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Abstract— EEG-based emotion classification has long been a
critical task in the field of affective brain-computer interface
(aBCI). The majority of leading researches construct supervised
learning models based on labeled datasets. Several datasets have
been released, including different kinds of emotions while utiliz-
ing various forms of stimulus materials. However, they adopt
discrete labeling methods, in which the EEG data collected
during the same stimulus material are given a same label. These
methods neglect the fact that emotion changes continuously,
and mislabeled data possibly exist. The imprecision of discrete
labels may hinder the progress of emotion classification in
concerned works. Therefore, we develop an efficient system
in this paper to support continuous labeling by giving each
sample a unique label, and construct a continuously labeled
EEG emotion dataset. Using our dataset with continuous labels,
we demonstrate the superiority of continuous labeling in emo-
tion classification through experiments on several classification
models. We further utilize the continuous labels to identify
the EEG features under induced and non-induced emotions in
both our dataset and a public dataset. Our experimental results
reveal the learnability and generality of the relation between
the EEG features and their continuous labels.

I. INTRODUCTION

Emotion acts as an indispensable part of human life,
supporting our social interaction and personality formation.
Therefore, the field of affective brain-computer interface
(aBCI) [1] springs up with technology development, aiming
at utilizing emotion for the sake of mankind. The first step
towards getting emotion under control is to identify emotion,
and a typical task is emotion classification.

Supervised learning is the most common solution to emo-
tion classification. Researchers collect physiological mea-
sures of human brain, annotate these measures by the class of
emotion, and learn the relationship between them with var-
ious models. Several methods for collecting the physiologi-
cal measures have been adopted, and electroencephalogram
(EEG) stands out among these methods for its objectivity and
precision [2]. Some EEG datasets for emotion classification
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have been publicly released, employing various forms of
stimulus materials. Among all the released EEG datasets,
DREAMER [3], MAHNOB-HCI [4], DEAP [5], and SEED
[6] are the most widely used and they all selected videos
as the main form of stimulus material. In these datasets, the
EEG data are labeled discretely. Data collected within the
same video for about 5 minutes long are given the same
label. The label is either the score of the material given by
the annotators beforehand or the subjects’ remarks afterward.
Through both methods, the same labels are given to the great
number of data pieces. This kind of discrete labeling violates
the fact that emotion differs continuously. Thus the datasets
are possible to be contaminated by mislabeled data and may
bring down the classification performance.

A few works create and study on self-built continuously
labeled EEG datasets where each sample is allocated a tai-
lored label. Ding et al. created and revealed the significance
of regression models on an EEG dataset with continuous
valence and arousal labels obtained during the second and
third times when the subjects watch the materials [7]. Soley-
mani et al. recorded the subjects’ facial expressions during
the trials and annotators afterward labeled these expressions
which contribute to the ground truth labels [8]. Both works
directly take advantage of the video clips used in forming the
MAHNOB-HCI dataset which have been proven effective.
Another popular stimulus material is music. Thammasan et
al. investigated two feature extraction methods based on a
dataset collected during the subjects listening to music clips
and labeled when the subjects listen to the same music clips
again [9], while Hasanzadeh et al. emphasized on different
models, and the labels in their dataset are recorded along
with the EEG signal [10]. These works have not state the
superiority of continuous labeling over discrete labeling, and
can hardly be applied into mainstream works.

So in this paper, we made the following contributions to
prove the feasibility and necessity of continuous labeling, and
to explore the general relationship between EEG data and
the continuous labels: (1) design an efficient system for con-
tinuous labeling and formulate a continuously labeled EEG
dataset (2) conduct contrast experiments using discrete and
continuous labels (3) identify induced/non-induced emotion
based on the continuously labeled EEG data and (4) apply
the induced/non-induced classifier on the SEED dataset.

