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Abstract. The emergence of domain adaptation has brought remark-
able advancement to EEG-based emotion recognition by reducing subject
variability thus increasing the accuracy of cross-subject tasks. A wide
variety of materials have been employed to elicit emotions in experi-
ments, however, artistic works that aim to evoke emotional resonance
of observers are relatively less frequently utilized. Previous research
has shown promising results in electroencephalogram(EEG)-based emo-
tion recognition on static oil paintings. As video clips are widely rec-
ognized as the most commonly used and effective stimuli, we adopted
animated live oil paintings, a novel set of emotional stimuli in the live
form which are essentially a type of video clip while possessing fewer
potential influencing factors for EEG signals compared to traditional
video clips, such as abrupt switches on background sound, contrast, and
color tones. Moreover, previous studies on static oil paintings focused
primarily on the subject-dependent task, and further research involv-
ing cross-subject analysis remains to be investigated. In this paper, we
proposed a novel DAformer model which combines the advantages of
Transformer and adversarial learning. In order to enhance the evoca-
tive performance of oil paintings, we introduced a type of innovative
emotional stimuli by transforming static oil paintings into animated live
forms. We developed a new emotion dataset SEED-LOP (SJTU EEG
Emotion Dataset-Live Oil Painting) and constructed DAformer to verify
the effectiveness of SEED-LOP. The results demonstrated higher accu-
racies in three-class emotion recognition tasks when watching live oil
paintings, with a subject-dependent accuracy achieving 61.73% and a
cross-subject accuracy reaching 54.12%.
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1 Introduction

Affective computing aims at identifying, analyzing, and interpreting human emo-
tional states by employing various techniques such as natural language process-
ing, data mining, and machine learning to recognize and understand emotional
information effectively, among which electroencephalogram(EEG)-based emo-
tion recognition draws the most attention for its neural pattern stability in
emotion [1,2]. In recent years, a diverse range of emotion elicitation materi-
als has been employed in studies focusing on emotion recognition based on EEG
signals: images [3], video clips [4], musical segments [5], etc. However, artistic
works which aim to evoke the emotional resonance of observers are relatively
less frequently utilized. Luo et al. innovatively utilized oil paintings as emotional
stimuli and demonstrated their effectiveness in a subject-dependent EEG-based
emotion recognition task [6]. Subsequently, Lan et al. employed Transformer to
conduct subject-dependent emotion recognition on the oil painting dataset and
achieved promising performance [7].

In recent years, cross-subject emotion recognition has emerged as a research
focus due to its compatibility with the practical requirements of real-world appli-
cations. With the development of transfer learning, remarkable advancement
has been brought to cross-subject emotion recognition tasks by reducing subject
variability. Domain adaptation (DA) is a highly important branch of transfer
learning [8] whose primary objective is to effectively map features from various
source domains into a unified feature space, with the goal of eliminating the
domain discrepancy between the source and target domains, thus increasing the
accuracy of the target domain. Methods based on domain adversarial neural
networks (DANNSs) were proposed to identify common representations of EEG
signals among all subjects, thereby improving the cross-subject performance [9].
Apart from adversarial methods, subdomain adaption (DSAN) has also yielded
promising results. DSAN partitions similar samples within a domain into sub-
domains by certain criteria and aligns these subdomains rather than the global
domain alignment [10].

In addition to advanced classification methods, more neural network architec-
tures for EEG signals to extract efficient representations in various domains have
also garnered significant attention in the field of affective computing. Wang et
al. employed an attention mechanism to fuse EEG and eye signals [11]. Spectral-
spatial-temporal adaptive graph convolutional neural network (SST-AGCN) was
designed to extract EEG features from spectral, temporal, and spatial domains
based on a graph convolutional neural network and achieved outstanding per-
formance in a subject-dependent confidence estimation task [12].

As mentioned before, previous studies of oil painting datasets focused mainly
on the subject-dependent tasks [6,7]. However, the effectiveness of this paradigm
has not yet been validated across subjects which lays the foundation for practical
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cross-subject applications. This paper aims to address this issue by introducing a
novel DAformer model. By combining the advantage of the attention mechanism
in feature extraction of EEG signals with the effectiveness of domain adversarial
methods for the cross-subject task, we employed DAformer to recognize three
different classes of emotions (negative, neutral, positive) from EEG signals. Since
the emotional film clip is one of the most popular stimuli which has been proven
to be effective [13], we fabricated a novel set of emotional stimuli of animated
live oil paintings in order to enhance the emotion-inducing effects. We conducted
experiments to collect EEG signals and eye movements of participants under
the new stimuli and developed a new dataset: SEED-LOP (SJTU Emotion EEG
Dataset-Live Oil Painting)!. Finally, we demonstrated the superior performance
of the DAformer model as well as the feasibility of the SEED-LOP dataset. The
main contribution of this new dataset lies in its revolutionary implementation
of 2D live art pieces as stimuli, which has established a more streamlined and
lightweight experimental paradigm compared to traditional emotional video clips
and provided innovative methods in the field of affective computing.

