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Abstract—Emotion recognition researches necessitate the
strategic selection of stimuli to evoke targeted emotions for
robust physiological analyses. This study pioneers the use of
Genshin Impact game animation videos to induce positive and
neutral emotional states. Notably, it introduces a Transformer-
based feature extractor, enhancing Domain-Adversarial Neural
Networks (DANN) to advance domain adaptation capabilities.
Leveraging the inherent advantages of the Transformer architec-
ture, including parallel processing and handling intricate time-
series Electroencephalogram (EEG) and eye movement data,
this innovation is reinforced by a discriminator with gradient
reversal layers, harmonizing source and target domain distri-
butions. Empirical results demonstrate the effectiveness of the
Transformer-based DANN model in cross-subject multimodal
emotion recognition, achieving a remarkable prediction accuracy
of 83.38% across 59 subjects.

Index Terms—emotion recognition, transformer, domain adap-
tation, multi-modal deep learning

I. INTRODUCTION

In the realm of emotion recognition research, inducing
precise emotional states in subjects is pivotal for analyzing
physiological changes. To ensure meticulous control over ex-
perimental conditions, researchers frequently employ emotion-
ally evocative stimulus materials, designed with precision to
elicit targeted emotions. Traditional EEG datasets for emotion
analysis predominantly resort to conventional sources such as
movies or music as stimuli, as exemplified by well-known
datasets like the SEED dataset [1] and the DEAP dataset [2],
which often overlook the utilization of game-based stimuli.
A singular publicly accessible dataset centered around game-
oriented stimuli, denoted as the GAMEEMO dataset [3],
features a collection of four computer games designed to elicit
a range of emotions, including boredom, calmness, horror, and
enjoyment.

Divergent from the passive observation of stimuli, com-
puter games offer subjects the dual roles of observers and
active participants, thereby facilitating heightened immersion
and deeper emotional engagement. Notably, the framework
of Game-Based Assessment (GBA) entails the evaluation of
individuals’ psychological traits based on game-related data,
fostering simulated interactive scenarios while mitigating test
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anxiety, consequently eliciting more authentic behavioral re-
sponses [4]. This characteristic makes games a promising av-
enue for inducing and assessing emotions. However, recording
EEG signals during gameplay is challenging due to subject
movements and unknown factors. Gameplay-related videos
maintain interaction realism and signal stability, corroborating
the efficacy of animation in eliciting emotions. In view of
these considerations, we use Genshin Impact game animation
videos to induce positive and neutral emotions, selected based
on online questionnaire ratings.

Among the diverse modalities of emotion recognition, EEG
has demonstrated remarkable reliability owing to its com-
prehensive capture of emotional information and its resis-
tance to deliberate manipulation [5]. While the precision and
objectivity inherent in EEG render it a compelling choice,
its inherent heterogeneity across individuals poses challenges
when training a universally stable classifier [6]. In situations
such as clinical diagnosis of psychological disorders, gath-
ering individual-specific data and conducting model training
become impractical due to time constraints. To address this
predicament, transfer learning, particularly through the lens
of Domain Adaptation (DA) [7], has emerged as an effective
approach, utilizing labeled data from the source domain to
optimize the classification in the target domain by learning a
mapping between the two domains.

In this paper, we present an innovative Transformer-based
feature extractor that extends the foundational principles of
DANN [8]. The architecture encompasses a domain classifier
intricately connected to a feature extractor via a gradient re-
versal layer, effectively ensuring domain invariance. By incor-
porating the inherent attention mechanism within Transformer
encoders, we further augment the extraction of pertinent infor-
mation from diverse input modalities. Compared to other deep
networks utilized in DA methods, our model demonstrates
enhanced parallelization and computation efficiency, proving
adept at processing concatenated EEG and eye movement data.

II. EXPERIMENT

A. Stimuli

Our emotion elicitation comprises 32 video clips inducing
positive and neutral emotions (16 per category), each lasting
1-2 minutes. These stimuli are drawn from official promotion
and fan-made videos of the game Genshin Impact, signaling
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a transition from cinematic to interactive paradigms. Fig. 1
illustrates screenshots from two chosen videos, each aimed at
evoking positive or neutral emotions. Positive videos feature
dynamic game scenes and character actions set to lively music,
while neutral videos depict the serene open-world landscape
with mellow music.

