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Abstract—Most of the existing graph-based clustering models
performed clustering by adopting a two-stage strategy which first
completes the spectral embedding from a given fixed graph and
then resorts to other clustering methods such as kmeans to achieve
discrete cluster results. On one hand, such a discretization oper-
ation easily causes that the obtained results deviate far from the
true solution. On the other hand, clustering performance heavily
relies on the quality of graph; therefore, the fixed graph is usually
not optimal enough. In addition, clustering by separated steps
inevitably breaks the underlying connections among the graph
construction, spectral embedding and discretization. To address
these drawbacks, in this paper, we propose a new spectral clustering
model termed JGSED which integrates the graph construction,
spectral embedding and spectral rotation together into a unified
objective. JGSED is an end-to-end framework to directly take data
as input and output the final binary cluster indicator matrix. An
efficient algorithm is proposed to optimize the model variables in
JGSED, which can be co-evolved towards the optimum. Extensive
experiments are conducted on both synthetic and real data sets and
the results demonstrate that JGSED outperforms the other state-
of-the-art spectral clustering models, indicating the effectiveness of
joint optimization.

Index Terms—Graph construction, joint optimization, spectral
clustering, spectral embedding, spectral rotation.

I. INTRODUCTION

A S ONE of the most popular unsupervised learning
paradigms, clustering has been widely applied in many
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practical scenes such as image processing [1], bioinformat-
ics [2], remote sensing [3] and change detection [4], which
has always been a research hotspot in diverse fields such as
machine learning, data mining and computational intelligence.
Generally, clustering aims to group data points into different
clusters based on their similarities [5]. Recently a lot of methods
such as neural networks and fuzzy systems were proposed
to perform data clustering [6], [7]. Current clustering models
mainly include kmeans clustering, hierarchical clustering [8],
[9], density-based clustering [10], subspace clustering [11], [12],
spectral clustering [13], [14], multi-view clustering [15], [16]
and some others [17], [18], [19]. Among the existing cluster-
ing models, spectral-based ones mainly focus on modeling the
spectral structure of data by a similarity graph first and then
partitioning the graph vertices into respective clusters, which
have drawn increasing attention recently due to its effectiveness.
The essence of spectral clustering is to convert clustering into a
graph cutting problem.

Generally, a complete spectral clustering process consists
of three consecutive stages, i.e., first constructing a similarity
to depict the structure information of data as accurately as
possible, then calculating the spectral embedding on the graph
Laplacian matrix to get the scaled cluster indicator matrix with
continuous values, and finally performing post-processing on
the scaled indicator matrix to extract the corresponding discrete
indicator matrix by an additional post-processing step such as
kmeans or spectral rotation [20]. However, performing spectral
embedding and post-processing separately may easily result in
far deviation from the true discrete indicator matrix, leading to
sub-optimality as well as degenerated clustering performance.
In [21], a rank-constrained spectral clustering with flexible
embedding framework was proposed by integrating the three
components of adaptive probabilistic neighborhood learning,
flexible embedding and the rank constraint on graph Laplacian
matrix. In [22], a robust graph affinity matrix was adaptively
learned from multiple features. Accordingly, a set of projection
matrices are learned to determine the optimal subspaces of the
different types of features. In [23], Yang et al. proposed a unified
framework for discrete spectral clustering (UFDSC) which can
directly output final indicator matrix with predefined graph. Fur-
ther, Pang et al. proposed to jointly perform spectral embedding
and spectral rotation (JSESR) [24], aiming at addressing the
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unbalance limitation in UFDSC. In [25], an variant kmeans was
proposed by jointly performing spectral embedding and rotation
on a specific data similarity graph.

In spectral clustering, the quality of input graph plays a cru-
cial role in determining whether clustering models can achieve
promising performance. Traditionally, graph was constructed
according to some fixed rules such as the ‘0-1’ and ‘Heatkernel’-
based weighting schemes [26], [27], which have limited ca-
pacities in characterizing the inner connection between sample
pairs. For example, in [28], an adaptive semi-supervised fea-
ture selection model was proposed for cross-modal retrieval,
in which the semantic regression was utilized to strengthen
the neighboring relationship between the data with the same
semantic. Meanwhile, a graph-constraint based on the ‘Heatk-
ernel’ function was adopted to perform label estimation of
the unlabeled data. Therefore, a lot of efforts were devoted to
adaptively learn graph from data and consequently many high-
quality graphs were proposed such as the sparse representation-
based graph [29], low-rank representation-based graph [30],
[31], maximum entropy graph [32], [33], doubly stochastic
graph [14] and weight-adaptive graphs [34]. In [35], Nie et al.
proposed a clustering with adaptive neighbors (CAN) model in
which the target graph was enforced to satisfy triple desirable
properties of non-negativity, row normalization and constrained
rank. Besides, CAN can adaptively determine the neighborhood
size. Its projected version PCAN can jointly perform graph
construction and subspace exploration. Yang et al. proposed a
joint spectral embedding and clustering method with structured
graph optimization, in which the similarity matrix is optimized
with embedded low-dimensional data [36]. In the LAPIN model,
an optimal bipartite graph is learned to extract the duality rela-
tionship between samples and featues for co-clustering [37].
To directly achieve the discrete clustering results, spectral ro-
tation is integrated into the graph learning to form a discrete
optimal graph clustering (DOGC) model [38]. In [39], CAN
was extended to self-weighted CAN (SWCAN) by additionally
exploring the contributions of different feature dimensions in
graph construction. This is completed by introducing a self-
weighted variable in characterizing the connection between data
pairs. SWCAN can output a better graph and result in better
clustering performance than CAN. However, its learned scaled
indicator matrix is still in real-valued form. Therefore, for all
these mentioned graph construction models, a post-processing
step is always necessary to discretize the obtained scaled indi-
cator matrix to finally indicate the cluster assignments of data
points [20].

