ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 979-8-3503-4485-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICASSP48485.2024.10447463

CEMOAE: A DYNAMIC AUTOENCODER WITH MASKED CHANNEL MODELING FOR
ROBUST EEG-BASED EMOTION RECOGNITION

Yu-Ting Lan, Wei-Bang Jiang, Wei-Long Zheng and Bao-Liang Lu*

Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai, China

ABSTRACT

Emotion recognition through electroencephalography (EEG)
has been an area of active research, but the inherent sensitivity
of EEG signals to noise and artifacts poses significant chal-
lenges, especially in real-world settings. These complications
often necessitate the removal of corrupted channels, making
it crucial to develop robust models capable of maintaining
performance even when few channels are available. To ad-
dress this, we propose the Corrupted EMOtion AutoEncoder
(CEMOAE), an innovative approach that leverages masked
channel modeling to maintain robust performance, achieved
through three components: masked autoencoder pretraining
for robust representation learning, random masked auxiliary
task for implicit modeling of channel corruption, and masked
auto-repair to explicitly narrow the data distribution gap be-
tween high-quality and corrupted EEG signals. Specifically,
we first pretrain a masked autoencoder with the dynamic
masking strategy for feature extractor initialization and chan-
nel recovery. During the finetuning stage, we mask EEG data
using the auxiliary task to mimic real-world EEG corrup-
tion. We then employ the pretrained autoencoder to repair
these signals and finetune the feature extractor for emotion
recognition. Experiments on the SEED dataset demonstrate
that CEMOAE achieves SOTA performance for emotion
recognition under the random channel corruption simulation,
validating the effectiveness of the proposed techniques.

Index Terms— Masked channel modeling, robust EEG-
based emotion recognition.

1. INTRODUCTION

Electroencephalography (EEG) enables investigations into
the temporal dynamics of the brain and its cognitive pro-
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cesses for a wide range of purposes, including fatigue de-
tection, mental disease diagnosis, and affective computing
[1, 2, 3]. As a physiological signal that directly measures
brain activities, EEG has been demonstrated to be a sim-
ple, reliable, and easy-to-use solution for recognizing human
emotions [4]. However, it is still unfeasible to translate EEG
from lab and clinic to real-world settings such as at-home
and ambulatory environments. One of the most critical bot-
tlenecks is the noise and artifacts during EEG recordings [5].
The weak EEG signals are extremely sensitive to the body
signal interference and external environments, including the
electrical activities of the eyes, heart, and muscles, electrical
artifacts due to cable movements, and electromagnetic inter-
ferences from the surroundings [6]. In real-world settings,
the quality of EEG signals is hard to control, and we have to
discard many corrupted channels, which imposes significant
limitations on the practical applications of EEG signals.

To build a robust model in real-world scenarios, re-
searchers have employed various methods to reduce the
influence of excessive noise or channel corruption on the
performance. Those methods can be roughly divided into
three categories: directly ignoring, implicit denoising, and
explicit denoising [7]. Directly ignoring is the simplest way
to deal with noise to assume it is negligible or to simply
discard bad segments [8]. Implicit denoising approaches
can be used to design noise-robust processing pipelines. For
example, Pierre et al. proposed a robust feature by captur-
ing spectral, temporal, and spatial patterns of EEG signals
[9]; Hubert ef al. proposed dynamic spatial filter (DSF) to
conduct interpretable modeling [7]. Explicit denoising deals
explicitly with noise by correcting corrupted signals or pre-
dicting missing or additional channels from those available,
e.g., autoreject [10] and gated-layer autoencoders [11].

However, these approaches have some limitations. Sim-
ply discarding bad channels will cause the loss of usable
information and requires algorithms to be robust to the re-
moval of any number of EEG channels, e.g., Neural Pro-
cesses family [12, 13, 14]. The implicit denoising methods
and noise-robust processing pipelines might not work with
limited channels available, e.g., only 10 channels out of 62
are retained. Traditional explicit denoising methods often
treat channel corruption as a distinct time-series imputation
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Fig. 1: The framework of CEMOAE. The black channels indicate the masked channels in the random sampling. All the
modules with dotted lines, i.e. reconstruction supervision and emotion supervision are only used during the training phase and

would be removed during the inference phase.

problem, leading to inconsistencies and degraded perfor-
mance, especially when the corruption is relatively moderate.
Additionally, most existing solutions are designed for raw
spatio-temporal EEG data and may not suitably address the
challenges associated with differential entropy (DE) [15] fea-
tures in the spatial spectrum domain, which is crucial for
EEG-based emotion recognition. Further, the question of ef-
fectively combining these diverse approaches to enhance their
strengths and address their limitations remains unanswered.