(a) Positive video (b) Neutral video

Fig. 1. Examples of the selected game animation clips in the experiment.

Sixteen positive videos were chosen from a collection of
45 videos through a questionnaire distributed to 43 college
students (mean age 21.23). The selected videos had ratings of
3.16 or higher on a 0-5 scale, signifying effective emotional
elicitation. In the formal experiment, subjects assessed the
emotional arousal of positive videos on a 0-1 scale, while
valence scores for neutral videos ranged from 0 to 1 (0 for
negativity, 1 for positivity, and 0.5 for emotional neutrality).
The mean scores were 0.5966 for positive videos signifying
consistent positive emotional inducement, and 0.5443 for neu-
tral videos confirming the selected videos’ efficacy in evoking
intended emotional states.

B. Subjects

We recruited 59 native Chinese students (30 females, 29
males, mean age 21.44) from Shanghai Jiao Tong University
with normal hearing, normal or corrected-to-normal vision,
and no history of psychiatric illness. The selection of par-
ticipants prioritized those with low N (emotional stability)
and high E (extroversion) scores on the Eysenck Personality
Questionnaire (EPQ) [9]. This strategic choice was made
to facilitate the induction of intended emotions during the
experiment [10], thereby enhancing the classification model’s
accuracy. Ultimately, subjects were balanced in terms of
gender and gaming experience (15 female players, 14 female
non-players, 16 male players, and 14 male non-players).

C. Protocol

The experiment maintained controlled conditions, providing
a quiet environment with suitable temperature and lighting
while minimizing external sound. EEG signals were recorded
using the NeuroScan system at 1000 Hz, while the Tobii
desktop eye-tracker captured eye movements. Fig. 2 shows
the experimental scene.

In each session, 32 video clips were presented, comprising
16 positive and 16 neutral clips, with a total duration of
approximately 46 minutes. After viewing, participants pro-
vided video ratings, followed by a 10-second intermission for
emotional recalibration. The experimental protocol is visually
depicted in Fig. 3. To prevent emotional fatigue due to

Fig. 2. An experimental scene in the emotion experiments.

sustained exposure to a particular type of material and to fore-
stall abrupt emotional transitions, positive and neutral videos
alternated every 4 segments, balancing emotional engagement
while avoiding undue fluctuations. The video sequence was
randomized while maintaining consistent labeling to ensure
methodological rigor.

...

游戏⽚段 评分 休息

1-2分钟 10秒

21 3 5 32

正向⽚段 中性⽚段

4

1 2 3 4 5 32

8 ...

...... 8

Stimulus 

1-2 min

Rest

Neutral ClipsPositive Clips

10 sec

Self-
Assessment 

Fig. 3. The protocol used in our emotion experiment.

D. Data Processing

We employed a proven method, consistent with previous
work [1], [11], to extract the 310-dimensional differential
entropy (DE) features from EEG signals. Linear Dynamic
System (LDS) smoothing was applied to remove non-emotion-
related features [12]. For eye movement signals, principal
component analysis was conducted to eliminate ambient light
effects on pupil diameter changes, retaining emotion-related
data. This yielded a 33-dimensional set of DE features, de-
tailed in Table I, which was then smoothed using the LDS
algorithm.

III. METHOD

In order to estimate our dataset’s performance in emotion
recognition, we implement in-subject classification and cross-
subject classification with multiple models. For cross-subject
classification, we use domain adaptation (DA) [7] methods to
overcome subject transfer problems.

A. Model Overview

We integrate the Transformer architecture with Domain-
Adversarial Neural Networks (DANN) [8]. Our model, illus-
trated in Fig. 4, comprises a feature extractor, classifier, and
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TABLE I
SUMMARY OF EXTRACTED EYE MOVEMENT FEATURES

Eye movement parameters Extracted features

Pupil diameter (X,Y )

Mean, STD,
DE in four bands

(0–0.2 Hz,0.2–0.4 Hz,
0.4–0.6Hz,0.6–1Hz)

Disperson (X,Y ) Mean, STD
Fixation duration (ms) Mean, STD

Blink duration (ms) Mean, STD

Saccade
Mean and STD of

saccade duration (ms) and
saccade amplitude (◦)

Event statistics

Blink frequency,
fixation frequency,

fixation duration maximum,
fixation dispersion total,

fixation dispersion maximum,
saccade frequency,

saccade duration average,
saccade amplitude average,

saccade latency average.

discriminator. The feature extractor extracts domain-specific
features, while the classifier performs emotion classifica-
tion. During training, the discriminator distinguishes between
source and target features, driving domain adversarial repre-
sentation.

