emotional label matrix by a single projection? 2) how the
learned combined projection matrix AB explores the activation
EEG patterns related to the occurrence of affective effect? and
3) whether S3LRR is competent for selecting discriminative
EEG features?

A. Dataset and Experimental Setup
In the following experiments, we used the publicly

available emotional dataset SEED_V https://bcmi.sjtu.
edu.cn/ seed/seed-v.html [37]. In SEED_V, five different
emotional states of happy, sad, disgust, neutral, and fear
were evoked by the corresponding movie clips; 20 subjects
were recruited to participate in the EEG data collection
experiments and EEG data of 16 subjects were made public.
Each subject was asked to participate in the experiments three
times. In each experiment, the subjects watched 15 video
clips in which three clips correspond to one emotional state.
During watching the video clips, EEG data of subjects were
recorded by a 62-channel ESI NeuroScan system. After
downsampling the raw EEG data to 200 Hz, the DE features
were extracted from the five frequency bands, delta (1–4 Hz),
theta (4–8 Hz), Alpha (8–14 Hz), Beta (14–31 Hz), and
Gamma (31–50 Hz) bands. The definition of DE is

h(X) = −
	

x
f (x) ln f (x)dx (18)

where X is a random variable with probability density function
f (x) [38]. By assuming that the EEG data follow the
Gaussian distribution, i.e., f (x) = N (x;μ, σ 2), we calculate
its DE by:

h(X) = −
	 ∞

−∞
f (x) ln

1√
2πσ 2

exp
(x − μ)2

2σ 2
dx

= 1

2
ln

�
2πσ 2� + V ar(X)

2σ 2
= 1

2
ln

�
2πeσ 2�. (19)
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TABLE I

CROSS-SESSION EMOTION RECOGNITION ACCURACIES (%) OF COMPARED MODELS

By concatenating the 62 points of each of the five frequency
bands together, the dimensionality of each sample vector is
310. Since the video clips in each session are slightly different
in length, we have 681, 541, and 601 samples in the three
sessions.

Since S3LRR is a semisupervised model, we compare it
with semisupervised SVM (sSVM) with linear kernel and
some related models including: 1) a two-stage strategy of
performing semisupervised discriminant analysis (SDA) first
and then sSVM [39]; 2) the rescaled LSR (RLSR) model [40];
and 3) the RLSR with no explicit feature weighting (RLSR2),
which actually imposes the �2-norm on the projection matrix.
Also, S2LRR is also included in the comparison. The reg-
ularization parameters involved in respective models were
searched from {2−10, 2−9, . . . , 210}. The rank parameter s in
both S3LRR and S2LRR is always fixed as c − 1, which
is 4, since c = 5 for the SEED_V dataset. We performed
cross-session emotion recognition experiments in chronologi-
cal order, and therefore, we have three recognition tasks for
each subject, i.e., “session 1 → session 2,” “session 1 →
session 3,” and “session 2 → session 3.” In the case of “session
1 → session 2,” samples from session 1 are fully labeled, while
samples from session 2 are unlabeled. Our task is to estimate
the labels of these unlabeled samples as accurate as possible.

B. Recognition Results and Analysis

The cross-session emotion recognition results are provided
in Table I, where the best accuracy in each case is highlighted
in bold. From these results, besides the obvious conclusion
that our proposed S3LRR model obtained the best average
performance in comparison with the other models, we have
the following observations.

1) By pairwisely comparing the results obtained by RLSR
and S3LRR, we find that S3LRR made considerable
improvements of 6.94%, 5.83%, and 5.22% in the
three cross-session emotion recognition tasks. Therefore,
we conclude that our joint learning mechanism is better
than directly bridging EEG data with label indicator
matrix. The EEG data representation in subspace rep-
resentation is of higher separability than its original
representation.

2) SDA in our experiments performed first the SDA and
then the classification by sSVM. Such a two-stage
paradigm breaks the inner connections of these two
operations and prevents them from well matching each
other. In both S2LRR and S3LRR, the label estima-
tion of unlabeled samples is jointly completed with
the optimization of the other model variables, i.e.,
the two factor matrices. In particular, the underly-
ing connection between Yu and subspace projection
matrix A is explicitly considered. Therefore, both
S2LRR and S3LRR obtained the superior performance
to SDA.

