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Abstract— Electroencephalography (EEG) signals can effec-
tively measure the level of human decision confidence. However,
it is difficult to acquire EEG signals in practice due to the ex-
pensive cost and complex operation, while eye movement signals
are much easier to acquire and process. To tackle this problem,
we propose a cross-modality deep learning method based on
deep canoncial correlation analysis (CDCCA) to transform each
modality separately and coordinate different modalities into
a hyperspace by using specific canonical correlation analysis
constraints. In our proposed method, only eye movement signals
are used as inputs in the test phase and the knowledge from
EEG signals is learned in the training stage. Experimental
results on two human decision confidence datasets demonstrate
that our proposed method achieves advanced performance
compared with the existing single-modal approaches trained
and tested on eye movement signals and maintains a competitive
accuracy in comparison with multimodal models.

I. INTRODUCTION

Currently, computer-aided decision-making has been
widely applied in various fields with the rapid development
of deep learning. However, decision making for tasks with
high risk, such as commercial decision making and mili-
tary remote sensing image interpretation, cannot exclusively
rely on computers and professionals are still indispensable.
Hence, it is necessary to find an objective way to measure the
reliability of decisions to assist decision-makers in making
sound judgments.

Decision confidence is the feeling of correctness or op-
timization of an individual when making a decision and
can reflect the probability of being correct [1]. Various
studies have demonstrated that it is feasible to use EEG
signals to infer human decision confidence, and event-related
potential (ERP) is used to investigate the neural mechanisms
of human decision confidence [2] [3]. Very recently, Li
et al. designed a visual perception task [4] and an object
detection task [5] for measuring decision confidence, and
their experimental results indicate that EEG signals recorded
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during the experiments are able to distinguish different levels
of decision confidence and that neural patterns of EEG
signals for decision confidence in the visual perception task
do exist.

In the field of affective computing, many studies have
indicated that the performance of single-modal models turns
out to be at an inadequate low level and multimodal models
can improve recognition accuracies. For example, it has been
indicated that complementary representation properties exist
between different modalities for emotion recognition [6], and
deep multimodal fusion using data from different modalities
has exhibited a clear advantage over its single-modal coun-
terpart in emotion recognition [7] [8].

Although multimodal fusion generally leads to better re-
sults, the fact that more modalities are involved also means
that the data from different modalities need to be acquired
at a greater cost. In fact, the process of collecting EEG
signals is very complicated in practice. In addition, for
several inevitable preparations, such as wearing electrode
caps and injecting conductive gel, we have to guarantee
that the acquisition environment is quiet without disturbance
since the signals are very subtle and sensitive to interference,
impeding their use in practical scenarios. Comparatively,
other physiological signals, such as eye movement signals
are much easier to collect.

Based on the above discussion, our goal is to use the infor-
mation of multimodalities effectively with high operational
feasibility. Therefore, we propose a cross-modality method
based on deep canonical correlation analysis (CDCCA) for
measuring human decision confidence. The basic idea behind
deep canonical correlation analysis is to transform each
modality separately and coordinate different modalities into a
hyperspace by using specified canonical correlation analysis
constraints. In the training phase, the representations for
EEG and eye movement modality under canonical correlation
analysis are learned, and then a parameter sharing layer is
used to learn more knowledge from both modalities. In the
testing phase, only eye movement signals are used as inputs.
We evaluate our proposed method on the datasets proposed
in [4] [5] and find that it maintains superior performance
than other single-modal models tested and trained only on
eye movements and achieves a competitive accuracy in
comparison with multimodal models.

II. METHOD
A. Deep Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a standard statisti-
cal technique for finding linear projections of two given vec-
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tors to maximally correlate them. Andrew and colleagues [9]
proposed deep canonical correlation analysis (DCCA) based
on CCA to learn complex nonlinear transformations of two
views of data such that the resulting representations are
highly linearly correlated. Liu et al. [10] found that the
features transformed by DCCA from different modalities
are more homogeneous and discriminative across emotions
and that emotion recognition is enhanced by multimodality
fusion using DCCA tested on the SEED dataset. Inspired
by these ideas, we hope to extract highly linearly correlated
features representing decision confidence common between
eye movement and EEG signals by DCCA.

