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Abstract—Major Depressive Disorder (MDD) is a debilitating
condition marked by persistent low mood, reduced interest, cog-
nitive impairments, and vegetative neurological symptoms such
as sleep and appetite disturbances. In this paper, we collected eye
movement signals from 40 patients diagnosed with MDD and 40
healthy controls to study the relation between eye movements and
cognitive processes for depression detection. The eye movement
data were captured during a novel emotional cognition task using
oil paintings. Subsequently, the data were transformed into mul-
tiview eye movement features, including heatmaps, trajectories,
and statistical vectors. Rigorous statistical analyses were then
conducted on these features to identify significant patterns and
correlations between eye movements and depressive symptoms.
A multiview invariant & specific eye movement model (MIS-
EYE) was proposed to fuse different eye movement features.
The proposed achieved an accuracy rate of 79.88% in depression
detection. This performance surpassed not only the outcomes of
single-mode approaches and combinations of any two features
but also outperformed other fusion methodologies. These findings
not only shed light on the intricate relationship between eye
movement patterns and MDD but also underscore the potential
of eye-tracking technology in psychiatric research.

Index Terms—major depressive disorder, eye movement, oil
painting

I. INTRODUCTION

Major depressive disorder (MDD) is a debilitating condition
characterized by at least one discrete depressive episode lasting
for a minimum of two weeks, frequently accompanied by
dysregulation in cognitive function and emotion regulation,
including impaired cognitive control, cognitive bias, and ab-
normal use of emotion regulation strategies [1], [2]. As a
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common mental illness, it has seriously affected the social
function and quality of life of patients. In clinical practice, the
detection, diagnosis, and treatment of MDD are challenging
due to its diverse clinical manifestations, the difficulty in
predicting its course and prognosis, and the variable response
of patients to treatment [3].

The etiology of depression remains unclear due to the in-
volvement of various psychological factors during its onset, as
well as the existence of multiple subtypes within the disorder,
each with distinct biological mechanisms. While a consensus
regarding biomarkers for depression has yet to be reached,
numerous scientific investigations have sought potential mark-
ers within physiological signals, including electroencephalog-
raphy (EEG), functional magnetic resonance imaging (fMRI),
and functional near-infrared spectroscopy (fNIRS) [4]–[6].
Additionally, some studies have explored the predictive value
of external indicators, such as speech patterns or social media
usage, in identifying depression [7], [8].

As an important form of human physiological signals, eye
movement signals have been increasingly used in cognitive-
related diseases in recent years. Eye movement signal is a
kind of recording of eye movement. Compared with other
biological signals, it is less costly, less noisy, easily available,
and not limited by location. Eye movements not only reveal
visual information selectively acquired based on moments but
are also closely linked to cognitive processes [9]. Because
these brain circuits that control eye movement are highly
related to cognitive functions, eye movement signals could be
a predictor of cognitive impairment. In the medical field, eye
movement has been used to study cognitive diseases, including
schizophrenia, Parkinson’s disease, depression, Lewy body
dementia, and so on [10]–[13].

As eye movement signals are highly correlated with what
people are watching, paradigms are very important in eye
movement research. This study introduced a novel visual
cognitive paradigm involving the observation of oil paintings,
with a focus on recording and analyzing the eye movements
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of both individuals with MDDs and healthy controls (HCs). In
the past eye movement studies, most of the paradigms were
resting-state [14], smooth pursuit and antisaccade tasks [15],
[16], image stimulation and free viewing task [17], [18], and
video stimulation [19].

The traditional paradigm has some limitations. Resting
experiments and antisaccade tasks are mainly suitable for
detecting eye diseases. Photographs and video stimuli are used
to study emotions. However, the degree of emotion elicitation
was low in photographs. Although the evoked degree of video
is better than that of photos, the motion within video clips
significantly influences ocular movements.

For humans, the emotional experiences induced by aesthetic
encounters differ from those evoked by photographs. The
perception, interpretation, and subsequent emotional responses
to art are influenced by factors such as the viewer’s famil-
iarity, complexity, curiosity, and appreciation of aesthetics
[20]. Given the emotional cognitive impairments commonly
observed in individuals with depression, we hypothesized
that the examination and rating of oil paintings with varying
emotional attributes could offer valuable insights into the
cognitive distinctions between depressed and non-depressed
individuals.

