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In recent years, the research on dependency parsing focuses on improving the accuracy of the domain-specific

(in-domain) test datasets and has made remarkable progress. However, there are innumerable scenarios in

the real world that are not covered by the dataset, namely, the out-of-domain dataset. As a result, parsers

that perform well on the in-domain data usually suffer from significant performance degradation on the out-

of-domain data. Therefore, to adapt the existing in-domain parsers with high performance to a new domain

scenario, cross-domain transfer learning methods are essential to solve the domain problem in parsing. This

paper examines two scenarios for cross-domain transfer learning: semi-supervised and unsupervised cross-

domain transfer learning. Specifically, we adopt a pre-trained languagemodel BERT for training on the source

domain (in-domain) data at the subword level and introduce self-training methods varied from tri-training

for these two scenarios. The evaluation results on the NLPCC-2019 shared task and universal dependency

parsing task indicate the effectiveness of the adopted approaches on cross-domain transfer learning and show

the potential of self-learning to cross-lingual transfer learning.
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1 INTRODUCTION

Dependency parsing is a critical task for understanding textual content, to reveal the syntactic
structure of linguistic components by analyzing their dependencies, whose results can help the
downstream task model better understand the input text [3, 5, 7, 21]. Since dependency syntax
is an artificially defined language structure, making high-quality labeled data relies on human
analysis, and it is very time-consuming and painful. While most dependency parsers currently
demonstrate very excellent performance [2, 9, 10, 22], the existing labeled data for dependency
parsing is very limited in domain aspects, which means that the parser has very few domains to
work with though currently performing well. If the model trained from the existing domain data is
directly applied to the new domain, its performance will be significantly downgraded [52]. He et al.
[15] show that high-precision dependency syntax can be beneficial for downstream tasks, while
low-precision syntax is unhelpful and even harmful to the performance [15]. Hence, cross-domain
dependency parsing has become a significant issue in applying syntactic analysis results in the
downstream natural language processing (NLP) systems.
Transfer learning refers to the source domain DS and the source task TS to improve the ef-

fectiveness of the target domain DT and the target task TT , i.e., the information of DS and TS is
transferred toDT andTT . In this article, we concentrate on cross-domain transfer learning, namely,
domain adaptation, a type of isomorphic transfer learning where TS = TT . According to whether
the target domain or the target task has labeled data or not, transfer learning can be divided into
three types: supervised, semi-supervised, and unsupervised transfer learning (domain adaptation).
With recent advances in NLP transfer learning, two typical approaches are very effective:

pre-trained language model and tri-training. Pre-trained language models [33, 34] are proved very
useful for several NLP tasks like part-of-speech (POS) tagging, named entity recognition

(NER), constituent parsing, dependency parsing, andmachine reading comprehension (MRC).
Utilizing large-scale unsupervised (unlabeled) text corpus data to train a language model, we use
supervised target task data (labeled) to fine-tune the language model and train the target model
at the same time. In this way, the fine-tuned language model emphasizes the more language
information included in specific tasks. Tri-training [54] aims at picking up some high-quality
auto-labeled training instances from unlabeled data using bootstrapping methods. Ruder and
Plank [36] found that the classic tri-training, with some additions, provides a more robust baseline
for unsupervised transfer learning, and the results are even better than the current state-of-the-art
systems trained on the same domain.
In this article, we describe our domain adaptation for dependency parsing in the NLPCC-2019

shared task [32] and universal dependency parsing [47] benchmarks. Our system performs depen-
dency parsing training using the pre-trained language model BERT as our encoder and the biaffine
attention as the scorer of dependency arcs and relations at the subword level. Then, it applies the
graph-based dependency tree search algorithmwith the tokenmask to obtain the final dependency
tree at the word level. The pre-trained language model BERT is used to learn the language features
from a large-scale unlabeled corpus (such as Wikipedia). We adopt the tri-training variant method
to use the unlabeled in-domain data for iterative training and use the provided development set for
model selection during model iteration. For the unsupervised sub-task, we only use the in-domain
unlabeled data for tri-training, while for the semi-supervised sub-task, the in-domain training data
and the auto-parsed data are mixed for tri-training. Briefly, our contributions can be concluded as
follows:

—We propose a subword-level dependency parser, adopting a token mask-based inference al-
gorithm to avoid the incorrect intra- and inter-word dependencies and restore a well-defined
dependency tree.We also show the difference between subword-level parsing andword-level
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parsing. The empirical evaluation demonstrates that our proposed parser at the subword
level is a strong baseline and limited decoding on a more complete representation is a better
choice.

