
Deep Depression Detection with Resting-State and Cognitive-Task EEG

Dan Peng1, Wei Liu1, Yun Luo1, Ziyu Mao2,
Wei-Long Zheng3 and Bao-Liang Lu1,3,∗ Fellow IEEE

Abstract— Depression is a common mental disorder that neg-
atively affects physical health and personal, social and occupa-
tional functioning. Currently, accurate and objective diagnosis
of depression remains challenging, and electroencephalography
(EEG) provides promising clinical practice or home use due to
considerable performance and low cost. This work investigates
the capabilities of deep neural networks with EEG-based
neural patterns from both resting states and cognitive tasks for
depression detection. We collect EEG signals from 33 depressed
patients and 40 healthy controls using wearable dry electrodes
and build Attentive Simple Graph Convolutional network and
Transformer neural network for objective depression detection.
Four experiment stages, including two resting states and two
cognitive tasks, are designed to characterize the alteration of
relevant neural patterns in the depressed patients, in terms of
decreased energy and impaired performance in sustained atten-
tion and response inhibition. The Transformer model achieves
an AUC of 0.94 on the Continuous Performance Test-Identical
Pairs version (sensitivity: 0.87, specificity: 0.91) and the Stroop
Color Word Test (sensitivity: 0.93, specificity: 0.88), and an
AUC of 0.89 on the two resting states (sensitivity: 0.85 and 0.87,
specificity: 0.88 and 0.90, respectively), indicating the potential
of EEG-based neural patterns in identifying depression. These
findings provide new insights into the research of depression
mechanisms and EEG-based depression biomarkers.

I. INTRODUCTION

Major depressive disorder (MDD), or depression, is a
common mental disorder that causes persistent feelings of
sadness and loss of interest in previously rewarding or
enjoyable activities [1]. MDD negatively affects physical
health and personal, social and occupational functioning, and
even leads to recurrent suicidal ideation and attempts [2].
According to the estimation of World Health Organization,
globally, 5% of adults suffer from depression. Currently,
clinical diagnosis of MDD relies on patient interviews with
symptom-based questionnaires, which may be not accurate
and objective enough. Biomarkers are measurable indicators
that could help to objectively diagnose MDD and/or predict
treatment response. In the last years, biomedical models
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conceptualize depression as a disorder of neural networks
incorporating changes in widely distributed brain areas [3],
and many neuroimaging-based efforts have been made to
search promising depression biomarkers [4]–[6].

Among various neuroimaging methods for precision psy-
chiatry, electroencephalography (EEG) measures electrical
activities from neuronal populations via electrodes on the
scalp, and is more appealing for clinical practice or home
use due to considerable performance and low cost [7]. Alpha
power differences, altered theta activities and gamma oscil-
lations during rest for depressed patients were thoroughly
discussed [6], [8]. When compared to euthymic subjects,
increased high-alpha power at the left brain hemisphere and
reduced beta power in the central-left side of depressed
patients were reported [9]. With graph analysis, right hemi-
sphere function deficiency, symmetry breaking and random-
ized network structure were found with resting-state EEG
data from MDD patients [10].

Most of previous studies used wet electrodes to collect
EEG data in a resting state or a task-related experiment.
The wet sensors relying on electrolytic gels provide a clean
conductive path for high quality signal collection. However,
they could be uncomfortable and inconvenient for users and
can be too time-consuming and laborious for daily use [11],
which limits the use for real-world large-scale depression
detection. In this paper, we use wearable dry electrodes to
collect long-term and multi-stage EEG data with the benefits
of comfort and stability, and develop deep neural networks
to extract complex EEG patterns to distinguish the depressed
patients from the healthy controls.

II. EXPERIMENT SETUP

A. Subjects

Thirty-three patients with MDD (DPs) and 40 healthy
controls (HCs) took part in the experiment. All subjects were
right-handed and had normal or corrected normal hearing and
vision. The study was approved by the Ethics Committee
from Ruijin Hospital, Shanghai Jiao Tong University School
of Medicine, and all participants were informed of the study
procedure and signed the consent forms.

Patients were diagnosed with MDD by psychiatrists ac-
cording to the International Classification of Diseases, Tenth
Revision (ICD-10). At the time of testing, the severity of
symptoms was assessed with the Hamilton Rating Scale for
Depression, 17-item version (HAMD-17) by psychiatrists
and with the Beck Depression Inventory (BDI-II) from self-
reports. The mean HAMD-17 and BDI-II scores of the
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Fig. 1. The procedure, (a) including four stages: REST-I, CPT-IP, SCWT and REST-II. The detailed stimuli and time course of (b) CPT-IP and (c) SCWT.