In this study, we scrutinized the distinctions between MDD
patients and healthy controls by processing raw eye movement
data into eye heatmaps, trajectories, and statistical vectors.
Initially, a thorough examination of eye movement parameters
was undertaken, encompassing multiple dimensions within the
paradigm. Subsequent to this, pertinent eye movement features
were meticulously chosen based on statistical insights, serving
as representative markers. Ultimately, we devised the (MIS-
EYE) amalgamating eye movement heatmaps, trajectory, and
features to detect MDD.

The main contributions of this paper can be summarized as
follows:

• We introduced an innovative oil painting paradigm and
verified its effectiveness in MDD detection.

• We implemented fusion model, integrating multiview eye
movement data including thermograms, trajectories, and
statistical vectors, culminating in superior classification
accuracy between MDD patients and healthy control
groups.

II. RELATED WORK

A. Eye Movement Studies in MDD

Eye movement studies have shed light on cognitive biases
observed in MDD patients. Studies have reported eye move-
ment abnormalities in individuals with MDD compared to
healthy controls. Takahashi et al. proposed that the saccade
path of depressed patients was significantly shorter in the free-
viewing paradigm [18]. Alghowinem et al. found differences
in eye-opening time and blink time in people with depression.
They extracted multi-dimensional statistical vectors from the
face videos and used GMM and SVM to predict depression
[21]. Wang et al. examined impairments in basic features of

fixations and saccades in MDD and bipolar disorder (BPD) in
smooth pursuit and free-viewing paradigms [22].

Eye movement behavior is closely related to the task. In
past eye movement studies of depression, the specific tasks
included multiple paradigms. The traditional paradigms used
include resting state experiment, saccade-related paradigm (an-
tisaccade task), smooth pursuit task, free-view paradigm, and
visual cognitive tasks. Some researchers also combine multiple
paradigms. Li et al. used three types of taks: fixation stability
task, saccade task, and free-view task an investigated the dif-
ferences in eye movement metrics between depressed patients
and healthy controls in these paradigms. Result showed that
the performance of some indicators in the two groups of
people was not the same in the different paradigms. Number
of saccades are significantly higher for the depression group
in the fixation stability task while it is lower for the depression
group in the free-view task.

Previous research has confirmed that MDD differs from
healthy people in eye movement characteristics in many ways.
In this paper, we have made several improvements over those
previous studies. For the first time in a study of depression, we
subdivided saccade categories to extract and summarize eye
movement features from a more comprehensive perspective.
Additionally, for the first time, we analyzed eye movement
heatmaps and fused them with features for depression detec-
tion.

B. The Application of Transformer Model in Medicine

Transformer is a neural network architecture based on
self-attention mechanism, which has achieved great success
in natural language processing (NLP) and other fields [23].
Vision Transformer (ViT), a derivative model of Transformer,
has successfully applied Transformer architecture to computer
vision tasks, which has made remarkable achievements in the
medical field and promoted technological progress in medical
image analysis, pathological diagnosis, and medical image
processing [24]–[26].

A major problem with deep networks of images is that
they require a large amount of labeled data for training. The
pre-training algorithm represented by Masked Autoencoder
(MAE) uses unlabeled data to solve this problem [27]. For
the image in painting domain, MAEs are employed to fill in
missing or damaged regions in an image. By masking out
portions of the image and training the MAE to reconstruct
the original content, the model can effectively restore the
missing information, making it valuable for image restoration
and completion tasks. By using MAE, the results of image
segmentation and multi-label classification in the medical field
have been further improved [28].