3) Based on our experimental results, RLSR is better than
RLSR2 and S3LRR makes improvements in comparison
with S2LRR in terms of the average performance. This
shows that the explicit feature weighting (selection) is
beneficial for improving the emotion recognition perfor-
mance. Since EEG data are typically multirhythm and
multichannel and each frequency-domain feature dimen-
sion can be backtracked to a certain EEG frequency
band and channel, these numerical accuracies depict that
there might be only partial EEG frequency bands and
channels contribute significantly to emotion expression
at the macro level. In Section IV-C, we will provide
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Fig. 2. Emotion recognition results (%) of compared models represented by confusion matrices. (a) sSVM. (b) SDA. (c) RLSR2. (d) RLSR. (e) S2LRR.
(f) S3LRR.

the detailed analysis on the affective activation patterns
explored by S3LRR.

In Fig. 2, we organize the recognition results in the form
of confusion matrices, from which we can gain more insights
into the EEG-based emotion recognition. From each model,
we know the average recognition accuracy on each emotional
state and the misclassification rates of each emotional state
into the others. Besides, by comparing the confusion matrix of
S3LRR with those of the other models, we can clearly see the
performance improvement brought by S3LRR. For example,
S3LRR obtained the highest recognition accuracy (83.96%)
on the fear state and the lowest accuracy (63.95%) on the
sad state. For the fear state, S3LRR improves the accuracy
by 5.63% in comparison with S2LRR. On average, 83.96%
EEG samples belonging to the fear state were correctly
recognized by S3LRR, while 3.86%, 4.84%, 2.38%, and 4.96%
of them were misclassified as sad, neutral, happy, and disgust,
respectively.

C. Affective Activation Patterns Exploration
As stated in Section III-C, once the S3LRR model is fitted

by given EEG data, we can obtain the quantitative measure
of feature importance values by (12). As shown in Fig. 3(a),
we plot the ranked feature importance values by averaging all
the 48 cross-session emotion recognition cases, from which we
observe that different feature dimensions contribute differently
in emotion recognition.

Considering that different feature dimensions are extracted
from different EEG frequency bands and channels, we per-
form further investigation on which EEG frequency bands

and channels are more important from the perspective of
contributing to accurate emotion recognition. Based on (13),
we divide these features into five groups corresponding to the
five frequency bands. From Fig. 3(b) and (c), we find that the
Gamma band contributes the most in emotion recognition. This
result is consistent with the one obtained by existing studies,
which used the trial-and-error manner [18], [41], that is, they
tried each of the five EEG frequency bands and then found
that the features from the Gamma band lead to the highest
recognition accuracy.

Similarly, the general consensus is that different brain
regions correlate differently to the emotional expression.
According to (14), each EEG channel is quantitatively
assigned a value to characterize its importance. In Fig. 4(a),
we list the top ten channels that are considered as the
most important ones in differentiating the emotional states.
By projecting the importance values of these 62 channels
onto the brain topology, the critical brain regions correlated
more to emotion recognition are adaptively obtained, as shown
in Fig. 4(b). We generally conclude that the frontal and
left/right temporal lobes might be correlated more to the
emotion expression. It is worth mentioning that the results
in Fig. 4 correspond to the average effect in terms of all the
five EEG frequency bands. In Fig. 5, we provide the topo-
graphical view of critical brain regions in emotion recognition
corresponding to different EEG frequency bands. Since the
Gamma and the Delta bands, respectively, take the primary
and secondary places in emotion recognition, the brain topolo-
gies of these two frequency bands are closer to the average
result.
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Fig. 3. Identification of critical EEG frequency bands in emotion recognition. (a) Ranked feature importance values. (b) Average feature weights. (c) Importance
of frequency bands.

TABLE II

EMOTION RECOGNITION RESULTS (%) BY DIFFERENT FEATURE SELECTION MODELS

Fig. 4. Identification of critical EEG channels and brain regions in emotion
recognition. (a) Top ten channels. (b) Critical brain regions.