Motivated by that joint optimization of the graph construc-
tion, spectral embedding and discretization post-processing can
effectively capture the underlying connections among them, in
this paper, we propose an end-to-end spectral clustering model
termed JGSED to unify them together into a single objective
function, which allows the dynamic updates of the variables
corresponding to these three operations. For the graph construc-
tion, a variant SWCAN is adopted by simultaneously taking the
rank constraint, adaptive neighbors, and self-weighted feature
importance into account. For the discretization, improved spec-
tral rotation is adopted to minimize the discrepancy between

TABLE I
SUMMARY OF THE MAIN NOTATIONS

scaled cluster indicator and real clustering solution [40]. Below
we summarize the main contributions of this work.
� A complete spectral clustering model JGSED is proposed

to perform end-to-end data clustering, which unifies all
the three stages of graph construction, spectral embedding
and discretization together into a single objective. JGSED
directly takes data as input and outputs the final clustering
results as well as the constructed graph, which effectively
avoids the sub-optimality caused by executing these stages
separately and sequentially.

� An efficient optimization algorithm is developed to solve
the JGSED objective function. The involved model vari-
ables in JGSED are iteratively updated in the form of
alternate optimization. Especially, the utilization of the
generalized power iteration (GPI) method in optimizing the
scaled indicator matrix greatly decreases the model com-
putational complexity in comparison with the traditional
eigen-decomposition operation on the Laplacian matrix.

� Extensive experiments are conducted on both synthetic and
real data sets and the obtained results show that JGSED
outperforms the other state-of-the-art models in data clus-
tering. Besides, the model robustness, convergence and
parameter sensitivity analysis JGSED are provided.

The remainder of this paper is organized as follows. Section II
briefly reviews some related models to current work. In Section
III, we introduce the proposed JGSED model in detail including
its objective function, optimization algorithm, complexity and
convergence analysis. The evaluations of JGSED performance
on synthetic and benchmark data clustering are respectively
provided in Section IV and Section V. Section VI concludes
the whole paper.

Notations: Throughout this paper, matrices and vectors are
respectively denoted by boldface uppercase and lowercase let-
ters. For example, for matrix M, we use mij to represent its
(i, j)-th element, mi and mj to represent its i-th column and
j-th row, respectively. The boldfaced 1 is an all-one column
vector whose length is determined by the context. To facilitate
the understanding of the derivations in the following sections,
we summarize the main notations in Table I.
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II. RELATED WORKS

In this section, we introduce some related works including
the conventional spectral clustering, self-weighted CAN and
JSESR.

A. Spectral Clustering Revisit

Given a data matrix X = [x1,x2, . . . ,xn] ∈ Rd×n where d
is the dimensionality and n is the number of data points, the
clustering task aims to partitionX into c groups and usually c is a
predefined number of clusters. Denote Y as the cluster indicator
matrix (i.e., Y ∈ Ind). Y = [y1;y2; · · · ;yn] ∈ Bn×c and the
unique non-zero element 1 in its i-th row yi ∈ B1×c indicates
the corresponding cluster membership of the sample xi. We
denote the similarity matrix by A ∈ Rn×n in which element aij
represents the similarity between xi and xj . Then the Laplacian
matrix L ∈ Rn×n can be calculated by L = D− (A+AT )/2,
where D ∈ Rn×n is a diagonal degree matrix with its i-th
element defined as dii =

∑n
j=1(aij + aij)/2. By introducing a

scaled cluster indicator matrix F = Y(YTY)−
1
2 ∈ Rn×c with

its j-th column defined as

fj = [0, . . . , 0︸ ︷︷ ︸
∑j−1

i=1 ni

, 1, . . . , 1︸ ︷︷ ︸
nj

, 0, . . . , 0︸ ︷︷ ︸
∑c

i=j+1 ni

]T /
√
nj , (1)

where nj is the number of samples in the j-th cluster, the
objective function of spectral clustering is formulated as

min
F

Tr(FTLF), s.t. F = Y(YTY)−
1
2 . (2)

Since FTF = (YTY)−
1
2YTY(YTY)−

1
2 = I, the optimal

solution F∗ to problem (2) can be obtained by stacking the
eigenvectors of L corresponding to its c smallest eigenvalues.
The process of computing F∗ is called spectral embedding.

B. Self-Weighted CAN

For graph-based clustering models, their performance highly
depends on the quality of the input graph. To let the two processes
of graph construction and spectral embedding better match each
other, Nie et al. proposed a CAN model to adaptively learn the
similarity matrix by exploring its local connectivity. Meanwhile,
the rank constraint is imposed to the Laplacian matrix with the
expectation that the number of the connected graph components
is equal to the number of clusters. The CAN model objective
function is

min
A

n∑
i,j=1

(
‖xi − xj‖22 aij + γa2ij

)
,

s.t. ∀i, ai1 = 1,ai ≥ 0, rank(L) = n− c, (3)

where ai is the i-th row of A, γ is a tradeoff parameter.
Supposing that σi(L) is the i-th eigenvalue of L, σi(L) is

non-negative since L is positive semi-definite. By introducing a
large enough parameter λ, the rank constraint can be absorbed

in the objective function as

min
A

n∑
i,j=1

(
‖xi − xj‖22 aij + γa2ij

)
+ 2λ

c∑
i=1

σi(L),

s.t. ∀i, ai1 = 1,ai ≥ 0. (4)

According to the Ky Fan’s Theorem [41], we have
c∑

i=1

σi(L) = min
F∈Rn×c,FTF=I

Tr(FTLF), (5)

and then the final objective of CAN is formulated as

min
A,F

n∑
i=1

n∑
j=1

(
‖xi − xj‖22 aij + γa2ij

)
+ 2λTr(FTLF),

s.t. ∀i, ai1 = 1,ai ≥ 0,F ∈ Rn×c,FTF = I. (6)

However, it is not reasonable to treat all feature dimensions
equally; that is, they hold the same importance in determining
the cluster assignments of samples. To this end, Nie et al.
proposed to adaptively learn the feature weights by introducing a
self-weighted variable θ which satisfiesθ ≥ 0 and