C. Model Fusion Strategy

Fusion algorithms have become a prominent area of re-
search in the field of data integration and decision-making.
The fusion methods are commonly divided into four types:
feature-level fusion, decision-level fusion, mixture-level fu-
sion, and model-level fusion. Feature-level fusion concatenates
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TABLE I. Demographics and the scores of the self-rating scales and
MATRICS consensus cognitive battery of the subjects

Variable MDDs (n = 40) HCs (n = 40) z P-value
Age(year) 23.49 ± 4.34 24.98 ± 4.23 -1.57 .121
Gender 20F / 20M 20F / 20M - -
HAMD-17 17.83 ± 4.72 NAN - -
CES-D 37.558 ± 11.93 8.08 ± 4.59 14.00 <.001
PHQ-9 16.93 ± 6.71 2.10 ± 1.79 13.50 <.001
GAD-7 11.80 ± 5.81 2.02 ± 1.86 10.14 <.001
TAS-20

F1-score 24.45 ± 5.91 10.75 ± 3.58 12.55 <.001
F2-score 17.48 ± 3.43 9.33 ± 2.71 11.80 <.001
F3-score 22.15 ± 3.44 17.25 ± 4.49 5.48 <.001
Total 64.01 ± 9.61 37.33 ± 7.72 13.72 <.001

SHAPS 32.65 ± 6.26 18.33 ± 4.60 11.66 <.001
*MDDs: major depressive disorder patients; HCs: healthy controls.

the features extracted from different modalities into a single
high-dimensional feature vector immediately after extraction,
using methods including Principal component analysis (PCA)
and maximum relevance and minimum redundancy algorithm
(mRMR) to remove redundant information. Decision level
fusion, after obtaining a decision based on each modality, is
achieved by applying algebraic combination rules of multiple
predictive class labels. Decision level fusion combines the
previous two fusion methods. The implementation of model-
level fusion mainly depends on the fusion model used.

III. EXPERIMENT

A. Subjects

A total of 40 individuals diagnosed with MDD and 40 HCs
were recruited. Each group consisted of equal numbers of
males and females. The 40 MDD patients were recruited from
three hospitals and HCs were recruited from both hospitals
and universities. All 80 participants had normal hearing and
vision and did not present with any eye diseases or defects. The
experiment was conducted by the local Ethics Committee, and
all participants were fully informed about the study procedures
and provided written consent.

All 80 participants in the experiment were rigorously di-
agnosed by doctors, and were asked if they were willing to
participate in the experiment. Both patients and HCs were
asked to complete several self-evaluation scales, including the
Center for Epidemiologic Studies Depression Scale (CESD),
the Patient Health Questionnaire-9 (PHQ-9), the Generalized
Anxiety Disorder Assessment (GAD-7), the Toronto Alex-
ithymia Scale (TAS-20), and the Pittsburgh Sleep Quality
Index (PSQI). These assessments were administered under
the guidance of clinical psychiatrists. MDDs were assessed
by psychiatrists utilizing the International Classification of
Diseases, Tenth Revision (ICD-10) criteria, and the Hamilton
Rating Scale for Depression, 17-item version (HAMD-17). Pa-
tients were included in the MDD group when the psychiatrist
identified a potential depressive condition during the interview
and confirmed a major depressive rating based on the self-
rating scale evaluation. On the other hand, subjects who did not

display any signs of depression tendencies during the interview
and self-rating scale assessment were included in the healthy
control group. Nonparametric Wilcoxon rank-sum tests were
performed for all measure scores. The z-scores and P-values
were listed in Table I.

...
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Fig. 1. The procedure of oil painting paradigm: subjects viewed the oil
paintings and rated them in random order.

B. Experiment Procedure

The experimental paradigm required all participants to
watch 40 oil paintings followed by the completion of an
emotional cognitive task after each painting (Fig. 1). Luo et
al. used 126 oil paintings to classify emotions as positive,
negative, and neutral, which proved the effectiveness of oil
paintings on human emotion induction [29]. For this paradigm,
we recruited 20 people unrelated to the experiment to rate
the emotions of these 126 oil paintings, and selected 40
oil paintings with the highest positive and negative scores.
During the experimental procedure, the 40 paintings were
presented in a random order, with each painting displayed for
20 seconds. Participants were given a 5-second resting period
before the next painting was shown. Subsequently, participants
were required to rate the paintings they had just seen based
on valence and arousal dimensions (-5 to 5).

C. Eye Data Recording

The experiment was administered on Tobii-pro Fusion eye-
tracker. The eye-tracker monitor was fixed on a monitor with
a resolution of 2560*1440. Participants sat approximately 60-
70 cm from the monitor. Tobii Studio’s standard calibration
was used. Different oil paintings have different proportions of
width and height. Each oil painting stimulus was scaled to fit
the monitor screen.