D. Feature Selection by S3LRR

As discussed in Section III-C, the importance of the i th
feature dimension can be quantitatively measured by θi |di=1,
which is deservedly appropriate for determining discriminative
features. In the following, we evaluate the effectiveness of
S3LRR in EEG feature selection by comparing it with some

widely used methods, including the minimal-redundancy-
maximal-relevance criterion (mRMR) [42], the �2,1-norm [34],
the max-relevance and min-redundancy criterion based on
Pearson’s correlation (RRPC) coefficient [43], and RLSR [40],
[44]. The former two methods are supervised feature selection
methods and the latter two methods are semisupervised meth-
ods. The involved parameters in respective models were set
as suggested by their original papers. SVM with linear kernel
was used to classify the newly formed EEG data by selected
features, whose regularization parameter was searched from
{2−10, 2−9, . . . , 210}. For each model, we set the number of
selected features as 10, 20, 50, 100, and 200, respectively;
then, the best result as well as the corresponding numbers of
selected features are reported.

In Table II, we show the emotion recognition results
obtained by the compared feature selection models, where
the best accuracy in each recognition case is highlighted
in bold. Accordingly, we use triples to represent the num-
bers of selected features when these models achieved
the best performance in Table III. For example, the first
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Fig. 5. Topographical view of critical brain regions corresponding to different EEG frequency bands in emotion recognition. (a) Delta. (b) Theta. (c) Alpha.
(d) Beta. (e) Gamma.

triple (10, 20, and 200) means that the numbers of selected
features are, respectively, 10, 20, and 200 when mRMR
achieved the best accuracies in the three cross-session emotion
recognition tasks. On the whole, S3LRR obtained the best per-
formance among these five feature selection methods. Besides,
we find that the average performance of semisupervised meth-
ods is better than that of the supervised ones because involving
unlabeled samples into the learning process can make them
better capture the data properties. Furthermore, the best results
in some cases were obtained when the number of selected
features is much less than 200. For example, in the case of
“subject 1: session 1→session 3,” the best accuracy of S3LRR,
77.04%, is obtained when the number of selected features is
20. This further explains that different EEG feature dimensions
contribute differently to emotion recognition. Accordingly,
different EEG frequency bands and channels correlate dif-
ferently to the occurrence and change of the affective effect.
From the perspective of pattern recognition, features can be
divided into three groups, i.e., discriminative, redundant, and
noisy features, according to their different recognition abilities.
Discriminative features are beneficial to correctly recognizing
the emotional states, while the noisy features are harmful to
improving the recognition performance. Redundant features
are in between, which meaninglessly increases the length of
sample dimensionality. For EEG-based emotion recognition,
feature selection models are expected to preserve discrimina-
tive features, suppress redundant features, and remove noisy
features.

E. Algorithm Properties
In the following, we analyze the properties of S3LRR from

the two perspectives of parameter sensitivity and convergence.
In S3LRR, the regularization parameter ι controls the row

sparsity of the combined matrix AB. The larger ι, the sparser
the rows of AB. In Fig. 6, we show how the emotion
recognition accuracies of S3LRR change in terms of different
ιs in the three cases on subject 1. From Fig. 6, we generally
conclude that S3LRR is not very sensitive to ι and it achieves
satisfactory accuracies with many candidate ιs. Similar results
can be found on the remaining subjects.

On the convergence of S3LRR, its model objective function
is no longer convex since we have the multiplication form
of two factor matrices, A and B. Therefore, we introduce
an auxiliary matrix D to facilitate the optimization. Since

TABLE III

NUMBERS OF SELECTED FEATURES CORRESPONDING TO THE BEST

ACCURACIES OBTAINED BY THE FEATURE SELECTION MODELS

Fig. 6. Recognition performance of S3LRR in terms of different ιs on
subject 1.

the auxiliary matrix D also involves the variables A and B,
we have to iteratively update the variables A, B, and D.
However, we declare that the optimization procedure described
in Algorithm 1 has good convergence property. In Appendix B,
we theoretically prove that the S3LRR objective function
values monotonically decrease according to our proposed opti-
mization method in Algorithm 1. Apart from the theoretical
proof, in Fig. 7, we experimentally show the convergence
curves of S3LRR on the three emotion recognition cases
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Fig. 7. Convergence property of S3LRR in the three cases of subject 1: (a) session1→session2, (b) session1→session3, and (c) session2→session3.

on subject 1. From Fig. 7, we find that S3LRR has a fast
converge rate, usually within 30 iterations.