—Based on our proposed strong baselines, we also study the domain adaptation task in depen-
dency parsing with both supervised and unsupervised settings. We introduce and adopt a
tri-training approach for better domain adaptation performance. Evaluation results of mod-
els using tri-training on popular benchmarks verify its effectiveness.

—Furthermore, we model the cross-lingual transfer learning task in dependency parsing as a
special domain adaptation task. With this modeling, we apply our proposed strong baseline
with tri-training to cross-lingual dependency parsing, and the experiment results show its
feasibility and success.

2 RELATEDWORK

2.1 Dependency Parsing

Our work is based on a typical parser style, graph-based dependency parsing, and the other typical
parser style is transition-based dependency parsing.
Graph-based parsers treat dependency parsing as a task in which amaximum spanning depen-

dency tree is constructed in a graph composed of all lexical nodes (words) and their possible arcs
with different weights or probabilities. Before applying deep neural networks (DNN), the pars-
ing community mainly studied higher order inference algorithms [19, 27, 29] and approximation
algorithms [48, 49] for graph-based dependency parsing. After the DNN is proven effective, Kiper-
wasser and Goldberg [18] present a neural graph-based parser in which the authors utilize the
bidirectional LSTM [16] to obtain the contextualized vector for each word. Then, they concatenate
the vector of each possible head-dependent pair and feed the pair vector into a multi-layer per-

ceptron (MLP)-based attention layer to score the arc existence probability. Dozat and Manning
[10] adopt the biaffine attention instead of bilinear or traditional MLP-based attention [13, 18] to
score the dependency arc and corresponding relations and achieve state-of-the-art results onPenn
Treebank (PTB) [28].

Transition-based parsers regard dependency parsing as a step-by-step action sequence pre-
diction task from left to right (or other order). Buffer maintains words that have not yet been
parsed, and stack stores the words whose head has not been seen or their dependents have not
been all parsed. The predicted action changes the contents of the buffer and stack, and affects the
prediction of the next action. For transition-based dependency parsing, the researchers mainly fo-
cus on beam search to obtain action sequences with the highest-scores [51], richer features, and
dynamic oracle training methods [11] in the pre-DNN era. Chen and Manning [6] present a simple
and effective transition-based dependency parser using neural networks. Ma et al. [25] propose a
transition-based neural network architecture that combines the pointer networks with an internal
stack to track the status of the depth-first search in the decoding procedure and achieves compa-
rable state-of-the-art results.

2.2 Subword/Character Level Dependency Parsing

Traditional dependency parsing is usually defined at the word level (as shown in the top part of
Figure 1). For Chinese or similar language, which consists of continuous characters and lacks obvi-
ous boundaries between words, the word segmentation is the preliminary pre-processing step for
dependency parsing. However, the parsing pipeline for Chinese and other similar languages will
suffer from some limitations such as error propagation and out-of-vocabulary problems. Therefore,
dependency parsing based on more fine-grained lexical units like subwords or characters has been
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Fig. 1. Dependency tree at the word and subword level.

studied by some researchers. (The bottom of Figure 1 is an example of dependency parsing at the
subword level.)
Hatori et al. [14] first propose a transition-based model for Chinese word segmentation, POS

tagging, and dependency parsing by introducing a pseudo-inter-character arc inside the word.
Zhang et al. [50] further expand the model [14] mentioned above, and regard the internal relation
between the characters of a word as a real existed dependency arc. Thus, the dependency is divided
into two categories: inter-word dependencies and intra-word dependencies. Kurita et al. [20] is the
first neural approach for fully joint Chinese analysis, and it is known to avoid the dangers of error
propagation on the pipeline models. Yan et al. [43] propose a unified model for joint the character-
level word segmentation and dependency parsing in Chinese, which integrates these two tasks
into one biaffine graph-based parsing model by adding a real inter-character dependency like the
work by Zhang et al. [50].