IV. METHODS

A. Feature Collection

Eye movement analysis shows great potential in the early
diagnosis and monitoring of neurological disorders such as
Parkinson’s disease, Alzheimer’s disease, and autism [30],
[31]. Through the examination of eye movement features,
valuable insights into abnormal nervous system functioning
can be gleaned. Additionally, eye movement carries cognitive
and emotional implications, offering valuable clues about an
individual’s attention, information processing, and emotional
experiences. Given that cognitive impairment and depression
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are prominent symptoms of MDD [32], we posited that eye
movement analysis holds potential for significant applications
in depression research. It could aid in comprehending the
pathological mechanisms underlying depression and facilitate
diagnostic processes.

The rationale behind selecting oil paintings with varying
emotional content as the paradigm lay in the notion that
assessing the emotional qualities of such paintings could effec-
tively engage individuals’ comprehension and cognition of the
artwork. Consequently, we could collect eye movement data
from both depressed patients and healthy individuals during
their emotional perception. We calculated five parameters of
eye movement information, such as fixation, saccade, blink,
and pupil dilation. Each parameter was carefully examined,
leading to the identification of distinctive subcategories that
can serve as differentiating indices.

1) Fixation & regions of interest. Fixation is widely used in
cognitive psychology to study people’s attention, perception,
and cognitive processes. It is primarily controlled by circuits
of superior colliculus, cerebellum, and reticular formation
and saccades and blinks are primarily associated with visual
cortex. Within the paradigm featuring oil paintings, distinct
boundaries were delineated for the eye, mouth, and face of
each painting. We obtained the subjects’ attention to the whole
picture through the fixation duration, fixation frequency, and
other statistical information, and the attention to different
interest regions was reflected in the eye movement heatmap.

2) Microsaccade. Microsaccades are fixational saccades that
happens during fixation process. For microsaccade filtering,
we use a λ = 5 velocity threshold and an 8 ms minimal
duration to detect microsaccades(due to the sampling rate of
Tobii Pro Fusion eye tracker) [33]. For each microsaccade
detected, eye movement speed and direction were calculated.

3) Macrosaccade. Macrosaccades are characterized as sud-
den saccadic movements that disrupt fixation [34]. For each
macrosaccade, we computed its duration, amplitude, and de-
rived the corresponding macrosaccade velocity. Unlike mi-
crosaccades, we did not count macrosaccade direction as a
statistical vectors because the direction in which the mi-
crosaccades occurred spontaneously. However, the direction
in which saccades occurred was influenced by the content
of the viewed painting. By contrast, although the magnitude
of macrosaccades is related to the content of the painting,
macrosaccade duration and velocity are much less affected by
the painting content.

4) Blink. Blinking represents a spontaneous eye movement.
To capture and record all instances of blinking during the
viewing of oil paintings, we implemented a blink filter with
an interval ranging from 0.1s to 0.4s [35].

5) Pupil dilation. Because tricyclic antidepressants taken
by MDD patients could dilate the pupils, we did not analyze
the mean of the pupil diameter in the task. We examined the
relative changes in pupil diameter as our primary measure.
Iris tremor refers to a subtle oscillation observed in the
pupil diameter within the frequency range of 0.05 to 0.3Hz,
with an amplitude of 1mm. Research indicates that during a

state of relaxation or negative emotions, the pupil diameter
exhibits the iris tremor effect within the low-frequency band.
However, this effect diminishes when individuals engage in
mental activities [36]. To characterize the iris tremor effect,
we derived the power spectral density of the pupil diameter
within the frequency bands of [0,1] Hz and calculated its
corresponding differential entropy features.

From the previous analysis, we defined five types of gaze
features: fixation features, microsaccade features, macrosac-
cade features, blink features, and pupil diameter features. The
description for each feature type is as follows:

• Fixation - fixation frequency (n/second), average fixation
duration (second), fixation duration per second (second);

• Microsaccade - microsaccade frequency (n/second), av-
erage microsaccade velocity (°/second);

• Macrosaccade - macrosaccade frequency (n/second), av-
erage macrosaccade duration (second), average macrosac-
cade velocity (°/second), average macrosaccade ampli-
tude (°);

• Blink - blink frequency (n/second), average blink duration
(second), blink duration standard deviation (second);

• Pupil diameter - power spectral density and differential
entropy of 0-1 Hz (bit).