V. CONCLUSION

In this article, we proposed a unified model termed S3LRR
to implement joint discriminative subspace identification and
semisupervised EEG emotion recognition. The merits of
S3LRR are: 1) effectively avoiding the limitation of break-
ing feature extraction/transformation and emotion recognition
into two isolated stages; 2) jointly optimizing the soft label
matrix of unlabeled samples and the subspace projection
matrix; and 3) providing a quantitative way to explore the
affective activation patterns on critical EEG frequency bands
and brain regions in emotion expression. Experimental results
demonstrated that S3LRR exhibits excellent performance in
improving the emotion recognition accuracy and selecting
discriminative EEG features. On average, we conclude that
the Gamma frequency band and the brain regions of frontal
and left/right temporal lobes are more correlated with the
occurrence of affective effect. In the future, we will consider
further enhancing the emotion recognition performance from
two aspects, i.e., incorporating multiple EEG features to better
capture the EEG data properties and improving the S3LRR to
make it have the nonlinear learning ability.

APPENDIX A
OPTIMIZATION TO OBJECTIVE (7)

To simplify the following derivations, we use mi and yi

to, respectively, denote the transpose of mi and yi . Then, the
Lagrangian function of problem (7) is

L(yi , η,β) = �yi − mi�2
2 − η

�
yT

i 1c − 1
� − βT yi (20)

where η and β ∈ R
c are Lagrangian multipliers in scalar and

vector forms, respectively. In the following, we provide an
analysis that both the Lagrangian multipliers can be deter-
mined. Suppose that the optimal solution to the proximal prob-
lem (7) is y∗

i , and the associated Lagrangian multipliers are η∗
and β∗. Then, according to the Karush-Kuhn-Tucker (KKT)
condition, we have the following equations and inequalities:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀ j, y∗
i j − mi j − η∗ − β∗

j = 0 (21)

∀ j, y∗
i j ≥ 0 (22)

∀ j, β∗
j ≥ 0 (23)

∀ j, y∗
i jβ

∗
j = 0 (24)

where y∗
i j is the j th scalar element of vector y∗

i . Equation (21)
can be rewritten in the vector form as

y∗
i − mi − η∗1c − β∗ = 0. (25)

Considering the constraint yT
i 1 = 1, the above equation can

be reformulated into

η∗ = 1 − 1T
c mi − 1T β∗

c
. (26)

By substituting (26) into (25), we have

y∗
i = mi − 11T

c
mi + 1

c
1 − 1T β∗

c
1 + β∗. (27)

Denote β̄∗ = (1T β∗/c) and q = mi − (11T /c)mi + (1/c)1,
and the above equation can be rewritten as

y∗
i = q + β∗ − β̄∗1. (28)

Therefore, for each j = 1, . . . , c, we have

y∗
i j = q j + β∗

j − β̄∗. (29)

According to (22)–(24) and (29), we know q j + β∗
j − β̄∗ =

(q j −β̄∗)+, where ( f (·))+ = max( f (·), 0). Therefore, we have

y∗
i j = �

q j − β̄∗�
+. (30)

Now, if the optimal β̄∗ can be determined, the optimal solution
y∗

i can be obtained from (30). Equation (29) can be rewritten
as β∗

j = y∗
i j + β̄∗ − q j such that β∗

j = (β̄∗ − q j)+. Therefore,
β̄∗ can be calculated as

β̄
∗ = 1

c

c�
j=1

�
β̄∗ − q j

�
+. (31)