2.3 Domain Adaptation in NLP

The original intention of transfer learning is to save the time of labeling samplesmanually. Transfer
learning methods can be divided into four categories:

—Instance-based transfer learning: The data similar to the target domain is found in the source
domain, and the weight of the data is adjusted to match the new data with the data in the
target domain. Then training and learning are carried out to obtain the model suitable for
the target domain.

—Feature-based transfer learning: When the source domain and the target domain contain
some common cross-features, we can transform the features of the source domain and the
target domain into the same space by feature transformation. In this way, the data distribu-
tion of the source domain and the target domain are the same.

—Parameter-based transfer learning: Source domain and target domain share the parameters
from the model, which is trained by a large amount of data in the source domain and applied
to the target domain for prediction.

—Relation-based transfer learning: When the two domains are similar, they will share some
analogous relations and apply the logical relationship learned from the source domain to the
target domain for domain transfer learning.

The classical supervised machine learning methods are usually based on isolated learning with
a single model and often evaluated on the same domain test dataset. This paradigm requires a
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large number of training examples and performs best on the well-defined and closest domain.
However, for new domains, the model performance tends to degrade. Recently, some effective
domain adaptation methods have emerged in the NLP community.
Yosinski et al. [45] argue that the DNN is an ideal carrier of transfer learning because the DNN

obtains the hierarchical feature representation through pre-training and then applies the high-
level features to a specific task. The underlying features of the DNN (such as edge information and
color information in the computer vision field, and characters information, words information,
and syntax information in the NLP field) are invariably for the different task or domain models.
Howard and Ruder [17] proposeUniversal Language Model Fine-tuning (ULMFiT) technique
that can be applied to any NLP task. It is an effective transfer learning method and provides a
standard transfer learning process in NLP. The language model learns the underlying features,
which confirms the conclusion of Yosinski et al. [45]. After the emergence of BERT [34], it is easier
to learn the Transformer structure and a more considerable amount of data through a deeper
network, and the DNN-based pre-trained language model begins to take the stage of NLP transfer
learning. Clark et al. [9] propose Cross-View Training (CVT) with DNN, and it performs well in
dependency parsing.
The semi-supervised domain adaptation and the unsupervised domain adaptation are challeng-

ing due to the small or unlabeled target domain data. For NLP domain adaptation, how to use the
sizeable unlabeled text of the target domain has become the focus of research. The current main-
stream method is using the existing model to label the target domain data to get auto-labeled data
and then picking-up high-quality auto-parsed instances for training with bootstrapping methods,
such as self-training [44], co-training [4], and tri-training [54]. Li et al. [24] propose an ambiguity-
aware ensemble training framework for semi-supervised dependency parsing, which gains success
in dependency parsing with unlabeled data. Chen and Zhang [8] further study the application of
unlabeled data to dependency parsing. Yu et al. [46] propose a self-training approach that uses
confidence-based methods to select additional training samples and improve parsing accuracy for
out-of-domain texts. Rotman and Reichart [35] propose a Deep Contextualized Self-training

(DCST) algorithm for dependency parsing based on the integration of contextualized embedding
models into a neural dependency parser. The embedding models are trained on word tagging
schemes extracted from the trees generated by the base parser on unlabeled data.
For dependency parsing, because of its specialty of lacking large scale labeled corpus, we can

not directly apply the data selection-based domain adaptation method of other tasks (such as Neu-
ral Machine Translation). However, we can easily obtain large-scale unlabeled data of the same
domain. Therefore, the research based on large-scale unlabeled data is very crucial.

2.4 Cross-lingual Dependency Parsing

In our work, we consider cross-lingual dependency parsing as a domain adaptation task. In gen-
eral, it trains a dependency parser on the source language and then directly performs on the target
languages. McDonald et al. [30] use the delexicalized models combined with a standardized POS
tagset to transfer models between languages directly. Ma and Xia [26] propose an unsupervised
projective dependency parsing approach for resource-poor languages, using existing resources
from a resource-rich source language with entropy regularization. Wu and Dredze [40] demon-
strate the broader cross-lingual potential of mBERT1 (multilingual-BERT) [34] as a zero-shot lan-
guage transfer model. Ahmad et al. [1] explore how the design of neural architectures affects cross-
lingual transfer learning and find that order-free models perform better than order-sensitive ones.
Sun et al. [37] propose an effective cross-lingual universal dependency parsing framework with

1https://github.com/google-research/bert/blob/a9ba4b8d7704c1ae18d1b28c56c0430d41407eb1/multilingual.md.
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Fig. 2. The architecture of our subword-level dependency parsing model.

self-training strategy for transferring parser from only one source monolingual treebank to any
other target languages without treebank available. Cross-lingual word clusters [38] and lexicon
mapping [12, 42] are also used in cross-lingual models.