∑d
t=1 θt = 1

[42], [43], [44]. The objective function of SWCAN is

min
A,Θ,F

n∑
i,j=1

(
‖Θxi −Θxj‖22 aij + γa2ij

)
+ 2λTr(FTLF),

s.t. ∀i, ai1 = 1,ai ≥ 0,θ ≥ 0,θT1 = 1,

Θ = diag(θ),F ∈ Rn×c,FTF = I, (7)

where θt characterizes the importance of the t-th feature. In-
tuitively, θt should be large if the t-th feature is discriminative
while it should be small if it is noisy or redundant. Θ ∈ Rd×d

is a diagonal matrix reshaped from vector θ.
It should be noted that (5) is consistent with the spectral

embedding objective function (2) to some extent. From this
perspective, we can decompose the second term in objective
function (7) into two subitems which respectively correspond to
the rank constraint and spectral embedding since parameter λ

is large enough. Therefore, SWCAN can be viewed as a joint
model of graph construction and spectral embedding.

C. JSESR

Given a graph, conventional spectral clustering models per-
form spectral embedding first and then discretize the scaled clus-
ter indicator matrix by kmeans or spectral rotation. As pointed
by [20], [40], spectral rotation usually outperforms kmeans,
which therefore becomes a better choice for post-processing. In
practice, such processing strategy cannot achieve the optimum
and both stages should be unified together. In [24], Pang et al.
proposed to jointly perform spectral embedding and improved
spectral rotation (JSESR). Based on k-way normalized cut
(NCut), the objective function of JSESR was formulated as

min
F1,R,Y

Tr(FT
1 L̃F1) + α

∥∥∥F1R−D
1
2Y(YTDY)−

1
2

∥∥∥2
2
,

s.t. FT
1 F1 = I,RTR = I,Y ∈ Ind, (8)
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Fig. 1. The overall framework of the proposed JGSED model.

whereα is a regularization parameter to balance the effects of the
two items. L̃ = D− 1

2LD− 1
2 is the normalized Laplacian matrix.

The first item corresponds to the spectral embedding and the
second implements the spectral rotation. The NCut objective
referred in JSESR is

min
H

Tr(HTLH), s.t. HTDH = I, (9)

where H is the scaled indicator matrix and defined
as H = Y(YTDY)−

1
2 . By defining F1 = D

1
2H =

D
1
2Y(YTDY)−

1
2 , we have FT

1 F1 = (YTDY)−
1
2YTD

1
2 ·

D
1
2Y(YTDY)−

1
2 = I. Then objective function (9) can be

rewritten as

min
F1

Tr(FT
1 L̃F1), s.t. F1 = D

1
2Y(YTDY)−

1
2 . (10)

Since F1 is a real-valued matrix, JSESR utilized the im-
proved spectral rotation as the postprocessing method to get final
clustering results. The objective function of the postprocessing
process is

min
RTR=I,Y∈Ind

∥∥∥F1R−D
1
2Y(YTDY)−

1
2

∥∥∥2
2
, (11)

where R ∈ Rc×c is an orthonormal matrix such that F1R is
closest to the true solution D

1
2Y(YTDY)−

1
2 for F1.

III. THE PROPOSED JGSED MODEL

In this section, we present a unified framework of graph
construction, spectral embedding and discretization for spectral
clustering (JGSED) including its formulation and optimization.
Besides, its computational complexity and convergence property
are analyzed in detail. The overall framework of the proposed
JGSED model is provided in Fig. 1.

A. Model Formulation

According to the analysis of SWCAN and JSESR in Section
II, we draw a conclusion that SWCAN model can be understood
as the joint framework of graph construction and spectral em-
bedding, while the JSESR is a unified model that integrates the
procedure of spectral embedding and discretization.

For the general graph-based spectral clustering objective func-
tion (2), inspired by JSESR, we adopt the improved spectral
rotation as the post-processing method to discretize the obtained
scaled indicator matrix F. That is

min
Y,R

∥∥∥FR−Y(YTY)−
1
2

∥∥∥2
2
, (12)

where R ∈ Rc×c is an arbitrary orthonormal matrix and Y ∈
Ind is the binary cluster indicator matrix.

Based on SWCAN, we add an extra setting to F as F =
Y(YTY)−

1
2 , which also satisfies the orthonormal constraint.

Then, an variant SWCAN model can be represented as

min
A,Θ,F

n∑
i,j=1

(
‖Θxi −Θxj‖22 aij + γa2ij

)
+ 2λTr(FTLF),

s.t. ∀i, ai1 = 1,ai ≥ 0,Θ = diag(θ),θT1 = 1,θ ≥ 0,

F ∈ Rn×c,F = Y(YTY)−
1
2 ,FTF = I. (13)

Though the above variant SWCAN model optimizes the graph
similarity matrixA and the scaled indicator matrixF in one step,
we still need to discretize F to get the final cluster assignments.
In this paper, we propose to jointly optimize the objective
functions of (12) and (13), and then get the objective function
of the proposed JGSED model as

min
A,Θ,F,R,Y

n∑
i,j=1

(‖Θxi −Θxj‖22 aij + γa2ij)

+ 2λTr(FTLF) + β
∥∥∥FR−Y(YTY)−

1
2

∥∥∥2
2
,

s.t. ∀i, ai1 = 1,ai ≥ 0,θT1 = 1,θ ≥ 0,Θ = diag(θ),

F ∈ Rn×c,FTF = I,R ∈ Rc×c,RTR = I,Y ∈ Ind. (14)

where γ, λ, and β are regularization parameters.
It is obvious that there are three terms in the JGSED ob-

jective function (14). Here it should be noted that the second
term Tr(FTLF) has multiple meanings. First, it corresponds
to the rank constraint (i.e., rank(L) = n− c) for structured
graph learning. Second, this term together with the orthonormal
constraint FTF = I performs the spectral embedding, which is
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similar to the one in objective function (2). Therefore, it can be
regarded as a compound term, based on which the former two
terms in (14) not only form the objective function of the SWCAN
model but also fuse the two processes of graph construction
and spectral embedding together. Similarly, the combination
of the latter two terms jointly performs spectral embedding
and spectral rotation. As a summary, our JGSED model fully
integrates the three processes in spectral clustering, i.e., graph
construction, spectral embedding and spectral rotation-based
discretization, which is an end-to-end spectral clustering model
to directly operate on data and output cluster assignments.