2 Methods

We constructed the DAformer model to verify the effectiveness of SEED-LOP
(Fig.1). DAformer is composed of a feature extractor Gy, an emotion predic-
tor Gy, and a domain discriminator G4. We employed a multi-layer encoder
based on the multi-head self-attention mechanism as the feature extractor, a
fully connected feed-forward network for emotion prediction, together with a
domain adversarial module to eliminate the domain distribution discrepancy
across different subjects. The gradient reversal layer propagates the gradients
from the domain discriminator reversely to the feature extractor during back-
ward propagation, thereby enabling the feature extractor to extract invariant
EEG features in different domains. The training dataset included EEG signals
from both labeled data in the source domain and unlabeled data in the target
domain. All data are labeled by their corresponding domains to train the domain
discriminator, while only source data and its emotion labels are utilized to train
the emotion predictor to predict three types of emotions (0: negative, 1: neutral,
2: positive). The test dataset consists of target data and their emotion labels to
evaluate the performance of the feature extractor and emotion predictor.

2.1 Data Preprocessing

The raw EEG signals were first downsampled to 200 Hz and processed with a
1-70 Hz bandpass filter and a 50 Hz notch filter. We extracted the differential
entropy (DE) features of EEG signals as it is proven to have excellent perfor-
mance in previous studies [11,12,14]. The preprocessed EEG data underwent the
short-time Fourier transform (STFT) using a one-second Hanning window. This
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Fig. 1. The overall architecture of the DAformer. Solid arrows represent the forward
propagation and dashed arrows represent the backward propagation. The gradient
reversal layer propagates the gradient reversely to the feature extractor during back-
ward propagation, thereby enabling the feature extractor to learn invariant represen-
tations in the source and target domains.

transformation was performed on each epoch to extract the differential entropy
(DE) features from five distinct frequency bands: delta (1-3 Hz), theta (4-7Hz),
alpha (8-13Hz), beta (14-30Hz), and gamma (31-50Hz). The extracted DE
features of EEG signals are defined as X € RV*FXC where N stands for the
total number of samples, F' represents five frequency bands and C' denotes the
EEG channels.

2.2 DAformer

Feature Extractor. As EEG signals are temporal signals, we employed an
encoder based on the multi-head self-attention mechanism as the feature extrac-
tor. A batch normalization layer is applied at the beginning to avoid over-fitting
and accelerate the training process. After batch normalization and position
encoding of a sequence length L.,, the representations of EEG signals are fed
into the encoder which consists of NV identical layers, each of the layers contains
two sub-layers: a multi-head attention layer and a fully connected feed-forward
network. Both sub-layer is preceded by a layer normalization and applied with
a residual connection.

A multi-head attention layer consists of a parallel concatenation of NV scaled
dot product attention layers. First of all, the original input X € REXT*D where
B denotes the batch size, T' the overlapping window, and D the feature dimension
of EEG signals after preprocessing. After a linear transformation, a query of
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dimension d, a key of dimension di, and a value of dimension d, are generated
to compose the input of the scaled dot-product attention. The output of a single
scaled dot-product attention is calculated as below, where @), K, and V stand
for the packed matrices of queries, keys, values, and d; denotes the scaling factor
in order to avoid extremely small gradients:

T

. QK
Attention(Q, K, V) = softmax
@.K.V) (=

The output of all multi-head attention layers is shown as below:

V. (1)

MultiHead(Q, K, V) = Concat(heady, ..., heady, ) WW©,

head; = Attention(QWZ, KWK viv)), @
where the weight matrices W2 € RienXde WK g Rienxde WV g Rienxdv,
WiO € RMvxden and d,,, denotes the output dimension of the encoder.

The output is then fed into a residual connection before the fully connected
feed-forward network which comprises two linear transformations connected by
a ReLU activation function:

x = LayerNorm(z + Sublayer(x)), 3)

FFN(z) = max(0, W7 + by )Ws + bo.
Emotion Predictor. We utilized a single layer fully connected feed-forward
network as the emotion predictor.