II. EXPERIMENTAL SETUP

In this section, we first explain the process and the
advantage of our paradigm for continuous labeling. Then we
introduce the formulation of the continuously labeled EEG
dataset based on the paradigm. Finally we design three tasks



to prove the advantage and necessity of continuous labeling,
the learnability of the relationship between EEG data and the
continuous labels, and the generality of the relationship.

A. Paradigm Design

We chose video clips as stimulus materials because of
their superiority [6] [11]. We directly select the materials
from those applied in forming SEED [6], which is composed
of 5 video clips from each of positive, negative and neutral
emotion. According to the subjects of SEED, their emotion is
stable during neutral clips. So to better illustrate the changing
emotion, we only utilize the positive and negative clips. Base
on the selected 10 clips, we designed the following data
collection paradigm, which has been approved by the local
ethics committee. The paradigm is composed of the EEG
collection phase and the continuous labeling phase. In the
first phase, the video clips are presented to the subjects on
the computer screen and the subjects wore an electrode cap
that records their EEG signals throughout this phase. Each
clip lasts for about 4 minutes and there is a 1-minute break
between every two clips to help subjects calm down from the
previous one. In the labeling phase, the subjects are asked to
recall and continuously label their emotion during the first
phase according to the degree of induction.

The advantages of our paradigm are listed as follows. First,
the subjects label by themselves, retaining the subjectivity
of EEG data. Second, the two-phase mode is preferred
since labeling while collecting is sure to affect emotion
induction and a third time of repetition may reduce the
subjects’ enthusiasm and lower the precision of labeling.
Also, considering our goal of classification, we make the
subjects focus on labeling the degree of induction. Later we
classify the EEG signals into positive and negative according
to the video clips since the class of emotion is stable during
the video clips with a stable emotional keynote.

To facilitate the labeling phase, we developed the inter-
active interface exhibited in Figure 1. The video clips are
shown in the upper left and listed on the right. To make the
labeling direct and convenient, we enabled a mouse-wheel-
controlled container icon in the bottom right. The history
labels are visible below the video. Also, rotary knobs are
provided on the bottom of the panel to control the volume
and the playback speed. When all the clips are labeled,
the system automatically processed the labeled curve and
stored the labels aligned with the corresponding EEG signals
collected in the first phase.

B. Dataset Formulation

We recruited 4 male and 4 female subjects whose ages
range from 23 to 27. During the experiment, their EEG
data were collected with ESI NeuroScan System at 1000 Hz
from an electrode cap with 62 channels. After the raw EEG
data and labels are collected, the EEG data go through a
downsampling step from 1000 Hz to 200 Hz and a bandpass
filtering of 0.5 Hz to 70 Hz to remove noise.

We extract the differential entropy (DE) [12] feature as it is
better than the other EEG features in many tasks [6] [13]. The

Fig. 1. The operation panel of the software contains a video exhibition
window, a video list, a history label indicator, an annotation-assisting
container, and two knobs for speed and volume control.
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Fig. 2. The continuous labels annotated by the subjects during one
positive (a) and one negative video clip (b). Each subject’s labels are
plotted separately in red and blue for positive and negative emotions with
transparency, and the mean values are represented by solid lines.

window size is 15 seconds and the stride is 1 second. After
the features have been extracted, we smoothed the continuous
labels and limited the value to [0, 5]. The smoothed labels
of the 8 subjects on one positive clip and one negative clip
can be seen in Figure 2. Individual differences are evident
in labeling the emotion during the same clip, which verifies
the inaccuracy of discrete labeling. We finally sampled from
these labels in accordance with the DE features to form the
continuously labeled EEG dataset.

C. Tasks

1) Comparison of Labeling Methods for Emotion Classifi-
cation: From Figure 2 we have already observed intuitively
the variability of emotion during the same video clips and
the advantage of continuous labeling in precision. So in the
first part of experiment, we further illustrate this idea by
comparing the performance of continuous and discrete label-
ing in emotion classification. To make the result convincing,
we train classifiers base on multiple models. The classical
models we applied are SVM, MLP, CNN, LSTM, and CNN-
LSTM. We also employ specific models that apply to EEG-
based tasks including EEGNet [14] and GCN [15].