What is more, it should be illustrated that there are two reasons
for adopting SWCAN as the basic method for the graph con-
struction stage of JGSED. First, SWCAN simultaneously takes
the non-negativity, row normalization, rank constraint, adaptive
neighbors and self-weighted feature importance into account,
which is quite advanced among existing graph-construction
methods. The first three properties aim to learn a structured graph
which has exact c connected components corresponding to the
clusters [45]. Adaptive neighborhood is also one of the desirable
properties to construct an informative graph [35], [46]. The
adaptive feature importance learning can improve the discrimi-
native ability of the learned graph based on the consensus that
different features have different contributions in characterizing
the semantic information of data. Second, the primary focus of
this paper is to build an end-to-end spectral clustering model
to avoid the limitations caused by separately performing graph
construction, spectral embedding and discretization, rather than
proposing a new graph construction method. In this sense, our
proposed JGSED is a general framework whose building blocks
corresponding to the three operations are replaceable by others
on condition that the mathematics are tractable.

B. Model Optimization

There are total five variables, i.e., A, Θ, F, R and Y, in the
JGSED objective function (14). In this section, we apply the
alternative optimization approach to update these variables; that
is, updating one with the others fixed. Below are the detailed
derivations.

1) Update A: The sub-objective associated with A is

min
A

n∑
i,j=1

(‖Θxi −Θxj‖22 aij + γa2ij) + 2λTr(FTLF),

s.t. ∀i, ai1 = 1,ai ≥ 0. (15)

Since f i ∈ R1×c is the i-th row of F, it can be verified that

2Tr(FTLF) =
n∑

i=1

n∑
j=1

∥∥f i − f j
∥∥2
2
aij . (16)

Then objective function (15) can be rewritten as

min
A

n∑
i,j=1

[
(‖Θxi −Θxj‖22 + λ‖f i − f j‖22)aij + γa2ij

]
,

s.t. ∀i, ai1 = 1,ai ≥ 0. (17)

Denote that di ∈ R1×n is an vector whose j-th element is
dij = ‖Θxi −Θxj‖22 + λ‖f i − f j‖22. Since different row vec-
tors of A are independent, problem (15) can be decoupled to the
following optimization problem

min
ai1=1,ai≥0

n∑
j=1

(dijaij + γa2ij)

⇔ min
ai1=1,ai≥0

γ

n∑
j=1

(
a2ij +

1

γ
dijaij +

1

4γ2
d2ij

)

⇔ min
ai1=1,ai≥0

∥∥∥∥ai + 1

2γ
di

∥∥∥∥2
2

, (18)

which defines a squared Euclidean distance on a simplex con-
straint. This can be efficiently solved by the method proposed
in [47]. Usually, the parameter γ can be tuned by grid search
and below we provide a more elegant approach to determine it.

Inspired by [35], it is preferred to learn a sparse ai, meaning
that xi is only associated with its k nearest neighbors. Then ai

has exact k nonzero elements. Supposing that the elements of
di (denoted as di1, di2, . . . , din) were sorted in ascending order,
the overall γ can be set as

γ =
1

n

n∑
i=1

⎛
⎝k

2
di,k+1 − 1

2

k∑
j=1

dij

⎞
⎠ . (19)

Therefore, tuning the regularization parameter γ can be com-
pleted by tuning the neighborhood size parameter k, which is
much easier since k is an integer with explicit meaning. The
optimal solution to ai is

aij =

[
di,k+1 − dij

kdi,k+1 −
∑k

j=1 dij

]
+

, (20)

which indicates that the similarity graph A can be initialized by

aij =

[
dxi,k+1 − dxij

kdxi,k+1 −
∑k

j=1 d
x
ij

]
+

. (21)

Here dxij = ‖xi − xj‖22.
2) Update Θ: When the other variables are fixed, problem

(14) becomes

min
Θ

n∑
i,j=1

‖Θxi −Θxj‖22 aij ,

s.t. θT1 = 1,θ ≥ 0,Θ = diag(θ). (22)

Based on (16), by setting qi = Θxi ∈ Rd×1 and Q = XTΘ ∈
Rn×d, we have

min
Θ

n∑
i=1

n∑
j=1

‖qi − qj‖22 aij = min
Q

2Tr(QTLQ)

⇔ min
Θ

Tr(ΘXLXTΘ). (23)
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Denote M = XLXT ∈ Rd×d and m∗
i is the i-th diagonal ele-

ment of M, we have

min
θi

d∑
i=1

θ2im
∗
i , s.t. θT1 = 1, θ ≥ 0. (24)

Obviously, even if θi < 0, θ2i is still positive and therefore we can
discard the non-negative constraint θ ≥ 0. Then, the Lagrange
function of (24) is

L(θi, z) =
d∑

i=1

θ2im
∗
i + z

(
d∑

i=1

θi − 1

)
, (25)

where z is a Lagrange multiplier. By taking the derivative with
respect to θi and setting it to zero, we have

∂L(θi, z)
∂θi

= 2θim
∗
i + z = 0 ⇒ θi =

−z

2m∗
i

. (26)

Considering the constraint θT1 = 1, we have

z =
−2∑d
i=1

1
m∗

i

, (27)

and get the final solution to θi as

θi =
1

m∗
i

∑d
i=1

1
m∗

i

. (28)

We denote x.i ∈ Rn×1 as the i-th row of X. Since m∗
i is

real-valued and can be represented as m∗
i = xT

.iLx.i, we get

xT
.iLx.i = Tr(xT

.iLx.i) ⇔
n∑

j=1

n∑
p=1

‖x.i,j − x.i,p‖22 ajp. (29)

According to our prior knowledge, both ‖x.i,j − x.i,p‖22 and ajp
are non-negative, which implies thatm∗

i ≥ 0. Hence, θi ≥ 0 and
we can come to the conclusion that θ ≥ 0.