DP group are 14.39 ± 5.97 and 23.76 ± 12.17, respec-
tively. Exclusion criteria included: Bipolar Disorder, current
(< 6 months) drug/alcohol abuse or dependence, history
of seizures or psychosis, unstable (≥ 3 months) medical
conditions and intense suicidal intention. The control group
was recruited from the local community with advertisement.
Forty adults with no psychiatric disorder, no alcohol/drug
abuse or dependence, no history of seizures or brain trauma
participated in the experiment. The mean BDI-II score of the
HC group is 8.15 ± 6.66 (p < 0.05 with one-way ANOVA
analysis between the two groups).

B. Experimental Procedure

As shown in Fig. 1, the experimental procedure includes
four stages: REST-I, Continuous Performance Test-Identical
Pairs version (CPT-IP), Stroop Color Word Test (SCWT) and
REST-II. Hints about the progress and the expected options
were given before each stage.

REST-I and REST-II were two independent eyes-open
resting stages and were conducted before and after the
two task stages, respectively. Participants were required to
maintain a gentle fixation on a green point on the screen for
180 s in REST-I or 90 s in REST-II with their eyes open.
The longer duration in REST-I was to help the participants
get relaxed before facing challenging tasks.

CPT-IP and SCWT were two cognitive tasks. CPT-IP
measures attention and requires identification of identical
stimulus pairs within a continuously presented series of
stimuli. Stimuli (e.g., four-digit numbers in this paper) in
sequences of 120 trials were flashed on the screen at a
constant rate of 1 per second, with a stimulus ‘on’ time of 50
ms. In each session, 30% of the trials were target trials (i.e.,
the second of a pair of two identical stimuli appeared) and
expected a response (i.e., pressing once the ‘Enter’ key on the
keyboard). The remaining trials were randomly distributed
numbers. Responses to the trials were scored as ‘correct’ (for
matched responses) or ‘incorrect’ (for missed responses or
false alarms). SCWT evaluates the ability to inhibit cognitive
interference that occurs when the processing of a specific
stimulus feature impedes the simultaneous processing of a
second stimulus attribute. Color-words in sequences of 50

trials were printed in a consistent or inconsistent color ink
on the screen, and the participants were required to name
the color of the ink instead of reading the word, using the
arrow keys on the keyboard within 5 seconds. Responses to
the trials were scored as ‘correct’, ‘incorrect’ or ‘time out’.

III. METHODS

A. EEG Recording and Feature Extraction

EEG signals were recorded using a Dry Sensor Interface
(DSI-24)1 and DSI-Streamer at a sampling rate of 300 Hz.
The sensors were located according to the international
10-20 system. In this study, 18-channel signals were for
data analysis, and the Pz electrode was set as reference.
A bandpass filter between 1-45 Hz was applied to the raw
EEG data to filter out noise and artifacts, and then the EEG
data were processed in the five frequency bands (i.e., delta:
1–4 Hz, theta: 4–8 Hz, alpha: 8–14 Hz, beta: 14–31 Hz
and gamma: 31–45 Hz). Specifically, differential entropy
(DE) features of EEG signals were calculated using short-
term Fourier transforms with a 1 s Hanning window without
overlapping for all channels, and the linear dynamic system
approach was applied for further denoising.

B. Classification Models

Three classifiers were applied for depression detection:
Support Vector Machine (SVM), Attentive Simple Graph
Convolutional network (ASGC) [12] and Transformer neural
network [13]. For generalization, the split of training data
and test data was subject-independent, and a three-fold cross
validation strategy was used for all classifiers.

As a basic model, an SVM classifier was trained to find
an optimal hyperplane that separates the EEG features from
the two groups. Linear kernel function and a soft margin
parameter was used.

Taking the EEG channels as graph nodes and combining
the attention mechanism with a simple graph convolutional
network, an ASGC classifier was adapted to explore the
topology information between EEG features for classifica-
tion. By learning both coarse-grained and fine-grained inter-
channel relations, ASGC can capture more complex neural

1https://wearablesensing.com/dsi-24/
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Fig. 2. Differences of the neural patterns between HCs and DPs in different
stages. Blue colors indicate higher energy levels from DPs, while red colors
indicate higher energy levels from HCs.

patterns and improve the predictive power. We adopted Adam
optimizer, ReLU activation, a learning rate of 5e−3 or 1e−2,
and a batch size of 64 or 128. The numbers of hidden nodes
in the graph convolution network and the 2-layer multilayer
perceptron were tuned within {6, 12, 18}.

For the Transformer neural network, after position encod-
ing with the channels, the EEG features were fed into a
Transformer encoder to learn deep feature representations
for classification. The encoder is composed of a stack of
multiple identical blocks. Each block has two sub-layers
(i.e., a multi-head self-attention and a fully connected feed-
forward network), and a residual connection is around each
of them. We adopted Adam optimizer, GELU activation, a
learning rate of 1e − 3 or 1e − 2, and a batch size of 64
or 128. The number of blocks, number of heads, dimension
of head and weight decay rate are empirically tuned within
{2, 3}, {2, 4}, {4, 8} and {1e− 4, 1e− 3}, respectively.