3 MODEL

3.1 Overview

In this work, we propose a general parser adapted to both monolingual and cross-lingual scenarios.
Figure 2 illustrates the structure of our subword-level graph-based dependency parsingmodel with
tri-training [54]. It consists of four parts: BERT encoder, biaffine scorer [10], token mask-based
parsing inference, and tri-training.

3.2 BERT-encoded Representation

For the encoder, we employ the Transformer [39] encoder with pre-trained weights and subword
embeddings from BERT [34] instead of the randomly initialized BiLSTMwith the pre-trained word
embeddings. We do not use any other information except subword to prevent error propagation,
such as POS tag, which reduces the reliance on the model. For the detailed task definition in our
model, we use [CLS] defined in BERT as the virtual ROOT node for dependency parsing and [SEP]
as the end tag of the sequence. Then, we create a new dependent arc with root relation, pointing
from [CLS] (ROOT ) to [SEP], which is shown in Figure 1.

In addition, to represent the dependencies within the word (inter-character), we follow the work
of Zhang et al. to build the subword-level dependency tree. As shown in Figure 3, the subword end
of a word, like “##冲(attack)”, is regarded as the node (if a word has no subwords, the subword end
is defined as the word itself), where the word creates its dependency with other words. For the
subwords, which are not the subword end of a word, like “首(first)”, “##当(suffer)”, “##其(such)”,
we add an app dependency relation pointing from its successor subword to itself.

Formally, given an input sequence of n tokens x = w1,w2, . . . ,wn , which is tokenized by
a subword tokenizer, we obtain the contextualized representation of wi from the pre-trained
BERT model as hi :

hi = BERT(wi ). (1)
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Fig. 3. Converting the word-level dependency tree to subword-level.

3.3 Biaffine Scorer

The head-dependent pair is scored with a Biaffine scorer. Based on the BERT-encoded representa-
tion hi , we use themulti-Layer perceptron (MLP) and deep biaffine attention [10] to score each
possible head and dependent for further role-specific representation.

h
(arc−dep )
i = MLP(arc−dep ) (hi ), (2)

h
(arc−head )
j = MLP(arc−head ) (hj ), (3)

y
(arc )
i = H (arc−head )U (1)h

(arc−dep )
i + H (arc−head )u(2), (4)

where the matrix H is the stack of vectors h after MLP, U (1) ∈ Rk×k , u(2) ∈ Rk×1, and k is the
dimension of MLP. For relational pair classification, a similar biaffine scorer is adopted. The only
difference is that the dimension of the score shifts from 1 to the size of the dependency relation
vocabulary.

3.4 Token Mask-Based Parsing Inference

In the original dependency parser at the word level, the Minimum Spanning Tree (MST) algo-
rithm is regarded as the search (inference) algorithm to ensure the dependency tree is well-formed
at test time. Since the subword-level has an intra-word (inter-character) dependency arc, we pro-
pose a token mask-based MST search algorithm to guarantee the original segmentation of the task
(that is, the final dependency tree is restored to the original word level.

Suppose the original word-level MST algorithm is used to search the dependency tree for
subword-level dependency graphs. In that case, it may generate incorrect intra-word (inter-
character) dependencies and inter-word dependencies, failing to restore awell-defined dependency
tree at the word level.2 Therefore, it is necessary to build some hard constraints on the score
(weight) of the graph edges.

Figure 4 illustrates a typical example of three important types of masks:

—Words with no subwords: its valid choice is the subword end of all words except itself, like
“大众(Volkswagen)” in the example.

—Subwords which are not subword end of a word: the dependency of such subwords must be
its successor subword, like “首(first)”,“##当(suffer)”,“##其(such)”.

—Subword ends: subword ends are the same as words without subwords, like “##冲(attack)”.

We can multiply the scoring matrix predicted from the model by the mask matrix to ensure a
word-level well-defined dependency tree.

2For the training phase, there is no need to consider this issue at all. As with other graph-based models, the predicted

tree at training time is the one where each word is the dependent of its highest-scoring head, including intra-word and

inter-word dependencies.
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Fig. 4. An example of token mask for parsing inference.