3) Update F: The objective function in terms of variable F
is

min
FTF=I

Tr(FTLF) +
β

2λ

∥∥∥Y(YTY)−
1
2 − FR

∥∥∥2
2
. (30)

Denoting that MY = Y(YTY)−
1
2 and v = β

2λ
, since both R

andF are orthonormal matrices, the above problem is equivalent
to

min
FTF=I

Tr(FTLF) + v ‖MY − FR‖22
⇔ min

FTF=I
Tr(FTLF) + vTr(FRRTFT )− 2vTr(FTMY R

T )

⇔ min
FTF=I

Tr(FTLF)− 2vTr(FTMY R
T ). (31)

This is the typical form of the quadratic problem on the Stiefel
manifold (QPSM) [48] and can be further relaxed to

max
FTF=I

Tr(FT L̄F) + 2vTr(FTB), (32)

where L̄ = ηI− L ∈ Rn×n and B = MY R
T ∈ Rn×c. The re-

laxation parameter η can be easily set as the largest eigenvalue
of L.

Algorithm 1: The GPI-based method to solve problem (32).

Input: The Laplacian matrix L ∈ Rn×n, matrix
B ∈ Rn×c, and parameters η, v;

Output: The scaled cluster indicator matrix F ∈ Rn×c.
1: Initialize F which satisfies FTF = I;
2: Compute L̄ = ηI− L;
3: while not converged do
4: Update MF = 2L̄F+ 2vB;
5: Calculate the compact SVD of MF as

MF = UΣVT , where U ∈ Rn×c, Σ ∈ Rc×c,
V ∈ Rc×c;

6: Update F = UVT ;
7: end while

According to the generalized power iteration method (GPI),
we summarize the optimization method to F in Algorithm 1.

4) Update R: When considering the variable R only, prob-
lem (14) degenerates to

min
RTR=I

∥∥∥FR−Y(YTY)−
1
2

∥∥∥2
2
. (33)

As previously denoted that MY = Y(YTY)−
1
2 , the above ob-

jective function can be simplified as

min
RTR=I

‖FR−MY ‖22
⇔ min

RTR=I
Tr(FRRTFT )− 2Tr(FTMY R

T )

⇔ max
RTR=I

Tr(MT
Y FR), (34)

which can be further represented as

max
RTR=I

Tr(MRR). (35)

Here MR = MT
Y F = (YTY)−

1
2YTF. Let the SVD of

matrix MR be MR = UrΣrV
T
r , and then we have

Tr(MRR) = Tr(RUrΣrV
T
r ) = Tr(ΣrE) =

∑c
i=1 λiieii,

where E = VT
r RUr, λii and eii are (i, i)-th element of matrix

Σr and E respectively.
Because ETE = UT

r R
TVrV

T
r RUr = I meaning that∑c

j=1 e
2
ji = 1, we have eii ≤ 1 (1 ≤ i ≤ c). Meanwhile, λii

is the i-th singular value which should be non-negative. That
is Tr(MRR) =

∑c
i=1 λiieii ≤

∑c
i=1 λii. Hence, we can infer

that the maximum of Tr(MRR) is obtained when E = I =
VT

r RUr. Then, the optimal solution to R is

R = VrU
T
r . (36)

5) Update Y: We optimize Y by addressing the following
problem

min
Y∈Ind

∥∥∥Y(YTY)−
1
2 − FR

∥∥∥2
2

⇔ max
Y∈Ind

Tr(MT
Y FR). (37)
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Denote G = FR, then objective function (37) can be rewritten
as

max
Y∈Ind

Tr((YTY)−
1
2YTG). (38)

Let W = YTY, we have wij =
∑n

l=1 yliylj . Since only one
element in yi is one and the others are zeros, we can derive that
yliylj = 0 and wij = 0 if i �= j. Therefore, W should be diag-

onal and the (j, j)-th diagonal element of W− 1
2 is 1/

√
yT
j yj .

Then, problem (38) is equivalent to

max
Y∈Ind

c∑
j=1

yT
j gj√
yT
j yj

. (39)

Since samples are independent to each other, we can solve Y
in row-wise manner, which updates one row of Y by fixing the
others. When solving yi, we only consider the increment of the
objective function (39) from yij = 0 to yij = 1. Assume that
the optimal solution is Ȳ, and then we can calculate ȳT

j ȳj

and ȳT
j gj in advance before updating yi. The increment can

be calculated as

sij =
ȳT
j gj + gij(1− ȳij)√
ȳT
j yj + (1− ȳij)

− ȳT
j gj − ȳijgij√
ȳT
j yj − ȳij

. (40)

Finally, the optimal solution to yi is

yij = 〈j = arg max
j′∈[1,c]

sij′ 〉, (41)

where 〈·〉 is one if the argument is true or zero otherwise.
We summarize the detailed optimization procedure to prob-

lem (14) in Algorithm 2.

C. Analysis of Computational Complexity and Convergence

Generally, spectral clustering methods consist of three sep-
arated steps, graph construction, spectral embedding and post-
processing. The state-of-art spectral clustering methods such
as the constrained Laplacian rank (CLR) [45], CAN [35] and
SWCAN [39] jointly perform graph construction and spectral
embedding, which share the same computational complexity
O(n3) because they directly perform eigen-decomposition op-
eration on an n× n graph Laplacian matrix. Besides, if spectral
rotation is used as the post-processing method, the total com-
plexity will be O(c3 + tnc2) where t is its average number of
iterations. As a result, the time complexity of popular spectral
clustering methods is O(n3).