Assume that X1 ∈ RN×d1 represents the data of eye
movement signals, X2 ∈ RN×d2 the data of EEG sig-
nals, and N the batch-size, d1 and d2 the dimensions of
the extracted features for these modalities. The outputs
through deep neural networks can be represented as, O1 =
f1 (X1;W1) , O2 = f2 (X2;W2) , where W1 and W2 denote
all parameters for the nonlinear transformations. O1 ∈ RN×d

and O2 ∈ RN×d are the outputs of the neural networks, and d
denotes the output dimension of DCCA. The goal of DCCA
is to jointly learn the parameters W1 and W2 for both neural
networks such that the correlation of O1 and O2 is as high
as possible:

(W ∗
1 ,W

∗
2 ) = argmax

W1,W2

corr (f1 (X1;W1) , f2 (X2;W2)) .

(1)
We use the backpropagation algorithm to update W1 and

W2. The solution to calculating the gradients of the objective
function was developed by Andrew [9].

Let Ō1 = O′
1 − 1

NO′
1 1 be the centred output matrix

(similar to Ō2). We define Σ̂12 = 1
N−1 Ō1Ō

′
2, Σ̂11 =

1
N−1 Ō1Ō

′
1+r1I , where r1 is a regularization constant (sim-

ilar to Σ̂22). The total correlation of the top k components of
O1 and O2 is the sum of the top k singular values of matrix
T = Σ̂

−1/2
11 Σ̂11Σ̂

−1/2
22 , and the total correlation is the trace

of T :
corr (O1, O2) = (tr (T ′T ))

1/2
. (2)

Then we calculate the gradients with the singular decom-
position of T = UDV ′,

∂ corr (O1, O2)

∂O1
=

1

N − 1

(
2∇11Ō1 +∇12Ō2

)
, (3)

where

∇11 = −1

2
Σ̂

−1/2
11 UDU ′Σ̂

−1/2
11 ,

∇12 = Σ̂
−1/2
11 UV ′Σ̂

−1/2
22 ,

and ∂ corr (O1, O2)/∂O2 has a symmetric expression. We
jointly learn the parameters W1 and W2 for both neural
networks to make the correlation of O1 and O2 as high as
possible by the CCA constraint. The LCCA between O1 and
O2 can be represented as the negative correlation between
O1 and O2:

LCCA = − corr (O1, O2) = − (tr (T ′T ))
1/2

. (4)

B. Sharing Parameter Layer

Tang et al. [11] proposed a parameter sharing strategy to
enhance information sharing between the speech translation
task and text translation task. Inspired by this idea, a pa-
rameter sharing layer is added to our method to encourage
knowledge sharing between the two modalities. The results
through the parameter sharing layer can be represented as

R1 = fs (O1;Ws) , R2 = fs (O2;Ws) , (5)

where fs represents the sharing parameter layer and Ws is
the parameters shared between two modalities.

C. Classification Loss

For the classifier, we apply a Multilayer Perceptron (MLP)
as the classifier. The cross-entropy loss of the classifier is as
follows:

LCLS(y
i, ŷi) = −

∑
i

yi log ŷi, (6)

where ŷi represents the output of the classifier, and yi

represents the label of the data.

D. Cross-modality deep learning method

The structure of our proposed method is shown in Fig. 1.
In the training stage, separating but coordinating representa-
tions for each modality are learned by canonical correlation
analysis constraints, and then a parameter sharing layer is
used to learn more information from EEG signals. The test
stage follows the dashed box and only eye movement signals
are needed.