All the features formed a vector of 16 dimensions, which
were used as the input to the model.

B. Heatmap

On the basis of the hypothesis that there are differences
in attention to different regions of interest between MDDs
and HCs, we transformed each subject’s attention to each oil
painting into a heatmap to distinguish the difference,(Fig. 2).
For each subject viewing data in an oil painting, the raw data
of all fixation points were converted into a hist of dimensions
of w and h (w and h denote the width and height resolution
of the screen). The value corresponding to each point in hist
represents the length of time fixated on that point.

The heatmaps were generated from the hist with 2D Gaus-
sian filter. The 2D Gaussian kernel is:

G(x, y) =
1

2πσxσy
e
− x2

2σ2
x
− y2

2σ2
y , (1)

where x and y are the independent variables representing the
coordinate values along the x and y axes, respectively, in
this case, the width and height resolution. σx and σy are the
standard deviation along the x and y axis. To keep the scale
uniform, we define sigma as the width and height of the screen
resolution multiplied by a coefficient α, thus σx = αw and
σy = αh. We use α = 0.05 in this paper.

C. Trajectory

Eye-tracking data are time series data. We generated eye
trajectory data using the X-and Y-axis coordinates of the eye
gaze points on the two-dimensional coordinate axis of the
screen (Fig. 2). Each oil painting was viewed for 20 seconds,
so the duration of the eye-tracking data was 20 seconds, and
the axis dimension was measured in pixels.
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a) Oil painting

c) Eye heatmap

c) Eye trajectory

b） Eye attention 
on painting

b) Eye trajectory 
on painting

Fig. 2. The eye movement heatmap and trajectory of the oil painting.

D. Model

To detect MDDs based on eye movement patterns, A multi-
view invariant & specific model for eye movement data (MIS-
EYE) implemented. Eye heatmaps, trajectories, and statistical
vectors are core inputs of the model (Fig. 4). Extracted several
eye movement features are higher-level information of the
original eye movement data. They are all data from the same
original eye movement signal, so they will contain common
information but also have their own unique information.
The model comprises three primary components. The initial
segment employs a masked autoencoder, with the encoder
condensing input data into a more concise representation. Pre-
training of the model was executed on the Emod Dataset,
encompassing eye movement data from diverse individuals ob-
serving images eliciting varied emotional responses [3]. Within
this dataset, eye heatmaps underwent a 75% masking before
processing by the ViT encoder, compelling it to extract salient
features from the unmasked regions. Utilizing the default ViT
base model, the decoder then reconstructed the original input
from this encoded data. Following pre-training, the model
underwent refinement using the training data and subsequent
evaluation on a test set. The model’s second segment harnesses
a pre-trained Transformer model, processing eye-tracking time
series data. During its pre-training phase, this component
utilized proprietary multi-task eye-tracking data, employing
a 20-second eye-tracking window to anticipate the ensuing
4-second sequence. For the depression detection task, the
pre-trained Transformer encoder exclusively facilitated eye
movement data extraction, enabling the derivation of high-
dimensional spatial attributes. The final component amalga-
mates eye movement features vector delineated in Section III,
which was not processed before fusion.

The fusion part employs the modality-invariant and specific
representation structure [38]. Processed heatmap and trajec-
tory data, along with the statistical vectors, traverse both
a morphology-invariant public encoder and a morphology-
specific private encoder, and respectively get their public and
private representations:

hc
m = Ec(um; θc), hp

m = Ec(um; θp), (2)

Ec shares the parameters θc across all features and Ep assigns
separate parameters θp for each eye feature.

The three privately encoded hidden vectors and three pub-
licly encoded hidden vectors are stacked into a matrix M =
[hc

h, h
c
t , h

c
f , h

p
h, h

p
t , h

p
f ] ∈ R6∗dh . Then a Transformer encoder

is used as an fusion network, which generates a new matrix
M̄ = [h̄c

h, h̄
c
t , h̄

c
f , h̄

p
h, h̄

p
t , h̄

p
f ]. Finally, the Transformer outputs

are concatenated to a single vector and sent to a linear classifier
to get the classification result.