Although our proposed model has features from the subword level, it does not contain the word
segmentation procedure and utilizes the original word segmentation information at inference time.
Thus, we can use this gold word segmentation information to obtain the token range within the
word and between the words to remove the illegal head by the token mask.

3.5 Training Objective in Tri-training

The model is trained to optimize the probability of the dependency tree y when given a sentence
x : Pθ (y |x ), which can be factorized as:

Pθ (y |x ) =
l∏

i=1

Pθ
(
yarci ,y

r el
i |xi

)
,

where θ represents learnable parameters, l denotes the length of the processing sentence, andyarci ,

yr eli denote the highest scoring head and dependency relation for node xi . It is represented as the
negative likelihood loss L:

L = (− log Pθ (yarc |x )) + (− log Pθ (yr el |x )).

When training with the combined labeled and auto-parsed data in supervised tri-training, the
objective is to maximize the mixed likelihood (minimize the negative likelihood loss):

L = Lд + α · La ,

where α is the confidence for auto-parsed data at the subword level, which is variable according
to the number of tri-training iterations.

4 EXPERIMENTS

4.1 Tasks

In this work, we evaluate our proposed method with two typical tasks. The first task is monolin-
gual cross-domain adaptation. NLPCC-2019 shared task on cross-domain dependency parsing [32]
provides 17 K sentences from a balanced corpus as the source domain (BC), and three target
domains where 10 K sentences are from product comments (PC), 8 K sentences are from prod-
uct blogs (PB), and 3 K are sentences from the web fiction named “Zhuxian” (ZX ). We set up
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Table 1. Data Statistics in NLPCC-2019

Shared Task (in Sentence Number)

Train Dev Test Unlabeled

BC 16.3 K 1 K 2 K 0

PB 5.1 K 1.3 K 2.6 K 300 K
PC 6.2 K 1.3 K 2.6 K 350 K
ZX 1.6 K 0.5 K 1.1 K 30 K

four sub-tasks with two cross-domain scenarios, i.e., unsupervised and semi-supervised domain
adaptation:

—Unsupervised domain adaptation assumes that there is no labeled training data for the tar-
get domain. For example, in the unsupervised domain adaptation scenario, when the target
domain is PC, the labeled training data of PC is unavailable, but the unlabeled data of PC is
allowed to use.

—Semi-supervised domain adaptation means that there exists a labeled training dataset for
the target domain.

The statistics of the NLPCC-2019 shared task datasets can be seen in Table 1.
Considering the NLPCC-2019 shared task is labeled only on the Chinese, in order to explore

the generalization ability of the model, we also experiment in domains of other languages. In the
CoNLL-2018 shared task [47], there are 16 languages with two or more treebanks from different
sources, also usually from different domains. As CoNLL-2018 has the most domains in English, we
choose English as another language for domain adaptation. Among them, the EWT is used as the
source domain, GUM, LinES, and PUD as the target domain. We also conduct experiments with the
two domain adaptation settings described earlier.
In addition, if cross-lingual dependency parsing is also considered as a domain adaptation task,

we evaluate it on the CoNLL-2018 shared task based on the same settings. We select English as
the source language and some low resource languages (Thai, Vietnamese, Indonesian, Chinese,
Japanese, Hindi, and Korean) as the target language.

ALGORITHM 1: An variant tri-training
method for unsupervised domain adaptation

for i ∈ {1 . . . 3} do
modeli ← train_model(tS ,dS , randomi )

end for

for i ∈ {4 . . .N } do
aT ← parse(modeli−3,modeli−2,uT )
mT ← merge(aT , tS )
modeli ← finetune_model(modeli−1,mT ,dT )

end for

ALGORITHM 2: An variant tri-training
method for semi-supervised domain adaptation

for i ∈ {1 . . . 3} do
modeli ← train_model(tS ,dS , randomi )

end for

model4 ← finetune_model(model3, tT ,dT )
for i ∈ {5 . . .N } do

aT ← parse(modeli−3,modeli−2,uT )
mT ← merge(aT , tT , tS )
modeli ← finetune_model(modeli−1,mT ,dT )