We minimize LCCA to make the correlation of O1 and O2

as high as possible. The LCCA between O1 is referenced in
Eq. (4). Then the extracted representations of eye movements
and EEG signals O1 and O2 are sent to the parameter sharing
layer as Eq. (5). The losses of the two classifiers LCLS eye

LCLS eeg can be rewritten as shown in Eq. (6).
The whole training process can be expressed as minimiz-

ing

L = λCCALCCA + λCLS(LCLS eye + LCLS eeg), (7)

where λCCA and λCLS are tradeoff parameters for each loss.

III. EXPERIMENTS

A. Datasets

We conduct experiments on two datasets developed
in [4] [5] and call them SEED-VP and SEED-OD in the
following sections. The two datasets are all multimodal
datasets including EEG signals and eye movement signals
for measuring five-level decision confidence. Both of the ex-
periments have been approved by the Scientific & Technical
Ethics Committee at Shanghai Jiao Tong University.

The SEED-VP dataset comes from a confidence experi-
mental paradigm in which 14 subjects (7 males and 7 fe-
males, aged from 18 to 24) perform a visual perception task.
The experiment consists of 135 trials, and each trial contains
one image selected from the Caltech 101 dataset [12]. The
subjects were required to identify the animal in the image
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Fig. 1. The framework of our proposed CDCCA model. In the training
stage, separating but coordinating representations for each modality are
learned, and then a parameter sharing layer is used to learn more information
from EEG signals. The test stage follows the grey area and only eye
movement signals are needed.

and make decisions from three different options, including
the correct answers for the other two in the same group.
Eye movements and EEG signals were recorded at the same
time during the entire experiment. Similarly, the SEED-OD
dataset is an object detection task where subjects must find
specified target objects in optical remote sensing images.
The data are recorded in the same way as the SEED-VP
dataset. Since the eye movement data recording for one of
the subjects was incomplete, we ended up with complete
eye movements and EEG signals for 13 subjects for both
datasets.

The EEG signals were recorded using a 62-channel active
AgCl electrode cap with an ESI NeuroScan System at a
sampling rate of 1000 Hz according to the international
10-20 system. For data preprocessing, a bandpass filter
between 0.3 and 50 Hz is applied to each channel to filter
the noise and the linear dynamic system (LDS) method is
adopted to smooth features. We use the differential entropy
(DE) features on all five bands, since they achieve the
best performance in [4] [5]. Therefore, the dimension of
EEG features is 310 per sample, calculated by 62 channels
multiplied by 5 bands. The eye movement signals were
recorded at a sampling rate of 120 Hz using a Tobii Pro X3-
120 screen-based eye tracker. Twenty-two eye movements
features, including pupil diameter, saccade, blink and fixation
were extracted, which follows the work in [6].

B. Experimental settings

We follow the subject-dependent classification setting in
[4] [5] and train a model for each subject. We choose two
traditional classifiers, the SVM and Multilayer Perceptron
(MLP), as single-modal methods trained and tested only on
eye movement modality. To verify the effectiveness of our
approach for each module, we remove the parameter sharing
layer as the CDCCA-S method and keep the number of nodes
and layers of the network constant during this process. The
CDCCA-S method and our CDCCA method are all cross-

TABLE I
THE CLASSIFICATION ACCURACY AND F1-SCORE (%) (MEAN/STD) OF

DIFFERENT MODELS ON TWO DATASETS.

Model SEED-VP SEED-OD
ACC F1 ACC F1

SVM1 40.76/7.61 34.49/6.14 38.07/7.09 32.93/7.52
MLP1 42.19/8.29 38.66/6.81 39.08/6.44 36.21/7.73
CDCCA-S2 47.48/9.07 43.30/7.80 43.05/6.94 39.62/6.79
CDCCA2 48.47/7.30 44.05/6.94 43.71/7.87 40.06/7.43
DCCA3 51.23/8.11 47.76/7.43 48.69/8.42 44.53/8.02
1 Single-modal method trained and tested on eye movements.
2 Cross-modal method trained on EEG and eye movements, but tested

only on eye movements.
3 Multimodal method trained and tested on EEG and eye movements.

modal methods trained on both modalities and tested only
on eye movement modality. Further, to compare our method
with the multimodal approach, we employ the DCCA method
proposed in [10].