Domain Discriminator. The domain discriminator is composed of L layers
where each is a single linear transformation with a ReLLU activation function.
The output of the last linear transformation is activated by a Sigomoid activation
function. Between feature extractor Gy and domain discriminator G4, a gradient
reversal layer is employed to propagate the gradient reversely, thereby fostering
an adversarial training process between Gy and G4. As G, and G4 gain increasing
precision in classifying emotion types and domain types, the reversed gradient
is intended to guide G; in extracting features that are indistinguishable for Gg.

We denoted x4, the ith input of the model, d € {s,t} which represents
the domain of x4, (s for source domain and ¢ for target domain), the feature
extractor produces its output Gf(z4;). The extracted features of source domain
data are then fed into the emotion predictor and domain discriminator while
those of the target domain are only applied to the domain discriminator. The
emotion predictor predicts the emotion label G, (G(xs,;)) only for source data,
while the domain discriminator makes domain prediction G4(Gf(zq,)) for both
source data and target data.

We utilized the cross entropy loss for the emotion predictor. The loss function
can be presented as:

[s]
1 "
Ly = *H E Ys,i log Js. i, (4)
i=1
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where ¢ ; denotes the output of the emotion predictor: g5 ; = G, (G(zs,)) and
Ys,i denotes the true emotion label of x ;.

We applied the binary cross entropy loss for the domain discriminator. The
loss functions for the source domain and target domain are expressed as:

S

1 A A
L, = —m (ds7i log ds,i + (1 — ds,i) * log ds,i)7 (5)
i=1
1 [t] A A
Ly = i Z(dt,i logds; + (1 —dy ;) xlogdy ), (6)
im1

where cis,i and ch denote the predictions of the domain discriminator: d,; =
Ga(Gy(zs4)), ‘jt,i = Gq(Gy(z,)), respectively, and ds;, d;; denote the true
domain label of x, ;, @ ;, respectively.

The total loss of DAformer is composed as below:

L =L, +p(L+ L), (7)

where (3 is a hyperparameter that balances the weight between the emotion class
loss and the domain loss.

We optimized the parameters of the feature extractor and the emotion pre-
dictor by minimizing the total loss function, and we updated the parameters of
the domain discriminator by maximizing the total loss function:

éf,éy = argmmef’gyﬁwf, Qy, éd), (8)
0, = argmaxgdﬁ(éf, éy, 04)-

3 Experiments

We designed a novel emotional experiment paradigm using animated live oil
paintings as stimuli. The value of this innovative dataset lies in its groundbreak-
ing use of 2D live art pieces as stimuli, which has achieved a more lightweight
experimental paradigm compared to video clips and yielded effective classifi-
cation results. A total of 40 healthy, right-handed participants (20 males, 20
females) aged between 17 and 29 years (mean age: 21.6 years, standard devia-
tion: 2.95) were recruited from Shanghai Jiao Tong University for the experiment.
Each participant viewed 60 oil paintings (20 positive, 20 neutral, 20 negative)
during the experiments, and both their EEG signals and eye movements were
recorded during the observation of paintings. As previous studies proved that
the power of the theta band and the alpha band power of EEG signals dif-
fer between artists and non-artists in response to abstract and representational
paintings [15], our participants were selected intentionally as half artistically
experienced and half artistically naive under the results of the art experience
questionnaire [16]. We successfully collected EEG signals and eye movements of
40 participants with a statistic distribution of 28% negative emotion samples,
34% neutral emotion samples, and 38% positive emotion samples.
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3.1 Dataset

Stimuli. Luo et al. employed a total of 114 world-renowned paintings spanning
from the mid-16th century to the 19th century [6]. The paintings encompassed
a diverse range of genres, including portraiture, animal depiction, still life, land-
scape, and cityscape, which were representative of most major art styles. Ques-
tionnaires were distributed among students of Shanghai Jiao Tong University
and China Academy of Art on the perception of emotion types (negative, neu-
tral, positive) of the 60 paintings as well as their level of intensity. We selected 60
paintings (20 of each type of emotion) that have the highest intensity ratings and
put them into our stimuli set. Before the animation of the oil paintings, we con-
ducted an experiment to collect the eye movement heatmaps during the observa-
tions of these paintings in order to locate the parts that draw the most attention.
40 healthy participants were recruited (9 males, 31 females, age: 25.35+3.71) to
observe the 60 oil paintings selected. Each painting was presented for 20s with
a one-second interval of focus time between each display. The eye movements
of the participants during the observation were recorded by a Tobii Pro X3-120
screen-based eye tracker at a sampling rate of 120 Hz. We produced an attention
heatmap for each painting by calculating the average gaze point of all partic-
ipants (Fig.2). Based on the attention heatmaps, we successfully transformed
60 static oil paintings into animated live GIFs using Photoshop software and
Cartoon Animator 4 software.