To tackle with aforementioned challenges in this task, we
propose a Corrupted EMOtion AutoEncoder, namely, CE-
MOAE, a comprehensive pipeline using the masked channel
modeling through masked autoencoder pretraining, random
masked auxiliary task, and masked auto-repair, to handle the
corrupted emotion recognition. The masked autoencoder pre-
training serves to construct robust representations by predict-
ing the masked EEG channels. The random masked auxiliary
task and masked auto-repair act in concert to provide both
implicit and explicit denoising, thereby effectively modeling
the complex channel corruption scenarios and narrowing the
data distribution gap between high-quality and corrupted EEG
signals. We systematically evaluate the performance of CE-
MOAE on a public dataset SEED [16] for emotion recogni-
tion with DE features under the simulation of random channel
corruption. The experimental results demonstrate that CE-
MOAE achieves SOTA performance and further improves the
feasibility and the performance of EEG-based emotion recog-
nition in practical applications.

2. METHODOLODY

In this section, we design our method CEMOAE, which
handles emotion recognition of corrupted EEG signals via
masked channel modeling. We briefly introduce the intu-
ition of our masked channel modeling in three correspond-
ing components: masked autoencoder pretraining for robust

representation learning, random masked auxiliary task for
implicit modeling of channel corruption, and masked auto-
repair to explicitly narrow the data distribution gap between
high-quality and corrupted EEG signals. The three masked
channel modeling methods work in unison to construct a
robust emotion recognition model, effectively tackling the
challenges associated with corrupted EEG signals.

In the following, we first formulate the problem and give
an overview of our method. Then, we outline the masked
channel pretraining with the dynamic masking strategy dur-
ing the pretraining phase. Finally, we describe the masked
auxiliary task and masked auto-repair in the finetuning stage.

2.1. Problem Statement and Overview of CEMOAE

In this section, we formalize the problem of dealing with cor-
rupted EEG channels and give an overview of our method.
Problem Statement Let X € R“*! denote the DE fea-
tures of EEG signals. Here, C' and F stand for the number of
channels and the dimension of the DE features, respectively.
During the training phase, we assume that EEG recordings
are obtained in a controlled clinical environment, where all C
channels are available. Conversely, in the inference stage, we
assume that EEG data are gathered in ambulatory settings de-
noted by Xiey € RCreaxF and only limited C', channels are
available. The primary objective is to ensure that the perfor-
mance of the emotion recognition model remains robust when
its inputs transform from X to Xy .

Overview As delineated in Figure 1, the initial phase involves
the pretraining of the masked autoencoder. This is accom-
plished by predicting the masked EEG data X,,, € R¢=*F
using the visible data X,, € R¢*¥. Here C, + C,, = C,
which is sampled based on the dynamic masking strategy.
Such a dynamic masking autoencoder serves dual roles: ini-
tializing the parameters of the feature extractor and recover-
ing the corrupted channels. During the finetuning stage, we
mask EEG data using the random auxiliary task A to mimic
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real-world EEG corruption. We then employ the pretrained
dynamic autoencoder to repair these signals and finetuning
the pretrained feature extractor E for emotion recognition.

2.2. Pretraining Stage

In this section, we outline the methodology for pretraining
with the mask channel transformer-based autoencoder. Ad-
ditionally, we detail our dynamic masking strategy, for both
representation learning and auto-repair of corrupted channels.
Masked Channel Autoencoder During the pretraining stage,
we randomly partition the EEG feature signals X of each
batch into a visible set X, and a masked set X,,,. For each
batch, the masked set X,, is dropped, and the visible DE
features X, are inputted into an encoder E. The encoder’s
output is concatenated with the learnable masking tokens and
then inputted into a decoder D to reconstruct the EEG data
X. The quality of the reconstruction is supervised using the
Mean Squared Error (MSE) loss as defined in Equation (1):

Ereconstructinn = HX - XH% == ||D(E(X1))) - XH% (1)

Masking Strategy We talk about the design of the masking
strategy here. We first consider the straightforward fixed
masking strategy: random sampling on channels with a fixed
masking ratio. However, unlike the fixed masking ratio, e.g.,
90% and 15%, which perform well in vision tasks [17] and
NLP tasks [18], respectively. Our task requires the autoen-
coder to understand the complex channel corruption scenar-
ios. The fixed masking ratio may limit the potential of our
model, especially when the number of simulated corrupted
channels differs significantly from the number of masked
channels during pretraining. Therefore, we finally choose
the random sampling with a dynamic masking ratio, which
means the visible channel number of EEG signals is randomly
sampled in a set S, with equal probability for each batch.