end for

4.2 Model Setup

For the hyper-parameter of models trained on the source domain data, the encoder is initialized by
the pre-trained languagemodel: Chinese simplified and traditional BERTwith 12-layer, 768-hidden,
12-heads, and 110 M parameters. When not otherwise specified, our model uses 100-dimensional
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arc space and 128-dimensional relation space. We follow the downstream task fine-tuning settings
by Peters et al., with learning rate lr = 5e−5. The maximum number of training epochs is set to 30.
For the models in the fine-tuning process, the learning rate is reduced to 2e−3, and the number of
fine-tuning epochs is set to 3.
For the hyper-parameter in the English domain adaptation model, we replace the Chinese BERT

with the English BERT-Largemodel with 24-layer, 1024-hidden, 16-heads, 340Mparameters.While
for the cross-lingual dependency parsing, we change it to the multilingual cased BERT-Base model
with 104 languages, 12-layer, 768-hidden, 12-heads, and 110 M parameters.

For unsupervised and semi-supervised domain adaptation, we use slightly different tri-training
variants as presented in Algorithms 1 and 2. Unlike traditional tri-training methods, we do not
select data from auto-parsed data but merge all auto-parsed data with source domain data and
target domain data (semi-supervised domain adaptation) instead. The gold data and auto-parsed
data are assigned different weights (confidence) to achieve the goal of domain adaptation.3 In the
algorithm, we use tS and tT to represent the gold labeled training dataset in the source domain
(BC) and the target domain (T ∈ {PB, PC, ZX }). dS and dT are denoted as the development dataset
in the corresponding domains. uT , aT , and mT indicate the unlabeled data, the auto-parsed data,

and themixed data in the target domain.modeli represents the model on the i th training iteration
with random seed randomi .

The number of iteration tri-training steps N is set to 20. In each model training or fine-tuning
process, we use the labeled attachment score (LAS) on the development dataset to select the
model and only save the model with a higher score on the development dataset of the correspond-
ing target domain for subsequent use.4 When the iteration step i < 10, we set the confidence of
the auto-parsed data α = 0.2, and α = 0.5 at i >= 10.

5 MAIN RESULTS

5.1 Cross-domain Dependency Parsing

In Table 2, we compare our full model against previous work on the NLPCC-2019 shared task
test dataset. Our baseline is a modification to the model of Dozat and Manning, which uniformly
handled the dependency arcs and relations. As for the systems for comparison, PRIS_DP is the
baseline model of the NLPCC-2019 shared task. NNU proposed by the team from Nanjing Normal
University is based on the stack-pointer networks. Their evaluation results are fetched from the of-
ficial website.5 The model proposed by Li et al. [23] merges the source- and target-domain training
data and employs the recent contextualized word representations with fine-tuning. The difference
between our model and the other models reported is that we propose a dependency parser at
the subword level adopting a token mask-based inference algorithm and employ a novel domain
adaptation method, tri-training. Our model outperforms significantly over the previous works
for both unsupervised and semi-supervised settings. The proposed tri-training method brings
absolute improvements of 17.46% and 6.3% LAS on the unsupervised and semi-supervised settings,
respectively, which are on par with the best-published scores.
In addition, for better reflecting the contributions of our model other than the biaffine scorer

[10], we also list the results of initializing Transformer without using any pre-trained language

3Due to the tri-training iterative training process, the unlabeled data will be much larger than the gold annotation data.

In order to balance the training process of the model, we repeat the gold data to achieve the same amount of data as the

unlabeled data and then perform data shuffle during training.
4The initial score for each model run is set to 0, so at least one model will be saved for each training session.
5http://hlt.suda.edu.cn/index.php/Nlpcc-2019-shared-task.
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Table 2. Evaluation Results on the NLPCC-2019 Shared Task Test Dataset with Unsupervised and

Semi-Supervised Settings

Systems
Unsupervised Semi-supervised

PC PB ZX AVG PC PB ZX AVG

PRIS_DP
UAS 39.81 67.31 69.55 58.89 69.30 77.37 74.35 73.67
LAS 26.27 60.40 61.51 49.39 60.35 72.10 68.28 66.91

NNU [41] UAS - - - - 70.97 80.59 79.33 79.96
LAS - - - - 61.82 75.85 74.35 70.68

Li et al. [23]
UAS - 67.55 68.44 - - 82.05 80.44 -
LAS - 61.01 59.55 - - 77.16 75.11 -

BiAF + tri-training
UAS 39.96 67.91 69.42 59.10 70.25 78.03 78.43 75.57
LAS 26.44 61.32 61.66 49.81 60.95 71.82 72.05 68.27

Ours
UAS 60.50 81.61 79.74 73.95 75.25 85.53 86.14 82.31

LAS 49.49 76.77 74.32 66.86 67.77 81.51 81.65 76.98

The bold values indicates the significance level p-value < 0.01.