Fig. 2. Examples of attention heatmaps of the average eye movements of 40 partici-
pants during observations of the oil paintings from our stimuli set. The transition from
static oil paintings to animation form was based on the attention heatmaps.
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Procedure. The experimental protocol is presented in Fig. 3 to illustrate the
details of our main experiment. In the experiment for each participant, 60 ani-
mated oil paintings were organized into 5 groups. Each group comprised 3 ran-
domly decided different emotion type batches, with each batch consisting of 4
paintings randomly selected with the same emotion class in order to minimize
the occurrence of frequent emotional transformation within a short timeframe.
Before the experiment, the participants were briefed on the experimental pro-
tocol and shown a tutorial of three example paintings representing negative,
neutral, and positive emotions as a reference level for rating. Each painting was
preceded by a one-second focus time of a black screen with a white 4+ symbol
in the middle. The duration of display of each painting was fixed at 20s, during
which the participants were asked to intently observe and perceive the painting.
After a one-second focus session that followed, participants were instructed to
report both their emotional perception of the emotion type (negative, neutral,
and positive) and the intensity (1-9) at the rating session with no time limit.

During the experiments, the EEG signals of subjects were collected by an
ESI NeuroScan System with a 62-channel module arranged according to the
international 10-20 system at a sampling rate of 1000 Hz. Eye movements were
recorded by a Tobii Pro X3-120 screen-based eye tracker at a sampling rate of
120 Hz.

Focus Time GIF Display Focus Time Rating

Is 20s ls no time limit
I
Negative Negative Negative Negative
GIF1 GIF2 GIF3 GIF4

| 4 consecutive GIFs from the same class |
Neutral Negative Positive
Batch Batch Batch

arrange 4 GIFs of each class as a batch randomly

[
| Group 1 |>--->| Group i |>--->{ Group 5 |

assign 12 GIFs with even number of classes randomly

60 Oil Painting GIFs

Fig. 3. Illustration of the experimental protocol.

3.2 Implementation Details

During the experiment, the reported emotion categories of the participants (0: neg-
ative emotion, 1: negative emotion, 2: positive emotion) were used as classification
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labels to investigate the effectiveness of this paradigm in emotion classification
tasks based on EEG signals. We utilized EEG features in a total of five frequency
bands. In the subject-dependent experiment, all models were trained on each par-
ticipant using three-fold cross-validation, while the data under the observation
of the same oil painting did not appear in both the training sets and the testing
sets simultaneously. For the cross-subject experiment, we employed Leave-One-
Out-Cross-Validation. To evaluate the performance of DAformer, we compared our
model with four other classifiers, including support vector machine (SVM), mul-
tilayer perceptron (MLP), Transformer [17], and spectral-spatial-temporal adap-
tive graph convolutional neural network (SST-AGCN) [12], both in the subject-
dependent task and the cross-subject task, as well as the comparison of four differ-
ent domain adaptation methods: correlation alignment (CORAL) [18], domain-
adversarial neural networks (DANN) [19], dynamic adversarial adaptation net-
work (DAAN) [20] and deep subdomain adaptation network (DSAN) [10] addi-
tionally for the cross-subject task.

In our experiments, we set batch size B = 128, window size = 4 s thus window
number 7" = 5. The number of channels of EEG signals was 62 for our experiment,
and together with the 5 frequency bands, the feature dimension D of EEG signals
added to 310. For both the subject-dependent task and the cross-subject task, the
SVM classifiers were applied with the RBF kernel with the range of parameter
C is 2078,

For DAformer, we employed the encoder dimension d.,, = 512, the dimen-
sion of feed-forward network dfs = 2048, the learning rate in a range of
[le — 3,5e¢ — 4,1e — 4], the domain loss weight 8 = 10, the layer number of
domain discriminator L = 1 with 256 dimensions and the sequence length L.,
within a range of [1, 2, 4].