2.3. Finetuning Stage

In this section, we describe the finetuning stage, which em-
ploys the random masked auxiliary task and the masked auto-
repair. These modules serve both implicit and explicit denois-
ing functions to implicitly model the channel corruption sce-
narios and explicitly bridge the data distribution gap between
high-quality and corrupted EEG signals.

Masked Auxiliary Task To model the channel corruption, we
introduce the random masked auxiliary task A. Specifically,
for each batch, we randomly mask some EEG channels, de-
noted as A(X) € RC*F like the dynamic masking strategy.
This approach enables the model to understand channel cor-
ruption scenarios, thereby enhancing its robustness.

Masked Auto-Repair After simulating channel corruption,
we employ the pretrained autoencoder to reconstruct the EEG
features as D(F(A(X))) € RE*F. Given that some chan-
nels are dropped, this method serves to bridge the data distri-

bution gap, particularly in complex channel corruption situa-
tions, thereby enhancing performance.

Finetuning Pipeline In this stage, each subject’s model is
finetuned individually. After masking EEG signals with A
and making auto-repair with the dynamic autoencoder E and
D, we instantiate a new encoder F initialized with pre-trained
parameters from E. This encoder E is then finetuned with the
loss as follows:

Lemotion = Lcs(Y,Y) = Lep(Y, E(D(E(A(X))))), ()

where Y and Y is the ground-truth and predicted emotion
label, respectively.

3. EXPERIMENT

In this section, we present the experimental settings and the
results with extended analysis. We list the following research
questions (RQs) to lead the experimental discussion. RQ1:
Does the CEMOAE achieves the best performance by us-
ing the masked channel modeling among all the compared
methods? RQ2: Is the combination of masked autoencoder
pretraining, random masked auxiliary task, and masked auto-
repair better than utilizing a single strategy only? RQ3: Is
the dynamic masking strategy better than the fixed masking
strategy for the robust EEG-based emotion recognition?

3.1. Experimental Settings

Dataset The proposed model is evaluated on a public affec-
tive EEG dataset SEED [16] with DE features [15]. SEED
contains 15 participants, three sessions each, with video stim-
uli inducing negative, neutral, and positive emotions. For
each session, the first 9 trials are considered for training and
the remaining 6 for testing. Following [19], the model is pre-
trained on the training data from all subjects and individually
finetuned using the emotion supervision.

Evaluation Metrics Our corruption simulations strictly fol-
low the previous baseline NPA [13]. Specifically, we con-
duct simulations with varying channel availabilities, includ-
ing Full, 50, 40, 30, 20, and 10 channels, repeating each con-
figuration 50 times, and consider the mean and standard devi-
ation of emotion classification accuracy as evaluation metrics.
Implementation Details The visible channel set S, is [10,
20, 30, 40, 50] for the dynamic masking strategy and the
masked auxiliary task. Further implementation specifics, such
as the masked autoencoder (MAE) [20] structures, optimiz-
ers, learning rate, and more, adhere to [19].

3.2. Experimental Results

Comparing with Baselines We compare CEMOAE with
LSTMNet [13], which models the channels as sequences;
NPA [13], which combines the prior knowledge of Gaussian
distribution to build robust pipelines; MV-SSTMA, which
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Table 1: The mean/std (%) accuracy of various models on the SEED dataset. The LSTMNet [13], NPA [13], MV-SSTMA [19],
1 (Transformer), and 2 (MAE [20]) can be considered as baselines. The models from 1 to 6 are ablation studies of CEMOAE.