IV. RESULTS AND DISCUSSION

A. Neural Patterns

The differences of the averaged neural patterns between
the healthy controls and the depressed patients during the
four experiment stages are depicted in Fig. 2. Consistent
trends are observed in the four stages. Compared to HCs,
(1) in the delta and theta bands, DPs have higher activation
at the frontal site and lower activation at the temporal sites;
(2) in the alpha band, DPs have lower activation across the
whole brain except the frontal lobe; and (3) in the beta and
gamma bands, DPs have higher activation at the temporal

sites and lower activation at the left frontal and left parietal
sites. Besides, there are pattern differences between stages:
(1) in the delta and theta bands, the neural activations are
prominently different in the frontal and parietal areas in
resting states, while the differences triggered by cognitive
tasks are more related to the temporal sites; (2) in the alpha
band, the energy differences between HCs and DPs are larger
during REST-II (after the tasks) than those during REST-
I (before the tasks); and (3) during SCWT, DPs show a
larger brain area of low activation in the beta band and high
activation in the gamma band.

We can infer from the pattern differences that: (1) since
alpha waves typically reflect an aware but relaxed state
and wide-spread frontal theta is more often a reflection of
drowsiness, the healthy controls were more relaxed, while the
depressed patients may be a little disturbed or tired during the
whole experiments, irrespective of resting or tasking stages;
(2) differences in the theta and alpha waves between REST-
I and REST-II may result from the exacerbated fatigue of
patients after challenging tasks; and (3) differences especially
at the frontal and temporal sites during CPT-IP and SCWT
may suggest the deficits in sustained attention and response
inhibition of the depressed patients.

B. DP-HC Classification

Table I lists the accuracies of SVM, ASGC and Trans-
former on the stages of REST-I, CPT-IP, SCWT and REST-II,
and Table II details the performance of Transformer in terms
of accuracy, F1-score, AUC, sensitivity and specificity. On
each stage, all models can distinguish the depressed patients
from the healthy controls, and the deep neural networks,
ASGC and Transformer, outperform the traditional SVM
classifier. Especially, Transformer with a high discriminative
capacity successfully extracts the deep complex features for
depression detection, achieving a sensitivity of 0.93 and a
specificity of 0.88 on SCWT, and 0.87 and 0.91 on CPT-IP,
respectively. The AUCs for the REST-I, CPT-IP, SCWT and

TABLE I
ACCURACIES (MEANS ± S.D., %) OF SVM, ASGC AND

TRANSFORMER FOR DP-HC CLASSIFICATION.

Exp SVM ASGC Transformer

REST-I 66.63± 2.84 83.39± 1.98 86.66 ± 2.55

CPT-IP 74.46± 6.99 83.33± 6.11 89.04 ± 1.92

SCWT 76.05± 7.16 81.92± 2.88 90.27 ± 1.66

REST-II 70.67± 1.63 84.55± 6.76 88.52 ± 5.65

TABLE II
DP-HC CLASSIFICATION PERFORMANCE (MEANS, %) OF

TRANSFORMER ON RESTING STATES AND COGNITIVE TASKS.

Exp Acc F1 AUC Sens Spec

REST-I 86.66 86.65 88.86 84.76 88.29

CPT-IP 89.04 89.01 93.62 87.01 90.80
SCWT 90.27 90.27 93.75 92.93 87.96

REST-II 88.52 88.52 90.44 87.00 89.75



Fig. 3. The attention maps of the trained Transformers for the depressed patients and the healthy controls.

REST-II are about 0.89, 0.94, 0.94 and 0.90, respectively,
suggesting that the depressed patients suffer from decreased
energy and cognitive dysfunction.

Multi-head self-attention of a Transformer jointly obtains
information from different representation subspaces at differ-
ent positions and allows the interpretation of inter-channel
relations via attention distributions. Fig. 3 visualizes the
averaged attention maps of multiple heads and blocks of the
trained Transformers on the four experiment stages, respec-
tively. The models draw much attention to the electrodes F4,
T3, P3 and P4 on the resting states, and to the electrodes
FP1, FP2, P3, P4 and O1 on the cognitive tasks.

V. CONCLUSIONS

In this paper, we have investigated EEG-based neural pat-
terns on both resting states and cognitive tasks for depression
detection. We have collected EEG signals from 33 MDD
patients and 40 healthy controls and built SVM, ASGC and
Transformer classifiers for four experiment stages including
REST-I, CPT-IP, SCWT and REST-II. The Transformer
neural networks achieve an AUC of 0.89, 0.94, 0.94 and
0.90, respectively, indicating the potential of EEG patterns
in identifying depression. The alteration of the neural pat-
terns in the depressed patients may reflect their decreased
energy and impaired performance in sustained attention and
response inhibition. This work provides potential quantitative
and objective approaches for depression detection and new
insights into the research of mechanisms for mood disorders.
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