For JGSED, we adopted an alternative framework to optimize
the objective function. Variables A and Y are updated row-
wisely and the complexities of updating each row of them are
O(n) and O(c), respectively. Therefore, the time complexities
of updating variables A and Y are O(n2) and O(nc). When
updating R, it costs O(c3) because we performed singular
value decomposition on MR ∈ Rc×c. According to the GPI
method, the complexity of updating F is O(n2c) [48]. When
updating Θ, the complexity mainly comes from the calculation
of M = XLXT , which has the complexity of O(nd2 + n2d).
Assuming that T is the maximum number of iterations, t1, t2

Algorithm 2: The optimization procedure to problem (14).

Input: Data matrix X ∈ Rd×n, cluster number c,
parameter β, and neighborhood parameter k;

Output: The binary cluster indicator matrix Y.
1: Initialize a sparse graph A ∈ Rn×n by (21);
2: Initialize γ = λ = 1

n

∑n
i=1(

k
2d

x
i,k+1 − 1

2

∑k
j=1 d

x
ij)

where dxij = ‖xi − xj‖22;
3: Compute L = D− (A+AT )/2 where D is the

diagonal degree matrix with i-th diagonal element
dii =

∑n
j=1 aij ;

4: Compute F formed by the c eigenvectors of L
corresponding to the c smallest eigenvalues;

5: Initialize Y ∈ Bn×c according to
Y∗ = diag(FFT )−

1
2F and

yij =
〈
j = argmaxj′∈[1,c] y∗ij′

〉
;

6: while not converged do
7: Update Θ ∈ Rd×d with its i-th diagonal element as

θi = 1/(m∗
i

∑d
i=1

1
m∗

i
) where m∗

i is the i-th diagonal

element of M = XLXT ;
8: Update R = UrV

T
r where the compact SVD of

MR = (YTY)−
1
2YTF is UrΣrV

T
r ;

9: Construct L̄ = ηI− L where η is the domain
eigenvalue of L and B = Y(YTY)−

1
2RT ,

calculate v = β
2λ

;
10: Update F according to Algorithm 1;
11: Calculate G = FR and update Y according to (41);
12: Update A row by row, the i-th row of A is updated

by solving (20);
13: Recompute L = D− (A+AT )/2;
14: end while

and t3 are the average numbers of iterations to update A, F and
Y respectively. Therefore, the time complexity of the proposed
JGSED is O(T (t1n

2 + nd2 + n2d+ t2n
2c+ t3nc+ c3)). On

the convergence property of the JGSED model, we learn from
the model optimization that variables R and Θ have analyti-
cal solutions in each iteration. When updating F, we adopted
the GPI method to solve the corresponding QPSM objective
function. Inspired by [48], it converges to the global optimum
which accordingly guarantees the convergence of Algorithm 1.
When updating Y, it is optimized row-wisely by utilizing the
independence among samples. According to the updating rule
(41), each row of Y has exact one non-zero element and the
optimal one should be one of the c feasible possibilities. For
the variable A, problem (18) can be solved with a closed form
solution [35]. In summary, the optimization procedure of JGSED
objective function shown in Algorithm 2 is expected to be
convergent.

IV. EXPERIMENTS ON SYNTHETIC DATA

In this section, we evaluate the performance of JGSED on
some synthetic data sets and verify the rationality of the feature
importance measure θ.
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Fig. 2. The 2D visualization of the two-gaussian data. The learned weights for
the five dimensions by JGSED are 0.9820, 0.0047, 0.0044, 0.0044, and 0.0045,
respectively.

A. Rationality Verification of θ on Synthetic Data

A synthetic two-gaussian data set is used in this experiment. It
has two clusters and each has 100 samples. The dimensionality
is five. The first two dimensions are distributed in a sphere while
the latter three dimensions are deliberately fabricated noise. The
first two dimensions of this two-gaussian data set are visualized
in Fig. 2. It is obvious that the first dimension is discriminative
and the second one is not. By training JGSED on this data set,
we get the weights for the first dimension, the second dimension
and all the others are respectively 0.9820, 0.0047 and 0.0133.
This result coincides with our intuitive understanding that more
discriminative dimension should be assigned larger weight.

B. Clustering Performance Evaluation

The two synthetic data sets used in this subsection are de-
scribed below.
� Two-gaussian Data Set. We synthesized this data set using

three clusters with 166 samples per cluster. In the total
four dimensions, a three-sphere shape is presented by the
former two dimensions, while the latter two dimensions
are useless.

� Multi-cluster Data Set. This data set has 64 clusters each of
which has 15 samples. The dimensionality is five, among
which the distribution of the first two dimensions has a
spherical form and the third one is noisy.

We evaluate the clustering performance of JGSED on these
two data sets by considering SWCAN as a baseline model. For
the three-gaussian data set, we additionally included two noisy
dimensions to the original data. In Fig. 3(a), we respectively
show the original three-gaussian synthetic data set, clustering
results of SWCAN and JGSED. Generally, we find that both
SWCAN and JGSED are competent for this clustering task by
handling data with noisy dimensions. In Fig. 3(b), some data
points which are correctly clustered by JGSED but wrongly clus-
tered by SWCAN were marked with red circles, demonstrating

that our JGSED is more competitive in dealing with data points
in boundary regions.

For the multi-cluster data set, we respectively show the origi-
nal data points, clustering results of SWCAN and JGSED in Fig.
3(d), (e), and (f). The clustering accuracy of JGSED is slightly
higher than that of SWCAN because the five marked data points
in Fig. 3(f) were correctly clustered. It can be inferred from
these two toy experiments that JGSED has more powerful ability
in handling hard samples, leading to improved performance in
comparison with SWCAN.

C. Robustness Evaluation

The two synthetic data sets used in this subsection are de-
scribed below.
� Two-moon Data Set. The data set is constructed with two

crescent-shaped clusters on 2D plane and two additional
noise dimensions. Each cluster has 250 samples.

� Three-ring Data Set. We designed this data set with three
cocentric circles and each corresponds to a cluster. The
numbers of the three circles are 100, 300, 600 respectively.
The latter two of the total four feature dimensions are noisy.