2) Induced/non-induced Classification: We put forward
this task to investigate whether the differences between
samples can be identified. We divide the EEG samples into
induced and non-induced ones according to their continuous
labels, and train classifiers base on EEGNet and GCN. By



evaluating the predicted results, we explore the feasibility of
mapping the EEG data to the continuous labels.

3) Cross-dataset Induced/non-induced Classification:
The above task is conducted specifically on our dataset,
and this task aims at classifying induced and non-induced
samples based on EEG data from SEED [6], to show the
universality of the relationship between EEG data and the
continuous labels. SEED is a classic and popular EEG dataset
for emotion classification. It is made up of 15 subjects
who take the video-watching experiment. Since our stimulus
materials are select from those videos used in forming SEED,
we compare the continuous labels of our dataset and the
classification result of the same video on SEED.

TABLE I
RESULT OF THE EMOTION CLASSIFICATION TASK, AVERAGED AMONG

THE 8 SUBJECTS. THE BETTER ACCURACY AND STANDARD DEVIATION

OF EACH METHOD ARE SHOWN IN BOLD FONT.

Discrete Continuous
Method Avg. Std. Avg. Std.

SVM 78.39 16.28 81.42 11.90
MLP 72.82 13.66 76.59 13.09
CNN 81.75 14.58 82.71 12.61

LSTM 75.21 14.55 76.07 13.17
CNN-LSTM 87.57 12.33 87.68 8.88

EEGNet 85.39 13.04 88.28 9.36
GCN 91.83 8.83 93.29 7.91

III. EXPERIMENTAL RESULTS

A. Labeling Methods Comparison in Emotion Classification

We compare the emotion classification effects of positive
and negative under continuous and discrete labeling of
emotion. For continuous scenes, the EEG samples with
emotion induction label no less than 2.5 were screened.
For discrete scenes, all EEG samples are retained. For
each subject, the first 3 positive and 3 negative clips form
the train set, and the last 2 positive and 2 negative clips
form the test set. To ensure the fairness of comparison, we
uniformly use test sets in continuous scenarios. It is worth
noting that the data volume of the discrete train sets are
twice as large as that of the continuous ones.

The accuracy of each classifier is listed in Table I.
According to the results, GCN outperforms the other models
on both datasets, and more importantly, though the samples
in the train sets are much fewer for the filtered datasets,
the accuracy is improved apparently for all the classifiers
and the stability over different subjects is better. These
conclusions prove that omitting data low in induction degree
contributes to the performance of the classifiers, which
is a significant advantage of our continuously labeled dataset.

B. Induced/non-induced Classification

To explore the learnability of continuous labels, we train
classifier to identify induced and non-induced samples first.

D
eg

re
e

of
In

du
ct

io
n

D
eg

re
e

of
In

du
ct

io
n

Time

Time Predicted Label

Tr
ue

La
be

l
Tr

ue
La

be
l

no
n-

in
du

ce
d

in
du

ce
d

no
n-

in
du

ce
d

in
du

ce
d

non-induced induced

non-induced induced

0.77

0.81

0.78

0.83

0.23

0.19

0.22

0.17

1.0

0.5

0.0

1.0

0.5

0.0

(a) (b)

(c) (d)

Predicted Label

Fig. 3. (a)(c): The induced emotion identification result of one subject on
a positive clip and a negative clip. The dashed lines are the thresholds. The
upper bounds of the colored area are the continuous labels. The predicted
non-induced features are colored in yellow and the induced ones are in red
or blue separately for positive and negative. (b)(d): The confusion matrices
averaged among all the subjects for positive emotion and negative emotion.