IV. RESULTS

A. Comparison of single-modal methods between the two
modalities

The first two rows of Table I are the results of single-
modal methods trained and tested only on the eye movement
modality, while EEG signals obtain an accuracy of 49.14%
and F1-score of 45.07% [4] on SEED-VP and an accuracy
of 47.36% and F1-score of 43.50% [5] on SEED-OD. It
is apparent from the results that the EEG signals are more
reliable than eye movement signals for measuring decision
confidence. To further compare the classification ability of
the two modalities for decision confidence discrimination, we
compare the classification results of eye movements (Fig. 2
(a)) and EEG [4] using the SVM method, which is shown
in Fig. 3. We observe that eye movements are superior to
EEG signals in classifying low levels of confidence (1 and
2), with a mean accuracy of 56% and 42%, respectively,
whereas EEG signals have more discriminative power than
eye movements in recognizing the highest confidence level
(67% versus 25%). Intermediate confidence levels 3 and 4
are difficult to distinguish in both modalities.

B. Comparison between single-modal and multimodal meth-
ods

In the last row in Table I, the multimodal method DCCA
achieves an accuracy of 51.23% and an F1-score of 47.76%
on the SEED-VP dataset and an accuracy of 48.69% and
an F1-score of 44.53% on the SEED-OD dataset which
performs better than any single-modal method. These results
indicate that deep multimodal fusion with data from differ-
ent modalities for classification is still valid on this task.
Combining the findings in IV-A, it can be demonstrated that
different modalities can provide complementary information
for measuring decision confidence.

C. Comparison with cross-modal methods

From Table I, we can find that our method outperforms the
single-modal methods with an advantage of approximately
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of decision confidence.
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Fig. 3. Confusion graph of EEG signals and eye movements on the
SEED-VP dataset. The arrow indicates the direction of state transition. The
numbers denote the percentage corresponding to the confusion matrices of
SVM from the two modalities. The underlined digits indicate higher values.

6.28% for the accuracy and 5.39% for the F1-score on
the SEED-VP dataset and approximately 4.63% for the
accuracy and 3.85% for the F1-score on the SEED-OD
dataset. This is also reflected in Fig. 2, which shows that our
model outperforms on all levels compared with single-modal
methods. This indicates that the effective features of EEG
signals that can be used to discriminate decision confidence
are learned through our method. Although our method does
not work as well as the multimodal method, it is worthwhile
to reduce the reliance on the use of EEG signals in the test
phase.

D. Ablation study

The third row of Table I represents the results of our
method after removing the weight sharing layer (CDCCA-S),
which are significantly superior to the results of MLP, and
we also find that it achieves better accuracy and F1-score
than MLP for almost all subjects. It is demonstrated that the
effective features representing decision confidence common

between eye movements and EEG signals are extracted
by LCCA. Moreover, our method achieves relatively better
performance after adding a weight sharing layer. As shown
in Fig. 2, our method performs better especially on the
highest level compared with CDCCA-S, which may indicate
that more knowledge from EEG signals is learned after the
sharing parameter layer.

V. CONCLUSION

In this paper, we have proposed a new cross-modality
deep learning method based on DCCA for measuring human
decision confidence from eye movement signals. In our
method, we obtain features of each modality by transforming
separately and coordinating the data of different modali-
ties into a hyperspace using specified canonical correlation
analysis constraints, and then use a parameter sharing layer
to learn more information from EEG signals. In this way,
knowledge from EEG signals is learned in the training stage
and only eye movement signals are needed in the test stage.
The experimental results on two datasets demonstrate that
our proposed method has two promising characteristics: (a)
the knowledge of measuring the decision confidence level
from EEG signals can be learned and (b) the dependence on
EEG signals can be reduced.
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