Table 3. UAS and LAS of Unsupervised Domain Adaptation

Experiments on Test Datasets of four English Domains from

CoNLL-2018 Shared Task, Together with Baseline, +BERT,

and +Tri-training for Comparison

Baseline +BERT +Tri-training

UAS [LAS] UAS [LAS] UAS [LAS]

EWT 83.32 [80.46] 93.29 [91.13] 94.43 [91.27]

GUM 81.09 [76.68] 87.70 [84.16] 89.68 [86.62]

LinES 80.71 [75.26] 86.03 [82.26] 88.08 [83.52]

PUD 86.77 [83.49] 93.03 [90.85] 93.81 [92.09]

avg 82.97 [78.97] 90.01 [87.10] 91.50 [88.37]

The bold values indicates the significance level p-value < 0.01.

model, namely BiAF+tri-training, in the table. Although there is a gap contrasting with the model
using BERT, it has performance advantages compared with system PRIS_DP, which only uses BiAF.
It shows that tri-training is an effective method with language model pre-training and improves
the performance of the parser for both unsupervised and semi-supervised scenarios.
Table 3 presents all test results on four English domains of CoNLL-2018 datasets. We first train

the parser for each domain on the data of four domains, respectively, as a baseline and further
report the results of parsers with further enhancement using mBERT. Then we report the effect of
using tri-training on the strong BERT baseline. Compared with the baseline, our model with pre-
trained BERT yields strong performance on all domains without exception and performs better
than the baseline method with a large margin of 8.13% LAS on average. Moreover, applying our
tri-training method to the robust BERT model can further boost the model performance by 1.27%,
demonstrating the effectiveness of our proposed methods. On the other hand, it indicates that
tri-training is generally beneficial to domain adaptation problems.

5.2 Cross-lingual Dependency Parsing

We also report the scores of cross-lingual dependency parsing in Table 4. For the model training,
we first merge the training datasets (if any) of all domains and train the multilingual subword
embedding with the unlabeled text using the fastText toolkit [31]. The model is only trained on
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Table 4. UAS and LAS of Unsupervised Cross-Lingual Experiments

on Test Datasets of Seven Languages from CoNLL-2018 Shared Task,

Together with Baseline, +BERT, and +Tri-training for Comparison

Baseline +BERT +Tri-training

UAS [LAS] UAS [LAS] UAS [LAS]

English 83.32 [80.46] 92.11 [89.67] 93.55 [90.76]

Thai 1.22 [0.57] 39.25 [22.41] 41.07 [28.95]

Vietnamese 33.25 [19.68] 51.07 [36.73] 53.24 [43.77]

Indonesian 45.12 [33.10] 69.23 [51.01] 70.15 [52.10]

Chinese 41.38 [29.96] 51.71 [35.69] 52.46 [36.07]

Hindi 29.37 [11.44] 35.82 [16.56] 37.23 [18.85]

Korean 32.25 [20.12] 52.92 [36.95] 54.30 [38.09]

avg 37.98 [27.90] 56.01 [41.28] 57.42 [44.08]

The bold values indicates the significance level p-value < 0.01.

the English language EWT domain and evaluated on other languages in zero-shot. We find that
the overall performance of cross-lingual dependency parsing is improved with our method, which
suggests that the mBERT is better for dealing with cross-lingual tasks than the multilingual fast-
Text subword embedding. Specially, we observe that our system shows a remarkable advance on
Thai compared with the baseline. This advance can be attributed to the multilingual capacity of
BERT that can cover a wide range of language patterns by pre-training on a large corpus. With
the aid of the proposed tri-training method, our system improves over the cross-lingual task, ver-
ifying that tri-training is valid for domain adaptation and cross-lingual tasks. Based on this result,
we can observe that cross-lingual tasks can be carried out as cross-domain tasks due to the com-
monalities between different languages, though with greater differences. It implies that we can
attempt to apply most of the domain adaptation approaches to the cross-lingual transfer learning
task, especially after an available pre-trained language model.