3.3 Results Analysis

In this section, we compared the performance of DAformer with the other four
classifiers, including SVM, MLP, Transformer [17], and SST-AGCN [12], both
in the subject-dependent task and the cross-subject task, with the compari-
son of 4 different DA methods of CORAL [18], DANN [19], DAAN [20] and
DSAN [10] in order to recognize emotions under stimuli of active oil paintings
for the cross-subject task. To further analyze the performance of SEED-LOP,
the neural patterns under live oil paintings are also investigated.

Table 1. Results of the subject-dependent task on SEED-LOP

Model | SVM | MLP | SST-AGCN | Transformer
mean |53.67 | 56.47 | 56.58 61.73
std 7.85 |8.86 |4.46 7.65
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Emotion Recognition Performance of DAformer. The mean accuracies
and standard deviation of SVM, MLP, SST-AGCN, and Transformer under
the subject-dependent task are listed in Table1 while Table2 presents the
results of SVM, MLP, SST-AGCN, Transformer, DANN, CORAL, DAAN,
DSAN and DAformer. The experimental results indicate that for the subject-
dependent task, Transformer achieved the best performance with an accuracy
of 61.73%/7.65%, while among the nine models for the cross-subject task,
DAformer exhibited superior performance with the highest classification accu-
racy of 54.12%/6.89%.

Table 2. Results of the cross-subject task on SEED-LOP

Model ‘ SVM MLP SST-AGCN Transformer
mean 39.07 47.54 50.59 50.09
std. 8.47 9.86 6.88 6.92

Model ‘ DANN CORAL DAAN DSAN DAformer

mean 49.23 44.29 46.08 45.54 54.12
std. 6.85 8.31 9.31 8.61 6.89
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Fig. 4. The average topographic maps of the 40 subjects for three emotion classes with
the five frequency bands. The row denotes the different emotion classes and the column
denotes the different frequency bands.
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Visualization of the Brain Topographic Maps. The neural patterns of
the five frequency bands are depicted in Fig. 4. These patterns were derived by
averaging the DE features across all 40 participants for each EEG channel. It
demonstrates that the lateral temporal areas are more active in the beta and
gamma band and the prefrontal sites have higher theta and alpha responses for
positive emotions than negative emotions. While the neural patterns of neutral
emotions show a greater activation at prefrontal sites for all bands and a stronger
gamma response at the occipital sites. We also observed that the negative emo-
tion patterns have significantly higher activation in all bands at the occipital
sites and parietal sites. These observations highlight the potential existence of
neural patterns associated with the stimuli of animated oil paintings.

(¢) Transformer

0 1 2
0.05 | 028
027 031

(d) MLP (e) SST-AGCN (f) DAformer

Fig. 5. Confusion matrices of experiments. 0: negative, 1: neutral, 2: positive; (a), (b),
(c): SVM, SST-AGCN, Transformer in the subject-dependent task, (d), (e), (f): MLP,
SST-AGCN, DAformer in the cross-subject task.

Confusion Matrix of the Experiments. To further analyze the experimental
outcomes of emotion recognition on SEED-LOP, we present the confusion matri-
ces in Fig. 5. From these confusion matrices, we observe that negative emotion
and positive emotion are more readily distinguishable by the model with higher
accuracies while there exists a tendency for neutral emotions to be more easily
predicted as positive emotion, which aligns with the neural pattern observed in
the average topographic map. The topographic map indicates a greater simi-
larity in the neural pattern between neutral and positive emotions as they both
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show higher activation in prefrontal sites at the theta and alpha bands. This phe-
nomenon also corresponds to the reports of some participants that they believed
to have observed a smaller number of neutral emotion paintings in comparison to
paintings of the other two emotions. However, we have utilized an equal number
of neutral emotion paintings compared to the other two categories in the exper-
iments. This finding suggests that the criteria for rating neutral emotions may
be ambiguous for different participants, leading to confusion in the classification
task of the models.

4 Conclusion

In this paper, we proposed a novel EEG-based emotion recognition experimental
paradigm by utilizing animated oil paintings as stimuli and created the dataset
SEED-LOP. The significance of this new dataset lies in its revolutionary utiliza-
tion of 2D live art pieces as stimuli, which has established a more streamlined
and lightweight experimental paradigm in comparison to traditional emotional
video clips. We employed Transformer for subject-dependent tasks and intro-
duced DAformer by combining the effectiveness of Transformer with domain
adversarial methods for cross-subject tasks to test our dataset SEED-LOP. The
experimental results demonstrate that Transformer performs an outstanding
accuracy of 61.73% on the subject-dependent task and an improved accuracy
of 54.12% of DAformer on the cross-subject task which both serves as an evi-
dence for the effectiveness of the SEED-LOP.
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