The model comprises four distinct loss components. The
similarity loss quantifies the difference in shared represen-
tations across features. For this similarity loss, we used the
cosine distance metric:

−dist(h1, h2) = −
||h1||2||h2||2 − h1 · h2

||h1||2||h2||2
(3)

Lsim =
∑

(m1,m2)∈
{(h,t),(t,f),

(f,h)}

dist(hc
m1

, hc
m2

) (4)

The difference loss comprises two components. The first
part quantifies the distance between the public hidden rep-
resentations of individual features and the collective private
hidden vector. The second part measures the discrepancy in
private hidden representations across modal pairs. For this
difference loss, we employed the negative cosine distance
metric:

Ldiff =
∑

m∈{h,
t,f}

−dist(hc
m, hp

m) +
∑

(m1,m2)∈
{(h,t),(t,f),

(f,h)}

−dist(hp
m1

, hp
m2

)

(5)
The reconstruction loss defines the loss between the recon-

structed features of the decoder ûm = D([hc
m, hp

m], θD) and
the input feature of the encoder um. The reconstruction loss
is the mean squared error between um and ûm.

Lrecon =
∑

m∈{h,t,f}

||um − ûm||22
dh

(6)

where dh denoted the dimension of the feature.
The task loss is the cross-entropy loss for classification

result.

Ltask = − 1

N

N∑
i=0

yi · log(ŷi) (7)

The overall learning of the model is performed by minimizing
the following loss:

L = Ltask + Lsim + Ldiff + Lrecon (8)

E. Evaluation Details

The data was divided into five folds based on subject cate-
gories, ensuring an equitable representation in each population
category. Each fold was used as a test set, while the remaining
four folds constituted the training set. Due to the unique crowd
feature patterns observed in each painting, a separate model
was deployed for every painting. Consequently, each test set
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Fig. 3. The proposed fusion model structure. The left showed the pre-training process of eye heatmaps and trajectories. The right showed the MIS-EYE
model of eye movement data.

encompassed 40 models, yielding 40 sets of results. For the
prediction results of the test set, we use the mean accuracy
rate and the voting accuracy rate as two evaluation criteria:

• 1. The mean accuracy of all 40 oil paintings across all
subjects obtained by the subjects in the test set.

• 2. The voting accuracy entailed each test set subject
receiving 40 predicted classification labels from all oil
painting models, with the subject being categorized based
on the label that occurs most frequently.

The final result was computed with the average on the five
folds. Since the use of voting accuracy will sharply reduce
the number of test samples, the fluctuation will also be high.
Although the accuracy rate will be improved after voting, we
take mean accuracy as the standard to measure the model, and
the voting accuracy is only used as a reference.

V. RESULTS

Primarily, we conducted a comparative analysis of three
distinct eye movement features. We fine-tuned the heatmaps
by utilizing a pre-trained ViT encoder to derive classifica-
tion results. Similarly, a pre-trained Transformer encoder was
employed to refine the trajectory for classification purposes.
On the other aspect, the classification of statistical vectors
was achieved using a single-layer linear classifier. Figure 4
presents the confusion matrix for the independent predictions
of the three features. Our findings indicate that eye movement

heatmaps, trajectories, and statistical vectors data effectively
distinguish MDDs and healthy controls.

Table II presents the pairwise combinations of the three
features alongside the classification results for depressed and
healthy controls. Notably, the fusion model, which integrates
any two features, and demonstrates higher accuracy compared
to models trained on individual features. When all three
featuress are combined, the resultant fusion model achieves
the highest performance. Comparing the independent result of
three features, the heatmap got a low mean accuracy but a
relatively high voting accuracy. Since the voting accuracy is
ascertained by averaging the outcomes from 40 predictions,
this indicates that using heatmap only has a low decision
confidence. The mean accuracy results of trajectory and sta-
tistical vector is higher, but meanwhile, they suffer from a
lower voting accuracy. Ultimately, the combined results from
the three features excel in both basic and voting accuracy,
underscoring the model’s robust predictive confidence.