In this section, we presented experiments on these two syn-
thetic data sets by respectively adding small and large noisy
dimensions to investigate the robustness of our proposed JGSED
model. We compared JGSED with kmeans, CAN, and SWCAN.

The first one is the two-moon data set which has two noisy
dimensions. In Fig. 4(a), we respectively show the results of
kmeans, CAN, SWCAN, and JGSED in clustering this data
set with small noisy dimensions. Fig. 4(b) corresponds to the
clustering results of these four models under the large noise
setting. It is observed that kmeans fails to handle this data set and
CAN is only suitable for clustering this data with small noisy
dimensions. SWCAN and JGSED obtained promising results
in both settings, indicating their desirable robustness. Similarly,
Fig. 4(c) and (d) show the clustering results of these four models
on the three-ring data set with small and large noisy dimensions,
respectively. These results indicate that on this data set, all the
CAN, SWCAN, and JGSED models can handle both small and
large noise settings except for kmeans. Overall, we can simply
draw a conclusion that JGSED can effectively process data with
noisy dimensions whose adverse effects could be suppressed by
the self-weighted variable.

V. EXPERIMENTS ON BENCHMARK DATA

In this section, several benchmark data sets are used to show
the learned feature self-weighted variable by JGSED and its
clustering performance.

A. Rationality Verification of θ on AR

We randomly selected 150 images without scarf and 150
images with scarves from the AR face image data set, forming
a subset with two clusters. The size of each face image is
165×120; therefore, the dimensionality of each sample is 19800.
From Fig. 5(a), We can easily find that the features within the
scarf block are more discriminative, meaning that these feature
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Fig. 3. Clustering performance evaluation of SWCAN and JGSED on the three-gaussian and multi-cluster synthetic data sets.

dimensions should be assigned larger weights. Similar to the
pipeline in [49], we trained JGSED on this customized data
set and reshaped the learned θ in 2D representation by the
left-most one in Fig. 5(d) where brighter pixels correspond
to larger assigned weights. Because the scarf block occupies
approximately 40% of the total area of each face image, we
calculated the sum of feature weights within this block. By
repeating the experiment 20 times, we obtained that the average
value of the summed feature weights within this block is 0.7640.

Moreover, we performed experiments on another two binary-
cluster data sets cropped from AR. As shown in Fig. 5(b), we
aim to group these face images into two clusters according to
the gender information. Fig. 5(c) shows the male face images
with sunglasses and the female face images without sunglasses,
and our task is to perform clustering according to the sunglass
information but ignoring the gender information. The learned
weights corresponding to these two cropped data sets are re-
spectively shown as the middle and the right-most two figures
in Fig. 5(d). These experimental results effectively verified that
the weights obtained by JGSED are reasonable.

B. Benchmark Data Sets

Ten benchmark data sets were used in the following exper-
iments including the glass, vehicle, jaffe, umist, Yale, YaleB,
Binalpha, AT&T, COIL20, and MSRA25. We summarized the
main characteristics of these data sets in Table II.

TABLE II
MAIN CHARACTERISTICS OF THE BENCHMARK DATA SETS

C. Experimental Settings

Besides the kmeans, we compared JGSED with two classical
spectral clustering models including NCut and ratio cut (RCut),
two graph learning models including the sparse subspace clus-
tering (SSC) based on sparse representation and the graph based
on low-rank representation (LRR), one joint model to simulta-
neously perform spectral embedding and spectral rotation-based
post-processing (i.e., JSESR), five joint graph construction and
spectral embedding models (i.e., CAN, PCAN, SWCAN, DOGC
and LAPIN). kmeans was adopted as the discretization method
for NCut and RCut. For kmeans, we repeated it 50 times with
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Fig. 4. Model robustness evaluation of kmeans, CAN, SWCAN, and JGSED on the two-moon and three-ring synthetic data sets.

different initializations and the best result in terms of its objective
function values was recorded.

For the graph learning models, LRR and SSC, the regulariza-
tion parameter α in SSC was tuned from {1, 2, · · · , 500}, the
threshold and maximal iteration number are set as 1.0× 10−4

and 100, respectively. As for SSC, we tuned the regularization
parameter λ from {10−3, 10−2, . . . , 103}.

For the graph-based clustering models, NCut, RCut and
JSESR, we constructed the initial similarity graph by using
the ‘Heatkernel’ function in which the number of the nearest
neighbors was set as five and the bandwidth parameter was set
as one. All these three models were repeated 20 times. Since
there is a free regularization parameter α in JSESR, we tuned

it from candidate values {10−3, 10−2, . . . , 103} to let JSESR
achieve the best performance.

For the joint graph construction and spectral embedding mod-
els, CAN, PCAN, and SWCAN, they were executed once since
their results are stable. Inspired by [39], λ in SWCAN is not
a tradeoff parameter since it should be a large enough value.
The parameter λ is initialized the same value as γ and adjusted
by investigating the number of connected components in the
learned graph A. When the number of connected components
is greater than c, λ is decreased by λ = λ/2; otherwise, it is
increased by λ = λ × 2. By the way, γ can be precomputed by
(19) which relies on the neighborhood size parameter k. That is,
SWCAN has only one parameter k to adjust. The neighborhood
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Fig. 5. Sample face images from cropped AR data sets and the corresponding
learned feature weights.

size parameter k in CAN, PCAN, and SWCAN were tuned from
5 to 100 with a step size 5. For both DOGC and LAPIN, we use
the source codes provided by the authors and the related model
parameters are set as described by the original papers.

For our proposed JGSED model, the three parameters γ, λ and
β can be reduced to two tradeoff parameters k and β with the
same technique in SWCAN. The neighborhood size parameter
k was tuned from 5 to 100 and the regularization parameter β
was tuned from {10−3, 10−2, . . . , 103}. The maximal number
of iterations T for optimizing the JGSED was set as 30 and we
ran it only once with the initial graph described by (21).