6 ABLATION STUDY

6.1 Tri-training

To explore how the tri-training works, we depict the learning curve on domain adaptation by
recording the LAS results on the tri-training among three domains (PB, PC, and ZX ), based on
the unsupervised setting in the NLPCC-2019 shared task. The illustration is shown in Figure 5.
The start point (step = 0) represents the performance of the baseline. We observe that the per-
formance of the model is successively boosted when the training processes. The curve proves
that the tri-training method can further improve model performance, and in-domain unlabeled
data is generally efficient for dependency parsing. We also show in Figure 6 the curve of perfor-
mance changing with the tri-training step on the cross-lingual transfer learning task. Comparing
Figures 5 and 6, we found that the trends of cross-domain transferring and cross-lingual trans-
ferring are basically similar. On the one hand, it illustrates the generalization of our proposed
tri-training approach for transfer learning tasks. On the other hand, it illustrates the commonality
between cross-domain transferring and cross-lingual transferring in task modeling.

6.2 Subword or Word?

NLP models based on deep learning, usually suffer from the representation of OOV issues when
encountering rare words like morphologically complex words and named entities [53]. In order
to prove the role of subword in the parsing domain adaptation, we also perform an experimental
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Fig. 5. Performances on dev dataset fromNLPCC-

2019 shared task with unsupervised setting.

Fig. 6. Performances on test datasets of four lan-

guages from CoNLL-2018 shared task with unsu-

pervised setting.

Table 5. Word and Subword Level Evaluation Results on

NLPCC-2019 Shared Task Dev Dataset with Both

Unsupervised and Semi-supervised Settings

System
Unsupervised Semi-supervised

PC PB ZX PC PB ZX

Word
51.70 76.37 71.34 73.54 80.73 83.35
39.35 70.10 65.28 66.38 76.16 79.23

Subword
52.24 76.47 71.93 73.6 80.78 83.82
39.93 70.90 65.85 66.49 76.11 79.62

performance comparison based on subword and word levels, as shown in Table 5. The results
show that modeling text into subword units is beneficial for dependency parsing. Employing the
subword as the minimal unit of text can reduce the size of vocabulary as well as the parameter size
with better performance.

6.3 Token Mask or Last Subwords?

For dependency parsing, since the theory is based on word-level, and most of the current main-
stream pre-training language models are subword-level, this caused some inconvenience to the
application. In order to make up for this difference, one is to extract word-level features from
subword-level representation and then perform word-level parsing. The other is to learn from
subword-level parsing directly, but the tree conversion fromword-level to subword-level is needed.
In this work, because of the granularity change resulted by tree conversion, our model utilizes a
token mask to build hard constraints on the score (weight) of the graph edges. We also consider
using the boundary subwords (like first/last subwords) to represent the word and comparing the
performance of these two strategies. As shown in Table 6, the results on test datasets of four
English domains demonstrate that the token mask inference is a better strategy for dependency
parsing. It avoids generating incorrect intra- and inter-word dependencies, restores a well-defined
dependency tree at the word level, and makes the most use of contextualized representation for
the encoder.
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Table 6. Comparison of Two Strategies on Test Datasets of Four English

Domains from CoNLL-2018 Shared Task with Unsupervised Settings

BiAF with Last Subword BiAF with Token Mask

UAS [LAS] UAS [LAS]

EWT 94.13 [91.01] 94.43 [91.27]

GUM 89.55 [86.40] 89.68 [86.62]

LinES 87.59 [83.23] 88.08 [83.52]

PUD 93.44 [91.82] 93.81 [92.09]

avg 91.18 [88.12] 91.50 [88.37]

The bold values indicates the significance level p-value < 0.01.

7 CONCLUSION AND FUTURE WORK

This article presents a domain adaptation model for dependency parsing. The evaluation results
on the benchmarks show that our proposed approaches can yield significantly improved results
over cross-domain dependency parsing and even cross-lingual dependency parsing. This work
discloses the potential of tri-training for dependency parsing domain adaptation. According to
the fact that several models with different performance can be strengthened in the process of tri-
training, we can perform ensemble on these models to obtain higher cross-domain or cross-lingual
performance improvements in the future.
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