We evaluated the MIS-EYE model against conventional
fusion methods as detailed in Table III. Among those methods,
the mean, max, and fuzzy fusion are the fusion methods
of decision level. Interestingly, both mean and max fusion
methods yielded lower base accuracy than the trajectory and
feature single modes. In contrast, the fuzzy fusion approach
outperformed any standalone feature in terms of accuracy. The
bimodal deep auto-encoder (BDAE), multimodal transformer
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Heatmap Trajectory Statistical Vector

Fig. 4. Confusion matrices of different features.

TABLE II. Accuracy and standard deviations of standalone feature only.

Feature Mean Acc. Std. Voting Acc. Std.
Heatmap 60.81 1.76 83.75 3.43
Trajectory 71.81 3.43 75.00 3.06
Feature 70.41 4.61 81.25 5.59
Heatmap & Trajectory 76.81 0.85 85.00 7.50
Heatmap & Feature 76.19 1.86 80.00 9.19
Trajectory & Feature 77.56 3.38 83.75 10.16
All 79.88 2.62 88.75 6.37

and MIS-EYE used deep model fusion strategies, but they
differ in their architectures. Specifically, the bimodal deep
auto-encoder utilizes only the private encoder component
depicted in Fig. 3, omitting the Transformer fusion network
presented in the shared encoder and final fusion layer, as
shown in Fig. 3. The multimodal transformer directly fuses the
multiview eye features, without encoding them into public and
private representations. In the MIS-EYE model, we integrated
the pre-trained encoders for both the eye heatmaps and trajec-
tories, along with the statistical vectors, into the transformer
encoder. This amalgamation enabled concurrent training of the
two networks, culminating in the final classification results.
Ultimately, among the diverse fusion methodologies assessed,
the MIS-EYE model consistently demonstrated superior per-
formance in both basic and voting accuracy.

In our MIS-eye model, an ablation study is presented as
supplementary material in Table IV. This study systematically
evaluated the parameters of the private encoders and the public
encoder, resulting in configurations with exclusively public or
private encoders. The accuracies of these isolated models were
diminished compared to the integrated model. The superior ac-

TABLE III. Accuracy and standard deviations of different models.

Method Mean Acc. Std. Voting Acc. Std.
Mean 66.81 4.28 78.75 8.83
Max 66.13 3.59 77.50 7.29
Fuzzy fusion 75.97 3.38 85.00 9.35
BDAE [39] 77.81 1.75 87.50 3.95
Multimodal transformer [40] 78.94 3.01 85.00 8.48
MIS-EYE 79.88 2.62 88.75 6.37

TABLE IV. Ablation study of the MIS-EYE model.

Method Mean Acc. Std. Voting Acc. Std.
Public only 76.72 3.50 82.50 4.68
Private only 77.90 1.90 82.50 10.46

Epoch Acc. order of oil paintings
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Fig. 5. a) Decrease of different losses in the training process. b) Acc./Std.
% of each individual oil paintings in descending order.

curacy of the private-only configuration, relative to the public-
only one, is attributable to the presence of a shared encoder
complemented by three private encoders, which collectively
retain more comprehensive information. Additionally, we list
the decline of the four losses in Eq. (8) during training (Fig. 5
a). This illustrated the effectiveness of several losses in model
training. We delineated the accuracy for each of the 40 oil
paintings individually, as illustrated in Fig. 5 b. The 20 positive
oil paintings and the 20 negative ones were ranked based on
discrimination accuracy. In the figure, distinct dashed lines of
two colors each represent sets of 20 paintings. Notably, the
accuracy did not exhibit a significant disparity between the
positive and negative oil paintings. Moreover, irrespective of
emotion type, paintings with elevated accuracy also manifested
higher standard deviations across the five folds.

VI. CONCLUSION

Differences in eye movement behaviors exist between de-
pressed patients and healthy people in emotional cognition
tasks. In this study, we have introduced a novel paradigm that
utilizes oil paintings to detect differences in eye movement
patterns between MDD patients and healthy controls. We
extracted heatmaps, trajectories, and statistical vectors from
the original eye movement data, and established an MIS-EYE
model for depression detection. Within the model’s architec-
ture, the shared and distinct components of eye movement data
from various features are effectively integrated. The proposed
model attained an accuracy of 79.88%, demonstrating notable
efficacy in differentiating MDD patients from healthy controls.
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