B. Transformer-Based Feature Extractor

At the core of our methodology, the feature extractor capi-
talizes on the Transformer architecture [13]. The self-attention
mechanism intrinsic to Transformers enhances computational
efficiency through parallel processing of inputs. To incorporate
the temporal dimension of EEG and eye movement feature
sequences, we employ position embeddings. These embed-
dings augment the information encapsulated within the time
series. The concatenated features then traverse an encoder
composed of N identical layers, each comprising a multi-head
self-attention module and a forward network.

The multi-head attention mechanism facilitates the computa-
tion of scaled dot-product attention for each head. Concretely,
it takes queries (Q), keys (K) of dimension dk, and values
(V ) of dimension dv as inputs. Outputs consist of weighted
summations of values, the weights of which are computed
through query-key interactions. This result is divided by the
scale factor

√
dk and subjected to a softmax function for

weight computation. The attention function can be written as:

Attention(Q,K, V ) = softmax
(
QKT /

√
dk

)
V. (1)

Let O denote the output of (1). For a self-attention sublayer
with h heads, queries, keys, and values are linearly projected
h times with learnable projections. The multi-head attention
is calculated as:

MultiHead(Q,K, V ) = Concat(Oh1 , . . . , Ohh
)WO, (2)

where Ohi
= Attention(QWQ

i ,KWK
i , V WV

i ) and the pro-
jections are parameter matrices WQ

i , WK
i , WV

i and WO.
The parallel operation of multi-head attention results in out-

puts that are subsequently combined and conveyed to a fully
connected feed-forward sublayer. This sublayer encompasses
two linear transformations interspersed with a Gaussian Error
Linear Unit (GELU) activation which avoids the vanishing
gradients problem [14].

C. Discriminator

Mirroring the conventional DANN model’s principles, our
adversarial learning network incorporates gradient reversal
layers that invert gradients during backpropagation, engender-
ing identity transformation during forward propagation. This
design fosters the convergence of the distributions of xs and
xt, diminishing their distinguishability.

In the adversarial-training phase, for every batch xs originat-
ing in the source data, the discriminator selects an analogous
batch of unlabeled target data (xt) from the target domain.
Following processing by the feature extractor (Gf ), both
sets of data are channeled into the domain classifier (Gd),
responsible for ascertaining whether the data originates from
the source or target domain. Considering the source data xs,
the adversarial loss is defined as:

Ladv(Gd(Gf (xs)), ds) = ds log
1

Gd(Gf (xs))

+(1− ds) log
1

1−Gd(Gf (xs))
,

(3)

where ds symbolizes the domain label for xs and takes the
value 1 due to its source domain origin. Analogously, a parallel
equation holds for the target data xt, albeit with dt = 0. The
transfer loss is calculated as the mean of the adversarial losses
for both source and target data:

Ltransfer =
1

2
(Ladv(xs) + Ladv(xt)). (4)

D. Classifier

In the training phase, the classifier (Gy) operates on source
data xs, paired with their true labels ys, and processed by the
feature extractor (Gf ). The classifier, structured as a linear
network, adopts the cross-entropy loss as the classification loss
metric:

Lclf (Gy(Gf (xs)), ys) = −ys logGy(Gf (xs))ys
. (5)

The comprehensive loss function encompasses both classi-
fication and transfer losses, and is defined as:

Ltotal = Lclf + λLtransfer, (6)

where λ denotes the weight attributed to the transfer loss, set
to 1 for this study.
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Fig. 4. Transformer-based DANN model framework.

IV. EXPERIMENT RESULTS

This section presents the experimental outcomes of a binary
recognition task involving positive and neutral emotions on
our dataset. Four-fold cross-validation is conducted in Sec-
tions IV-A and IV-B. Moreover, We evaluate the cross-subject
classification accuracy of Transformer-based DANN and three
traditional DA methods in Section IV-C. Finally, Section IV-D
operates a comparative examination between the Female/Male
group and the Player/Non-player group.