Model [P A] R [ M [ 62Ful) ] 50 [ 40 [ 30 [ 20 [ 10
LSTMNet - - N 83.79/10.04 | 80.58/10.17 | 77.63/10.42 | 73.47/10.93 | 67.66/12.26 | 58.73/14.00
NPA - - - 79.66/12.49 | 78.66/12.63 | 77.64/12.70 | 76.70/13.03 | 75.26/13.29 | 71.96/13.03
MV-SSTMA | - | - - N 95.32/03.05 - N N N
1 XX X - 90.03/07.12 | 78.47/08.72 | 71.28/09.26 | 64.34/09.31 | 56.25/08.44 | 46.82/07.42
2 I X X 0.75 92.27/05.19 | 59.01/15.62 | 47.23/10.61 | 39.64/07.78 | 36.65/06.82 | 35.16/05.69
3 X1V X - 88.46/08.60 | 86.43/08.87 | 84.48/09.16 | 82.02/09.56 | 78.29/09.88 | 71.09/10.43
4 IV X 0.75 89.77/08.28 | 88.48/07.88 | 86.89/08.07 | 84.36/08.67 | 80.66/08.71 | 72.43/09.49
5 vV | V'] X | Dynamic | 90.09/07.44 | 88.38/07.68 | 86.81/08.08 | 84.30/08.40 | 80.36/09.28 | 72.48/09.49
6 v | V' | DSF | Dynamic | 87.81/09.92 | 84.48/09.95 | 82.25/10.13 | 77.21/09.80 | 72.09/09.70 | 65.45/09.19
CEMOAE | v/ | v/ | AR | Dynamic | 92.03/07.29 | 90.21/07.02 | 88.08/07.31 | 85.17/07.88 | 80.81/08.65 | 73.20/09.43
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Fig. 2: The average MSE loss of reconstructing EEG signals
with the different masking strategies for the test samples.

is the SOTA method for high-quality EEG signals in this
dataset. In addition, models 1 and 2 can be considered as
Transformer [21] and MAE [20]. As is shown in Table 1,
by comparing the results of the CEMOAE and the baseline
models, we see that the CEMOAE significantly outperforms
the classical deep learning methods in corrupted channel sim-
ulations; In high-quality EEG signal scenarios (Full), CE-
MOAE still maintains a good performance compared to the
SOTA MV-SSTMA. These quantitative results demonstrate
the superiority of our model with masked channel modeling,
addressing RQ1.

Abalation Study We also conduct an ablation study to an-
alyze the effectiveness of each module of our CEMOAE to
further answer RQ2 and RQ3 in Table 1. Here, P and A rep-
resent the masked channel pretraining and the masked auxil-
iary task, respectively. R denotes the approach to repair EEG
signals using DSF [7] (a SOTA technique for recovering raw
time-series EEG signals), either through masked auto-repair
(AR) or not at all. Meanwhile, M designates the masking
strategies, delineating between a fixed masking ratio and a
dynamic masking ratio.

* Masked Channel Pretraining: Comparing models 1 and
2, and then models 3, 4, and 5, we deduce that using the
masked channel pretraining improves performance by better
representation learning, especially when finetuning with the
masked auxiliary task, which partially answers RQ2.

* Masked Auxiliary Task: Comparing models 1 with 3 and 2

with 4 or 5, we find that the auxiliary task notably increases
performance by implicitly modeling the corruption scenar-
ios, which partially answers RQ2.

¢ Masked Auto-Repair: From the evaluation of models 5, 6,

and CEMOAE, we infer that the masked auto-repair sig-
nificantly bolsters EEG emotion recognition performance.
It achieves this by directly recovering the corrupted signals
and reducing the distribution disparities in channel corrup-
tion. Additionally, using DSF [7] is not suitable for this task
as DE feature modeling diverges from that of raw EEG sig-
nals, which partially answers RQ2.

* Fixed Masking Strategy vs Dynamic Masking Strategy:

Comparing models 4 and 5, we find that the fixed masking
ratio and dynamic masking ratio perform almost the same
for the downstream tasks without auto-repair. However, as
is shown in Figure 2, the reconstruction performance (loss)
of the dynamic autoencoder (red) generalizes better with the
different testing masking ratios, which can provide more ro-
bustness to repair the complex and diverse channel missing
or corrupting situations in our experiments. This analysis
further answers RQ2 and RQ3.

4. CONCLUSIONS

In this paper, we have proposed a dynamic autoencoder with
masked channel modeling for real-world EEG-based emo-
tion recognition. Our innovative approach leverages masked
channel modeling to maintain robust performance, achieved
through three components: masked autoencoder pretraining
for robust representation learning, random masked auxiliary
task for implicit modeling of channel corruption, and random
masked auto-repair to explicitly narrow the data distribution
gap between high-quality and corrupted EEG signals. Ex-
tensive experiments on the SEED dataset have demonstrated
the outstanding performance of our framework for emotion
recognition compared with various advanced baseline models
under complex random channel corruption. This work under-
scores the potential for devising EEG measurements, paving
the way for feasible real-world applications.
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