For all the compared models, all the features were standard-
ized to [0, 1] before experiments. The number of clusters were
set equal to the ground-truth value. The clustering performance
was evaluated in terms of the three widely used metrics, Acc,
NMI and Purity [47], and the larger values of them indicate
better clustering performance. The average clustering results and
standard deviations were reported.

D. Experimental Results and Analysis

The clustering results of all the compared models on these
benchmark data sets are reported in Table III in which the best
results are highlighted in boldface. It is observed that JGSED sig-
nificantly outperforms the other models in most cases especially

on the data sets of glass, vehicle, jaffe, YaleB and MSRA25.
Specifically, we have the following three findings.
� It can be observed that JGSED has superior performance to

both SSC and LRR on most of the data sets. From our point
of view, the reasons accounting for such phenomenon are
two folds. One is that the graph similarity matrices based on
the self-representation coefficient matrices cannot capture
the underlying connections of data points effectively. SSC
enforces the element-level sparsity of the coefficient matrix
while LRR enforces the singular values of the representa-
tion matrix to be sparse. The other is that both SSC and
LRR pay only attention to the graph learning whilst the
subsequent steps of spectral embedding and discretization
are separately performed.

� By comparing the results respectively obtained by JSESR
and JGSED, the latter achieved better performance on
nine of the total ten benchmark data sets. The difference
between them is that the latter involves the graph learning
process into the whole model training process. Therefore,
the experimental results of JGSED demonstrate that jointly
performing graph construction, spectral embedding and
rotation can effectively avoid the information loss in graph
construction. Meanwhile, the graph similarity matrix can
be continuously optimized in iterations, which in turn fur-
ther improves the learning of the resultant cluster indicator
matrix.

� On the difference between SWCAN and JGSED, we know
that the spectral rotation-based discretization operation has
been seamlessly integrated in the JGSED model objective
function. After it is fitted by data, we directly obtain the
binary cluster indicator matrix Y. However, in SWCAN,
though the graph similarity matrix is expected to have
block diagonal structures corresponding to the clusters, it
is not always the case in dealing with difficult data sets. In
addition, kmeans is used to judge the cluster assignment
of each data point according to the learned continuous
indicator matrix F, which has been proven to have infe-
rior performance to spectral rotation. As a result, JGSED
obtained better performance than SWCAN on the whole.

� Generally, the proposed JGSED mdoel is superior to both
DOGC and LAPIN in data clustering. Though DOGC
is also a unified framework to learn the graph similarity
matrix and discrete cluster results, there are some obvious
differences between JGSED and DOGC. First, the data
similarity in DOGC is directly modeled in the original fea-
ture space rather than the projected subspace. Second, the
feature importance is not considered. Third, the traditional
spectral rotation is utilized in DOGC to learn an orthogonal
rotation matrix which is not necessarily an orthonormal
matrix [24]. LAPIN is an extension of the constrained
Laplacian rank method [45] to construct an optimal bi-
partite graph, which can extract the duality relationship
between samples and features to achieve co-clustering.
Similar to DOGC, LAPIN takes the non-negative, row-
normalization and rank constraint properties into account
in graph construction, which neglects measuring the im-
portance of different feature dimensions. In addition, its
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TABLE III
CLUSTERING PERFORMANCE (%) OF JGSED AND THE COMPARED MODELS ON THE BENCHMARK DATA SETS

Fig. 6. The learned feature importance measure θ on the eight data sets.

learned real-valued cluster indicator matrix still needs to
be discretized to achieve the final cluster assignments of
samples.

Besides the above clustering metrics, we randomly selected
eight data sets and show the learned feature weights in Fig. 6

when JGSED achieved the best clustering performance. It is
obvious that the learned feature weights are clearly distinguish-
able on data sets including the glass, vehicle, AT&T, jaffe,
umist, and YaleB, indicating that these data sets may contain
both discriminative and redundant features. On the Binalpha and
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Fig. 7. Clustering performance of JGSED varies with neighborhood size k (the first row) and regularization parameter β (the second row) on the four data sets.

Fig. 8. Convergence curves of JGSED on the eight data sets.

Yale data sets, the learned feature weights are almost uniformly
distributed, meaning that features in both data sets share similar
contributions in determining the cluster assignment of data
points.

We also studied the influence of different parameter settings
on the clustering performance of JGSED. Taking the data sets
of jaffe, umist, Binalpha, and AT&T as examples, we performed
experiments to evaluate the clustering performance of JGSED
in terms of different neighborhood sizes (i.e., different ks) and
regularization parameters (i.e., different βs). In the first row of
Fig. 7, we show the clustering performance of JGSED varies
with different neighborhood sizes by fixing parameter β as one.
Similarly, the sensitivity of JGSED on β by fixing k as 15 is
provided in the second row of Fig. 7. Based on these results,
we conclude that JGSED relies more on the neighborhood size
parameter k but insensitive to the regularization parameter β.

In addition to the theoretical convergence analysis of JGSED
in Section III-C, in Fig. 8 we experimentally show its conver-
gence curves on some data sets. We observe that the objective
function values of JGSED monotonically decrease as the number
of iterations increases. Moreover, JGSED often converges within
a few iterations, indicating its fast convergence.

VI. CONCLUSION

The typical three steps in spectral clustering are graph
construction, spectral embedding, and postprocessing (usually
performed by kmeans or spectral rotation to discretize the con-
tinuous cluster indicator). Existing studies performed them in
a sequential manner or just unified the former or latter two
steps, which inevitably cause the sub-optimality problem. In
this paper, we proposed a complete spectral clustering model
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termed JGSED to unify the three stages together to form a single
objective function. That is, JGSED is an end-to-end spectral
clustering model by directly taking data as input and outputting
the clustering result. In JGSED, the sub-objectives respectively
corresponding to the three operations can co-evolve to the
optimum and the sub-optimality limitation in existing spectral
clustering models can be effectively avoid. Extensive experi-
ments on both synthetic and benchmark data sets demonstrate
the validity of the proposed joint optimization mode, and JGSED
outperforms some state-of-the-art models in data clustering.
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