A. Results of EEG-Based Emotion Recognition

We utilized a linear kernel Support Vector Machine (SVM)
[15] for binary classification, determining the optimal regu-
larization parameter C through a grid search with candidate
values [0.1, 1, 10], ultimately selecting C=1 based on the
results. Mean accuracies and standard deviations of SVM
with DE features from various EEG frequency bands are
summarized in Table II. The highest accuracy and relatively
low standard deviation were achieved using DE features from
all five frequency bands, with the beta and gamma bands out-
performing lower frequency bands. This aligns with previous
research [1], confirming the significance of EEG features from
beta and gamma bands in emotion recognition.

TABLE II
MEAN ACCURACIES AND STANDARD DEVIATIONS OF SVM WITH THE DE

FEATURES FROM DIFFERENT EEG FREQUENCY BANDS

Frequency band Delta Theta Alpha Beta Gamma Total
Acc (%) 66.08 63.83 65.79 68.23 70.68 74.55
Std (%) 13.60 15.55 14.47 14.35 15.96 13.82

Additionally, we present the distribution of normalized DE
features across different brain regions in five frequency bands
for positive and neutral emotions in Fig. 5. The topography
reveals enhanced activation in temporal regions for positive
emotion in beta and gamma bands, while the alpha band
triggers more parietal activation for neutral emotions. This
observation is consistent with prior findings [5], underscoring
distinct neural patterns associated with different emotions.
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Fig. 5. Average topographical maps of brain regions in five frequency bands
of positive and neutral emotions.

B. Results of Multi-Modal Affective Models

For multi-modal signals, we compare the classification
accuracies of four established models:

1) MLP: Comprising two ReLU layers and a linear clas-
sifier, this model directly concatenates EEG and eye
movement features. Each subject’s model is trained for
70 epochs.

2) The experimental setup mirrors that of Section IV-A.
The model is trained with single-modal eye movement
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features and, in addition to the single-modal EEG result,
concatenated EEG and eye movement features.

3) Transformer: The encoder layers are the same as the
feature extractor in Section III-B. A fully connected
feed-forward network serves as a classifier. The model
randomly selects hyperparameters 50 times: the number
of heads in a self-attention sublayer from [1, 2, 4, 8],
and the number of encoder layers from [1, 2, 4]. The
output dimension of the feed-forward layer is set to 512.

4) Deep Generalized Canonical Correlation Analysis with
an Attention Mechanism (DGCCA-AM): As proposed
by Lan et al. [16], this model extends Canonical Cor-
relation Analysis (CCA) [17] with an attention-based
multi-modal fusion, learning adaptive fusion weights for
different modalities.

TABLE III
MEAN ACCURACY RATES AND STANDARD DEVIATIONS OF FOUR
MULTI-MODAL AFFECTIVE MODELS ON SEED-GAME DATASET

Model Acc (%) Std (%)
SVM-EEG 74.55 13.82
SVM-eye 80.53 11.04

SVM-multi 82.75 10.68
MLP-multi 74.04 10.61

Transformer-multi [13] 94.63 4.84
DGCCA-AM-multi [16] 94.95 5.23

Table III demonstrates DGCCA-AM as the top performer,
surpassing MLP and SVM by 20.91% and 12.2% in accuracy,
while reducing the standard deviation by approximately half,
emphasizing the efficiency of attention-based modality fusion
in emotion recognition. Notably, Transformer attains a re-
markable 94.63% accuracy with the lowest standard deviation,
likely attributable to the Transformer encoder layers’ structure.
The multi-head attention effectively models relationships be-
tween different-positioned features in the input sequence, en-
abling superior combination of multi-modal features compared
to SVM and MLP.

Regarding modality, SVM exhibits enhanced performance
with multi-modal features relative to single-modal ones. Pre-
vious research [18] corroborates that EEG and eye movements
offer complementary information, resulting in improved over-
all performance. Fig. 6 presents the confusion matrices for
different modalities, highlighting their superior recognition of
positive emotions over neutral ones. In both positive and neu-
tral emotion recognition, multi-modality outperforms single
modalities, underscoring the performance-enhancing potential
of combining two modalities.