According to the constraint yT
i 1 = 1 and (30), we define the

following function:

f
�
β̄
� =

c�
j=1

�
q j − β̄

�
+ − 1 (32)

and the optimal β̄∗ should satisfy f (β̄∗) = 0. When (32)
equals zero, the optimal β̄∗ can be obtained via Newton
method, namely,

β̄(k+1) = β̄(k) − f
�
β̄(k)

�
f 
�β̄(k)� . (33)

We know that f (β̄) is a piecewise linear and monotonically
increasing function. When q j ≥ β̄, f (β̄) = �c

j=1 q j − β̄ − 1,
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Algorithm 3 Algorithm to Solve Objective Function (7)
Input: vector mi ∈ R

c;
Output: vector yi ∈ R

c.
1: Compute q = mi − 11T

c mi + 1
c 1;

2: Use Newton’s method to obtain the root β̄∗ of (32);
3: Obtain the optimal solution y∗

i j = (q j − β̄∗)+ for j =
1, . . . , c;

and we have f 
(β̄) = −1. When q j ≤ β̄, f (β̄) = −1 and
its derivative f 
(β̄) = 0. Therefore, we can obtain f 
(β̄)
by counting the number of positive values in (q j − β̄)|cj=1.
Consequently, the optimization procedure to problem (7) is
provided in Algorithm 3.

APPENDIX B
PROOF TO THE CONVERGENCE OF ALGORITHM 1

Proof: Since the calculation of A and B is coupled, we first
prove that the updating of these two variables can guarantee
the convergence. In the tth iteration, we have

�
A(t+1),B(t+1),Y(t+1)

�
= arg min

A,B,Yu

�Y − XT AB�2
2 + ι

2
Tr

�
BT AT D(t)AB

�
. (34)

That is,

��Y(t+1) − XT A(t+1)B(t+1)
��2

2

+ ι

2
Tr

�
B(t+1)T A(t+1)T D(t)A(t+1)B(t+1)

�

≤ ��Y(t) − XT A(t)B(t)
��2

2 + ι

2
Tr

�
B(t)

T
A(t)T D(t)A(t)B(t)

�
.

Denote G(t) = A(t)B(t) and G(t+1) = A(t+1)B(t+1). According
to the definition of matrix D, the above equation can be
rewritten as

��Y(t+1) − XT G(t+1)
��2

2 + ι

d�
i=1

��gi(t+1)
��2

2

2�gi(t)�2

≤ ��Y(t) − XT G(t)
��2

2 + ι

d�
i=1

��gi(t)
��2

2

2�gi(t)�2
(35)

where gi(t) and gi(t+1) are the i th row of matrix G(t) and G(t+1),
respectively.

For any two nonnegative values a and b, there is

a − a2

2b
≤ b − b2

2b
. (36)

By denoting a = �gi(t+1)�2 and b = �gi(t)�2, we have

�gi(t+1)�2 − �gi(t+1)�2
2

2�gi(t)�2
≤ �gi(t)�2 − �gi(t)�2

2

2�gi(t)�2
.

Therefore, summing up the above d inequalities and multi-
plying the summation with the regularization parameter ι,

we obtain

ι

d�
i=1

�
�gi(t+1)�2 − �gi(t+1)�2

2

2�gi(t)�2

�

≤ ι

d�
i=1

�
�gi(t)�2 − �gi(t)�2

2

2�gi(t)�2

�
. (37)

Combining (35) and (37), we get

�Y(t+1) − XT G(t+1)�2
2 + ι

d�
i=1

�gi(t+1)�2

≤ �Y(t+1) − XT G(t)�2
2 + ι

d�
i=1

�gi(t)�2. (38)

Therefore, we have

�Y(t+1) − XT G(t+1)�2
2 + ι�G(t+1)�2,1

≤ �Y(t) − XT G(t)�2
2 + ι�G(t)�2,1. (39)

Specifically, variables A and B are updated according to
gradient. Variable Yu is updated according to the Lagrangian
multiplier method in which the multipliers can be uniquely
determined. We conclude that Algorithm 1 monotonically
decreases the objective function (4) in each iteration. �
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