Features with induction value larger than the threshold are
labeled as induced, and the rest are non-induced. For both
positive and negative samples of each subject, we define
the thresholds to be the medians of the continuous labels
to ensure sample balance. The train sets and the test sets are
formed by samples from the first four clips and the last clip.

Table II shows the accuracy of the classifiers, and we also
plot the overall confusion matrices of positive and negative
samples along with the comparison between the ground truth
labels and the predicted labels of one subject in Figure 3. All
the results reveal that certain differences do exist among the
data collected during the same stimulus materials, and the
learnable differences may contribute to better identification
and understanding of emotion.

TABLE II
RESULT OF THE INDUCED EMOTION IDENTIFICATION TASK, AVERAGED

AMONG THE 8 SUBJECTS. THE ACCURACY IS MORE THAN 78% FOR

BOTH POSITIVE AND NEGATIVE EMOTION USING EEGNET AND GCN.

Positive Negative
Method Avg. Std. Avg. Std.

EEGNet 78.61 9.69 79.81 9.40

GCN 79.05 8.84 81.22 9.19

C. Cross-dataset Induced/non-induced Classification

We train a cross-dataset GCN model for positive and
negative emotion each on our dataset. The models classifying
induced and non-induced samples are then applied on SEED.
We define inductive periods to be the time slices of the
videos when more than 50% (>4) of the subjects consider
their emotion as induced in our dataset, as shown in Figure
4 (a)(c). We similarly define predicted inductive periods
to be the time slices when more than 50% (> 7.5) of
the subjects have their emotion classified as induced in
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Fig. 4. (a)(c): Time slices of the positive/negative test video. The solid
line is the mean value of the continuous labels from our dataset. Inductive
periods are in light red/blue. (b)(d): The identification result of a specific
subject from SEED on the positive/negative test video. Light green marks
the time slices when the positive induced/non-induced classifier consider the
subject’s emotion as induced. The result agrees with not only the inductive
periods but also the mean value.

SEED. The overlap ratio between the inductive periods
and predicted inductive periods reflects the effectiveness of
identifying induced and non-induced samples on SEED.

For either positive and negative emotion, the first four
clips form the train set, and we label the samples by
’induced’ and ’non-induced’ with thresholds set as 2.5. The
trained classifier is validated on the last clip, and then tested
on the DE features extracted accordingly from the data
collected during the last clip in SEED. The classification
result of one subject in SEED is exhibited in Figure 4 (b)(d).
Since the last clip is excluded during training, interference
from the same material is avoided.

We denote the overlap ratio as O=(Oin, Onon), where
Oin=P∩I

I , and Onon= (U−P )∩(U−I)
U−I are separately the

overlap ratio of inductive and non-inductive periods. P is
the predicted inductive periods, I is the inductive periods,
and U is the whole video clip. For the positive test
video, Opos=(93.36%, 92.87%), while for the negative test
video, Oneg=(92.55%, 54.50%). The induced/non-induced
classifiers are effective on SEED, while inter-individual
differences are more evident for negative emotion.
In general, the results verifies the universality of the
relationship between EEG data and the continuous labels,
and put forward the necessity of paying more attention to
sample-wise differences in leading works.

IV. CONCLUSION

EEG-based emotion classification has been a stirring task
in the field of aBCI. However, the mainstream work of emo-
tion classification adopts discretely labeled datasets, which
are imprecise and may decrease the performance of classi-

fiers. In this work, we have proposed a continuous labeling
paradigm and have developed a continuously labeled EEG
dataset. Our experimental results indicate a general improve-
ment in classification accuracies of several models using
continuous labels. We have investigated the identification
of EEG features under induced and non-induced emotions.
The induced/non-induced classifier is demonstrated to be
effective on the SEED dataset, which reveals the learnability
and generality of the relation between EEG features and the
continuous labels. Although we have only utilized limited
characteristics of the continuously labeled dataset, its effec-
tiveness and feasibility in enhancing emotion classification
performance provide us a promising approach to aBCI.
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