C. Results of Cross-Subject Classification

We employ DA methods for cross-subject emotion recog-
nition, which involves selecting one subject’s data from the
cohort of 59 subjects as the target domain, while utilizing the
remaining subjects’ data as the source domain. In our pre-
experiment, we used DGCCA-AM as the feature extractor for
DANN [8]. Despite its high accuracy in Section IV-B, this
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Fig. 6. Confusion matrices of single-modal and multi-modal SVM. (a), (b)
and (c) represent respectively the results using EEG features, eye movement
features, and concatenated multi-modal features.

choice resulted in subpar performance and protracted training
times, preventing further discussion.

We compare our Transformer-based DANN model with
other DA methods, including the original DANN, DSAN [19],
DAAN [20], and Baseline. All DA models consist of a feature
extractor (MLP except for our method), a classifier, and a
discriminator. The Baseline method employs either MLP or
Transformer as the feature extractor but lacks a discriminator.
Regarding the two other DA methods, DSAN simplifies the
network by eliminating adversarial components and aligns rel-
evant subdomain distributions across different domains using
local maximum mean discrepancy (LMMD). DAAN, on the
other hand, incorporates a local subdomain discriminator for
assessing global and local domain distributions and assigns
weights to the global and local discriminator losses using a
dynamic adversarial factor.

TABLE IV
MEAN ACCURACY RATES AND STANDARD DEVIATIONS OF FIVE

CROSS-SUBJECT MULTI-MODAL METHODS

Model Acc (%) Std (%)
MLP-Based baseline 81.22 8.94

Transformer-Based baseline 81.43 8.63
DSAN [19] 81.92 8.21
DAAN [20] 82.72 8.77

MLP-Based DANN [8] 82.88 8.05
Transformer-Based DANN 83.38 6.86

Table IV demonstrates the enhanced performance of all DA
methods compared to the Baseline, affirming the efficacy of the
adversarial-learning module. Our Transformer-based DANN
achieves the highest accuracy at 83.38% with a standard de-
viation of 6.86%. Remarkably, the Baseline with Transformer
outperforms the Baseline with MLP, highlighting the stable
advantages of Transformer networks.

D. Group Comparison and Discussion

We compare the multi-modal patterns of different groups of
people based on two classification criteria: gender and Genshin
Impact gaming experience. Table V summarizes in-subject
classification comparison for gender and Table VI for gaming
experience. In general, female subjects and Genshin Impact
players consistently exhibit higher average accuracy across all
classification models. Among them, there is significant differ-
ence between the player/non-player groups’ data distributions
(p=0.04). Particularly, DGCCA-AM and Transformer achieve
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accuracies above 0.93 for the non-player group and the male
group as well, proving that game animation clips as stimuli
have a steady effect in emotion recognition across diverse
audiences.

TABLE V
EMOTION RECOGNITION ACCURACIES USING MULTI-MODAL

METHODS IN DIFFERENT GENDER GROUPS

Model MLP SVM Transformer DGCCA-AM

Female Acc (%) 74.27 86.03 95.17 95.46
Std (%) 11.95 9.93 5.01 4.92

Male Acc (%) 73.80 78.98 94.11 94.42
Std (%) 9.02 10.22 4.62 5.48

*p-value=0.42

TABLE VI
EMOTION RECOGNITION ACCURACIES USING MULTI-MODAL METHODS

IN DIFFERENT GAMING EXPERIENCE GROUPS

Model MLP SVM Transformer DGCCA-AM

Player Acc (%) 76.68 84.63 95.46 95.97
Std (%) 9.89 10.57 4.00 4.05

Non-Player Acc (%) 71.12 80.28 93.75 93.81
Std (%) 10.61 10.32 5.50 6.08

*p-value=0.04

V. CONCLUSION

In this paper, we have introduced a pioneering approach,
employing game animation materials to establish a novel
emotion induction paradigm that effectively elicits both pos-
itive and neutral emotional states. Empirical validation has
confirmed the robustness and generalizability of this paradigm.
Furthermore, our proposed Transformer-based DANN model
has demonstrated exceptional performance, achieving a state-
of-the-art cross-subject classification accuracy of 83.38%
among a cohort of 59 subjects.

In our experimental design, we confined our subject pool to
emotionally stable extroverted university students to optimize
classification performance. Future research will extend the
framework to include diverse individuals of varying personal-
ity types and age groups, extending the application scenarios.
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